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Symmetry-breaking bifurcation of positive solutions to
a one-dimensional Liouville type equation
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We consider the two-point boundary value problem for the one-dimensional Liouville
type equation

u' + Mzl'et =0, ze€(-1,1),
(1)

u(-1) = u(1) =0,
where A > 0 and ! > 0.

Jacobsen and Schmitt [2] studied the exact multiplicity of radial solutions of the
problem for the multi-dimensional Liouville type equation

Au+ Azlle* =0 in B,
u=0 on 9B,

where [ > 0 and B := {z € R" : |z| < 1}. They proved the following (i)—(iii):

(i) if 1 < N < 2, then there exists A, > 0 such that (2) has exactly two radial
solutions for 0 < A < A,, a unique radial solution for A = A, and no radial
solution for A > A,;

(ii) if 3 < N < 10 + 4I, then (2) has infinitely many radial solutions for A = (I +
2)(N —2) and a finite but large number of radial solutions when |A—(I+2)(N —2)|
is sufficiently small,

(iii) if N > 10 + 4, then (2) has a unique radial solution for 0 < A < (I + 2)(N —2)
and no radial solution for A > (I + 2)(N — 2).

We note here that every solution of (2) is positive in B, by the strong maximum principle.
Result (i)—(iii) were established by Joseph and Lundgren [3] for the case ! = 0, that is,
for the Liouville equation

(2)

3)

Au+ Ae* =0 in ,
u=20 on 04,

when 2 = B. Gidas, Ni and Nirenberg’s theorem ([1]) shows that every positive solution
of (3) is radially symmetric when Q = B. However, when Q is an annulus A := {z €
RY : a < |z| < b}, a > 0, problem (3) may has non-radial solutions. Indeed, Lin [4]
proved that (3) has infinitely many symmetry-breaking bifurcation points when N = 2
and = A. Nagasaki and Suzuki [6] found that large non-radial solutions of (3) when
N =2 and 2 = A. More precisely, for each sufficiently large p > 0, there exist (A, u)
such that A > 0, u is a non-radial solution of (3) and f, e*dz = s when N = 2 and
Q= A



Recently, Miyamoto [5] considered the problem for the Liouville type equation (2)
and proved the following result.

Theorem A ([5]). Let ng be the largest integer that is smaller than 1+ L and let

oy, = 2log —f—é—”’_—%ﬁ. All the radial solutions of (2) with N = 2 can be written explicitly as

eOZ

(1 + (ex/2 — 1)rk2)?

The radial solutions can be parameterized by the L™-norm, it has one turning point
at A = Mag) = (1 +2)/2, and it blows up as A | 0. For each n € {1,2,--- ,ne},
(Moaw),U(r;an)) is a symmetry breaking bifurcation point from which an unbounded
branch consisting of non-radial solutions of (2) with N = 2 emanates, and U(r;a) is
nondegenerate if @ # a,, n = 0,1,--- ,ng. Each non-radial branch is in (0, \Mog))) x
{u> 0} C R x H3(B).

When N = 2, radial solutions of problems (2) and (3) can be written explicitly, and
hence, Lin [4] and Miyamoto [5] succeeded to show the existence of bifurcation points.
That is difficult even if we know exact solutions, much more difficult if we do not know
them usually. When N # 2, we do not find exact radial solutions of (2). However, the
structure of eigenvalues and eigenfunctions of the linearized problem in the dimension 1
is well-known, and then, by the comparison function introduced in [7], we can find the
Morse indices of even solutions of (1). Then we obtain the existence of a symmetry-
breaking bifurcation point of (1).

Let m(U) be the Morse index of a solution U to (1), that is, the number of negative

eigenvalues p of
(4) { ¢ + /\}w!leU(ﬂ?)qﬁ +pp=0, ze€(-1, 1)7
¢(=1) =¢(1) =0,

A solution U of (1) is said to be degenerate if u = 0 is an eigenvalue of (4). Otherwise,
it is said to be nondegenerate.
The main result is as follows.

Na) =2(1+2)*(e™*/? - e™®), U(r;a) =log

Theorem 1. For each o > 0, there exists a unigque (A(a),U(z; o)) such that (1) with
A = Ma) has a unique positive even solution U = U(z;a) such that ||U||e = «.
Moreover, there exist o, oy, ap and az such that o, < a; < as < az and the following
(i)—(vii) hold:

(i) f 0 < a < o, then m(U) = 0 and U(x; «) is nondegenerate;

(i) if a = o, then m(U) = 0 and U(x; a) is degenerate;

(i) if o < @ < a1, then m(U) = 1 and U(z; ) is nondegenerate;

(iv) if a = aq, then m(U) = 1 and U(z; ) is degenerate;

(v) if @ = ag, then m(U) = 1, U(z;a) is degenerate and (U, ) is a non-even
bifurcation point, that is, for each ¢ > 0, there exists (A, u) such that u is a
non-even positive solution of (1) and |A — Mag)| + ||lu — U(+, @)oo < €

(vi) if a = a3, then m(U) = 2 and U(z; o) is degenerate;

(vii) if a > a3, then m(U) = 2 and U(z; ) is nondegenerate.
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Here and Hereafter, we use the notation ||U || = sup,¢_1; U(2).
For the proof of Theorem 1, see [8]. Here, we give a sufficient condition for the second
eigenvalue of the linearized problem to be negative for the following problem

{ u + M(z)f(u) =0, ze€(-1,1),
u(—1) = u(l) = 0.
where A > 0 and h € C'([-1,0) U (0,1]) n C[-1,1], h(—z) = h(z), h(z) > 0 and

R'(z) > 0 for x > 0, f € C[0,00), f(s) > 0 and f'(s) > 0 for s > 0. Namely we will
show the following result, which plays a crucial role in the proof of Theorem 1.

(5)

Proposition 1. Assume that, for each sufficiently large a > 0, there erist A\(a) >
0 and U(z; o) such that U(z;a) is a positive even solution of (5) at A = A(a) and
lU( ;)| = a. Assume moreover that there exist sy > 0 and § > 0 such that

l(z)(g(s) —1)—4
(6) o)+l 13 =

where I(x) = zh'(z)/h(z) and g(s) = sf'(s)/f(s). Let py(a) be the second eigenvalue of
&'+ Ma)h(x) f/(U(z;0))b + b =0, @ € (—1,1),

{ ¢(-1) = ¢(1) =0.

Then po(a) < 0 for all sufficiently large a > 0.

z € (0,1], s > so,

(7)

In the case where h(z) = |z|', [ > 0 and f(s) = €°, it follows that I(z) = zh'(z)/h(z) =
I for z € (0,1] and g(s) = sf'(s)/ f(s) = s, and hence (6) is satisfied.

We conclude that if U is a positive even solution of (1) and |U]|e < 1, then m(U) = 0.
Indeed, let p; be the first eigenvalue of (4) and let ¢; be an eigenfunction corresponding
to ;. We may assume that ¢;(z) > 0 on (—1,1). Integrating the equality

(¢1(2)V'(2) = ¢1(2)U (=) = pad1(2)U (2) + Alz|'e” gy (2) (U () - 1)

on [—1,1], we have

1 /_ 1 é1(x)U(z)dz = A [ 1 |z|'eV @y (2)(1 — U(z))dzx > 0.

Consequently, we have y; > 0, which means m(U) = 0. By applying Proposition 1, we

can conclude that m(U(-;a)) =0 for 0 < a < 1 and m(U(-; a)) > 2 for all sufficiently

large oo > 1. Then, using the Leray-Schauder degree, we can find a bifurcation point.
To prove Proposition 1, we need the following two lemmas.

Lemma 1. Let ¢, be an eigenfunction corresponding to the second eigenvalue py(c) of
(7). Then ¢q is odd, $2(0) = ¢2(1) = 0 and ¢(x) # 0 for x € (0,1).
Proof. Let M, be the first eigenvalue of
& + Ma)h(z)f'(U(z;))®+ M® =0, =ze€(0,1),
{ ®(0) = ®(1) =0,
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and let ®; be an eigenfunction corresponding to M;. Then ®,(0) = &;(1) = 0 and
®,(x) #0on (0,1). Set
,(z), z € [0,1],
B(z) = 1(z) [ }'
—(I’l(ml‘), z € [—_1:0) .
Noting the fact that lim,, o ®"(z) = lim,,_o(—P7(—2)) = —P7(0) = 0, we easily
check that & is a solution of
" + Ma)h(z) f'(U(z;a))® + M =0, ze€(-1,1),
O(-1)=d(1) =0,
and @ is odd, ®(z) # 0 on (0,1) and ®(0) = 0. Therefore, M is an eigenvalue of (7)

and @ is an eigenfunction corresponding to M. Since ® has exactly one zero in (—1,1),
M; must be po and hence ¢a(x) must be c®(z) for some ¢ # 0. O

Lemma 2. Assume that w € Cla,b] is positive and concave on (a,b). Let p € (0,1/2).
Then w(x) > pmaxecpy w(&) for z € [(1 — p)a+ pb, pa + (1 — p)b].

Proof. We take ¢ € [a,b] for which w(c) = maxeejop w(€). Then w(c) > 0. Since w is

positive and concave on (a,b), we have

w(cc)(ic; a) > w(cg(—af; a) (),

w(z) > z € [a,d,

and
w(e)(b—z) _ w(c)(b—z)
wiz) 2 b—c E b—a
Hence w(z) > min{l;(z),l2(z)} on [a, b]. We conclude that if z € [(1—p)a+pb, (a+b)/2],
then

=:l(z), z€ g}

min{l;(z), lo(2)} = Li(z) > L((1 — p)a + pb) = pw(c),
and if z € [(a + b)/2, pa + (1 — p)b], then
min{l;(z), la(z)} = lo(z) > La(pa + (1 - p)b) = pw(c).
The proof is complete. Cl
Now we are ready to show Proposition 1.

Proof of Proposition 1. Let a > 0 be sufficiently large. We use the following comparison
function y(z) introduced in [7]:

y(z) = zU(x;0) — (z — 1)U’ (z; a).
This function y(z) satisfies y(0) = y(1) =0, y(z) > 0 on (0,1), and
Y+ Ma)h(z) f(U(z; )y = M)z h(z)H(z; ) f(U(z; )
for z € (0, 1], where
H(z;a) = (1 — 2)%(z) + z(3z — 4) + 2°g(U(z; a)).
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Let ¢o(z; @) be an eigenfunction corresponding to py(a). From Lemma 1, it follows that
$2(0; 0) = ¢2(1;0) = 0 and ¢a(z; ) # 0 for z € (0,1). Without loss of generality, we
may assume that ¢;(x;a) > 0 for z € (0,1) and maxgejo,1) $2(&; @) = 1. We observe that

(¥'b2 — y¢a)' = pa(@)gay + M)z h(z)H (z; @) f(U(z;0))¢2, z € (0,1].
Integrating this equality on (0, 1), we obtain

(8) ug(a)/o ¢2(x;a)y(z)d:c+/\(a)/0 7 h(z)H(z;0) f(U(z; a))da(z; a)dz = 0.

Since

) | I(z) +2 ’
H(z) = [g(U(z; @) + U(z) + 3] (m Uz ) +1(z) + 3)
I(z)lg(U(z; ) — 1] — 4
g(U(z;a)) + l(z) + 3

(z)[g(U(z;0)) —1] — 4
g(U(z;a)) + U (z)+3

l
>
we have

(9) /01 7 h(z)H(z; a) f(U(z; @))p2(z; a)dz

by MDlgU(za)) -1 -4 ,
> [[+7he) ey Ty U@ )i e
Since U"(z; o) = —A(a)h(z) f(U(z;@)) < 0 on (0,1], we find that U’(z; a) is decreasing
in z € (0,1]. From U’(0; ) = 0 it follows that U’(z; ) < 0 for z € (0, 1], which implies
that U(z; a) is also decreasing in « € (0,1]. Then there exists z(a) € (0,1) such that
U(z;a) > so for z € [0,z(a)] and U(z; ) < s for z € (z(a),1]. Since U(z;a) is
concave on (0,1), we conclude that

U(z;a) > a(l —z), z€][0,1],
which shows that if z € [0, (@ —s0)/¢], then U(z; @) > so. Therefore, z(a) > (a—so)/a,
which implies

(10) lim z(a) = 1.

00

We take s; > so for which z(a) > 3/4 for a > s;. If a > sy, then (6) implies

)y @Ue)) —1] -4 ,
(1) | e S = (U @i 0)) (s )

(o)
> 5/(s0) / 2 h(2)ds(z; a)da

3/4
> 8f(s0) /;/4 27 h(z) o (x; a)dz.
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Recalling maxgco,1) ¢2(§) = 1, we have

L @eUma) 14
(12) / M S T T 4 (U2 0))a(w: 0)de
L (1) + )1 (U(x 0))da(a; )
2 "/m(a)‘” M) Ty 1) +3
> flo0) [ a7 ha) e

Now we will show that there exists s; > s; such that ps(a) < 0 for & > so. Assume
to the contrary that there exists {@,}22; such that ys(0y) > 0 and a, > 51 forn € N
and lim,, . o, = 0.

Since ¢o(x; ) > 0 and

P3(@; an) = —h(z) f'(U(z; an))pa(z; an) — pa(an)pa(2;00) <0, z€(0,1),

we find that ¢»(z;a,) is concave on (0,1). From Lemma 2 with p = 1/4, a = 0 and
b =1, it follows that

1 1 13
> — max = _ —. =1,
¢2($7 n) = 4€€E01 ¢’2(§y n) 1’ S [474}

By (11), we have

(13) / (o) QWU Ei) ~ 1 =40 6 (0 0)da

g(U(z; ) +U(z)+ 3
" 5f(s0) 3 -1
> ~— /1/4 z~ h(z)dz.

Combining (8) with (9), (12) and (13), we have

0> —polom) / ¢2(z; an)y(z)dx

3/4 1 z
> Mow) f(s0) [ / ™ h(z)dr — /x(an) w'lh(x)%—))—:—t——%dx} ,

which implies

1 3/4
/ m“lh(:v)wdx > J 27 h(z)dz >0, ne€N.

(en) l(z) +3 1/4
This contradicts the fact (10). Consequently, there exists s; > s; such that us(a) < 0
for a > s;. This completes the proof. 0
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