Symmetry-breaking bifurcation of positive solutions to a one-dimensional Liouville type equation

Satoshi Tanaka

Faculty of Science, Okayama University of Science

We consider the two-point boundary value problem for the one-dimensional Liouville type equation

(1)
$$\begin{cases} u'' + \lambda |x|^l e^u = 0, & x \in (-1, 1), \\ u(-1) = u(1) = 0, \end{cases}$$

where $\lambda > 0$ and l > 0.

Jacobsen and Schmitt [2] studied the exact multiplicity of radial solutions of the problem for the multi-dimensional Liouville type equation

(2)
$$\begin{cases} \Delta u + \lambda |x|^l e^u = 0 & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}$$

where $l \ge 0$ and $B := \{x \in \mathbb{R}^n : |x| < 1\}$. They proved the following (i)-(iii):

- (i) if $1 \leq N \leq 2$, then there exists $\lambda_* > 0$ such that (2) has exactly two radial solutions for $0 < \lambda < \lambda_*$, a unique radial solution for $\lambda = \lambda_*$ and no radial solution for $\lambda > \lambda_*$;
- (ii) if $3 \le N < 10 + 4l$, then (2) has infinitely many radial solutions for $\lambda = (l + 2)(N-2)$ and a finite but large number of radial solutions when $|\lambda (l+2)(N-2)|$ is sufficiently small;
- (iii) if $N \ge 10 + 4l$, then (2) has a unique radial solution for $0 < \lambda < (l+2)(N-2)$ and no radial solution for $\lambda \ge (l+2)(N-2)$.

We note here that every solution of (2) is positive in B, by the strong maximum principle. Result (i)–(iii) were established by Joseph and Lundgren [3] for the case l=0, that is, for the Liouville equation

(3)
$$\begin{cases} \Delta u + \lambda e^{u} = 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

when $\Omega = B$. Gidas, Ni and Nirenberg's theorem ([1]) shows that every positive solution of (3) is radially symmetric when $\Omega = B$. However, when Ω is an annulus $A := \{x \in \mathbf{R}^N : a < |x| < b\}$, a > 0, problem (3) may has non-radial solutions. Indeed, Lin [4] proved that (3) has infinitely many symmetry-breaking bifurcation points when N = 2 and $\Omega = A$. Nagasaki and Suzuki [6] found that large non-radial solutions of (3) when N = 2 and $\Omega = A$. More precisely, for each sufficiently large $\mu > 0$, there exist (λ, u) such that $\lambda > 0$, u is a non-radial solution of (3) and $\int_A e^u dx = \mu$ when N = 2 and $\Omega = A$.

Recently, Miyamoto [5] considered the problem for the Liouville type equation (2) and proved the following result.

Theorem A ([5]). Let n_0 be the largest integer that is smaller than $1 + \frac{l}{2}$ and let $\alpha_n := 2 \log \frac{2l+4}{l+2-2n}$. All the radial solutions of (2) with N=2 can be written explicitly as

$$\lambda(\alpha) = 2(l+2)^2(e^{-\alpha/2} - e^{-\alpha}), \quad U(r;\alpha) = \log \frac{e^{\alpha}}{(1 + (e^{\alpha/2} - 1)r^{l+2})^2}.$$

The radial solutions can be parameterized by the L^{∞} -norm, it has one turning point at $\lambda = \lambda(\alpha_0) = (l+2)/2$, and it blows up as $\lambda \downarrow 0$. For each $n \in \{1, 2, \dots, n_0\}$, $(\lambda(\alpha_n), U(r; \alpha_n))$ is a symmetry breaking bifurcation point from which an unbounded branch consisting of non-radial solutions of (2) with N=2 emanates, and $U(r; \alpha)$ is nondegenerate if $\alpha \neq \alpha_n$, $n=0,1,\dots,n_0$. Each non-radial branch is in $(0,\lambda(\alpha_0))$ $\times \{u>0\} \subset \mathbf{R} \times H_0^2(B)$.

When N=2, radial solutions of problems (2) and (3) can be written explicitly, and hence, Lin [4] and Miyamoto [5] succeeded to show the existence of bifurcation points. That is difficult even if we know exact solutions, much more difficult if we do not know them usually. When $N \neq 2$, we do not find exact radial solutions of (2). However, the structure of eigenvalues and eigenfunctions of the linearized problem in the dimension 1 is well-known, and then, by the comparison function introduced in [7], we can find the Morse indices of even solutions of (1). Then we obtain the existence of a symmetry-breaking bifurcation point of (1).

Let m(U) be the Morse index of a solution U to (1), that is, the number of negative eigenvalues μ of

(4)
$$\begin{cases} \phi'' + \lambda |x|^l e^{U(x)} \phi + \mu \phi = 0, & x \in (-1, 1), \\ \phi(-1) = \phi(1) = 0, \end{cases}$$

A solution U of (1) is said to be degenerate if $\mu = 0$ is an eigenvalue of (4). Otherwise, it is said to be nondegenerate.

The main result is as follows.

Theorem 1. For each $\alpha > 0$, there exists a unique $(\lambda(\alpha), U(x; \alpha))$ such that (1) with $\lambda = \lambda(\alpha)$ has a unique positive even solution $U = U(x; \alpha)$ such that $||U||_{\infty} = \alpha$. Moreover, there exist α_* , α_1 , α_2 and α_3 such that $\alpha_* < \alpha_1 \le \alpha_2 \le \alpha_3$ and the following (i)-(vii) hold:

- (i) if $0 < \alpha < \alpha_*$, then m(U) = 0 and $U(x; \alpha)$ is nondegenerate;
- (ii) if $\alpha = \alpha_*$, then m(U) = 0 and $U(x; \alpha)$ is degenerate;
- (iii) if $\alpha_* < \alpha < \alpha_1$, then m(U) = 1 and $U(x; \alpha)$ is nondegenerate;
- (iv) if $\alpha = \alpha_1$, then m(U) = 1 and $U(x; \alpha)$ is degenerate;
- (v) if $\alpha = \alpha_2$, then m(U) = 1, $U(x;\alpha)$ is degenerate and (U,λ) is a non-even bifurcation point, that is, for each $\varepsilon > 0$, there exists (λ, u) such that u is a non-even positive solution of (1) and $|\lambda \lambda(\alpha_2)| + ||u U(\cdot, \alpha_2)||_{\infty} < \varepsilon$;
- (vi) if $\alpha = \alpha_3$, then m(U) = 2 and $U(x; \alpha)$ is degenerate;
- (vii) if $\alpha > \alpha_3$, then m(U) = 2 and $U(x; \alpha)$ is nondegenerate.

Here and Hereafter, we use the notation $||U||_{\infty} = \sup_{x \in [-1,1]} U(x)$.

For the proof of Theorem 1, see [8]. Here, we give a sufficient condition for the second eigenvalue of the linearized problem to be negative for the following problem

(5)
$$\begin{cases} u'' + \lambda h(x) f(u) = 0, & x \in (-1, 1), \\ u(-1) = u(1) = 0. \end{cases}$$

where $\lambda > 0$ and $h \in C^1([-1,0) \cup (0,1]) \cap C[-1,1]$, h(-x) = h(x), h(x) > 0 and $h'(x) \geq 0$ for x > 0, $f \in C^1[0,\infty)$, f(s) > 0 and $f'(s) \geq 0$ for s > 0. Namely we will show the following result, which plays a crucial role in the proof of Theorem 1.

Proposition 1. Assume that, for each sufficiently large $\alpha > 0$, there exist $\lambda(\alpha) > 0$ and $U(x;\alpha)$ such that $U(x;\alpha)$ is a positive even solution of (5) at $\lambda = \lambda(\alpha)$ and $\|U(\cdot;\alpha)\|_{\infty} = \alpha$. Assume moreover that there exist $s_0 > 0$ and $\delta > 0$ such that

(6)
$$\frac{l(x)(g(s)-1)-4}{g(s)+l(x)+3} \ge \delta, \quad x \in (0,1], \ s \ge s_0,$$

where l(x) = xh'(x)/h(x) and g(s) = sf'(s)/f(s). Let $\mu_2(\alpha)$ be the second eigenvalue of

(7)
$$\begin{cases} \phi'' + \lambda(\alpha)h(x)f'(U(x;\alpha))\phi + \mu\phi = 0, & x \in (-1,1), \\ \phi(-1) = \phi(1) = 0. \end{cases}$$

Then $\mu_2(\alpha) < 0$ for all sufficiently large $\alpha > 0$.

In the case where $h(x) = |x|^l$, l > 0 and $f(s) = e^s$, it follows that l(x) = xh'(x)/h(x) = l for $x \in (0,1]$ and g(s) = sf'(s)/f(s) = s, and hence (6) is satisfied.

We conclude that if U is a positive even solution of (1) and $||U||_{\infty} \leq 1$, then m(U) = 0. Indeed, let μ_1 be the first eigenvalue of (4) and let ϕ_1 be an eigenfunction corresponding to μ_1 . We may assume that $\phi_1(x) > 0$ on (-1, 1). Integrating the equality

$$(\phi_1(x)U'(x) - \phi_1'(x)U(x))' = \mu_1\phi_1(x)U(x) + \lambda |x|^l e^{U(x)}\phi_1(x)(U(x) - 1)$$

on [-1,1], we have

$$\mu_1 \int_{-1}^1 \phi_1(x) U(x) dx = \lambda \int_{-1}^1 |x|^l e^{U(x)} \phi_1(x) (1 - U(x)) dx > 0.$$

Consequently, we have $\mu_1 > 0$, which means m(U) = 0. By applying Proposition 1, we can conclude that $m(U(\cdot; \alpha)) = 0$ for $0 < \alpha \le 1$ and $m(U(\cdot; \alpha)) \ge 2$ for all sufficiently large $\alpha > 1$. Then, using the Leray-Schauder degree, we can find a bifurcation point.

To prove Proposition 1, we need the following two lemmas.

Lemma 1. Let ϕ_2 be an eigenfunction corresponding to the second eigenvalue $\mu_2(\alpha)$ of (7). Then ϕ_2 is odd, $\phi_2(0) = \phi_2(1) = 0$ and $\phi_2(x) \neq 0$ for $x \in (0,1)$.

Proof. Let M_1 be the first eigenvalue of

$$\begin{cases} \Phi'' + \lambda(\alpha)h(x)f'(U(x;\alpha))\Phi + M\Phi = 0, & x \in (0,1), \\ \Phi(0) = \Phi(1) = 0, & \end{cases}$$

and let Φ_1 be an eigenfunction corresponding to M_1 . Then $\Phi_1(0) = \Phi_1(1) = 0$ and $\Phi_1(x) \neq 0$ on (0,1). Set

$$\Phi(x) = \begin{cases} \Phi_1(x), & x \in [0, 1], \\ -\Phi_1(-x), & x \in [-1, 0). \end{cases}$$

Noting the fact that $\lim_{x\to -0} \Phi''(x) = \lim_{x\to -0} (-\Phi_1''(-x)) = -\Phi_1''(0) = 0$, we easily check that Φ is a solution of

$$\begin{cases} \Phi'' + \lambda(\alpha)h(x)f'(U(x;\alpha))\Phi + M_1\Phi = 0, & x \in (-1,1), \\ \Phi(-1) = \Phi(1) = 0, & \end{cases}$$

and Φ is odd, $\Phi(x) \neq 0$ on (0,1) and $\Phi(0) = 0$. Therefore, M_1 is an eigenvalue of (7) and Φ is an eigenfunction corresponding to M_1 . Since Φ has exactly one zero in (-1,1), M_1 must be μ_2 and hence $\phi_2(x)$ must be $c\Phi(x)$ for some $c \neq 0$.

Lemma 2. Assume that $w \in C[a,b]$ is positive and concave on (a,b). Let $\rho \in (0,1/2)$. Then $w(x) \ge \rho \max_{\xi \in [a,b]} w(\xi)$ for $x \in [(1-\rho)a + \rho b, \rho a + (1-\rho)b]$.

Proof. We take $c \in [a, b]$ for which $w(c) = \max_{\xi \in [a, b]} w(\xi)$. Then w(c) > 0. Since w is positive and concave on (a, b), we have

$$w(x) \ge \frac{w(c)(x-a)}{c-a} \ge \frac{w(c)(x-a)}{b-a} =: l_1(x), \quad x \in [a,c],$$

and

$$w(x) \ge \frac{w(c)(b-x)}{b-c} \ge \frac{w(c)(b-x)}{b-a} =: l_2(x), \quad x \in [c,b].$$

Hence $w(x) \ge \min\{l_1(x), l_2(x)\}$ on [a, b]. We conclude that if $x \in [(1-\rho)a+\rho b, (a+b)/2]$, then

$$\min\{l_1(x), l_2(x)\} = l_1(x) \ge l_1((1-\rho)a + \rho b) = \rho w(c),$$

and if $x \in [(a+b)/2, \rho a + (1-\rho)b]$, then

$$\min\{l_1(x), l_2(x)\} = l_2(x) \ge l_2(\rho a + (1 - \rho)b) = \rho w(c).$$

The proof is complete.

Now we are ready to show Proposition 1.

Proof of Proposition 1. Let $\alpha > 0$ be sufficiently large. We use the following comparison function y(x) introduced in [7]:

$$y(x) = xU(x;\alpha) - (x-1)^2 U'(x;\alpha).$$

This function y(x) satisfies y(0) = y(1) = 0, y(x) > 0 on (0,1), and

$$y'' + \lambda(\alpha)h(x)f'(U(x;\alpha))y = \lambda(\alpha)x^{-1}h(x)H(x;\alpha)f(U(x;\alpha))$$

for $x \in (0,1]$, where

$$H(x;\alpha) = (1-x)^2 l(x) + x(3x-4) + x^2 g(U(x;\alpha)).$$

Let $\phi_2(x;\alpha)$ be an eigenfunction corresponding to $\mu_2(\alpha)$. From Lemma 1, it follows that $\phi_2(0;\alpha) = \phi_2(1;\alpha) = 0$ and $\phi_2(x;\alpha) \neq 0$ for $x \in (0,1)$. Without loss of generality, we may assume that $\phi_2(x;\alpha) > 0$ for $x \in (0,1)$ and $\max_{\xi \in [0,1]} \phi_2(\xi;\alpha) = 1$. We observe that

$$(y'\phi_2 - y\phi_2')' = \mu_2(\alpha)\phi_2 y + \lambda(\alpha)x^{-1}h(x)H(x;\alpha)f(U(x;\alpha))\phi_2, \quad x \in (0,1].$$

Integrating this equality on (0,1), we obtain

$$(8) \qquad \mu_2(\alpha) \int_0^1 \phi_2(x;\alpha) y(x) dx + \lambda(\alpha) \int_0^1 x^{-1} h(x) H(x;\alpha) f(U(x;\alpha)) \phi_2(x;\alpha) dx = 0.$$

Since

$$\begin{split} H(x) &= \left[g(U(x;\alpha)) + l(x) + 3 \right] \left(x - \frac{l(x) + 2}{g(U(x;\alpha)) + l(x) + 3} \right)^2 \\ &+ \frac{l(x) \left[g(U(x;\alpha)) - 1 \right] - 4}{g(U(x;\alpha)) + l(x) + 3} \\ &\geq \frac{l(x) \left[g(U(x;\alpha)) - 1 \right] - 4}{g(U(x;\alpha)) + l(x) + 3}, \end{split}$$

we have

(9)
$$\int_{0}^{1} x^{-1}h(x)H(x;\alpha)f(U(x;\alpha))\phi_{2}(x;\alpha)dx$$

$$\geq \int_{0}^{1} x^{-1}h(x)\frac{l(x)[g(U(x;\alpha))-1]-4}{g(U(x;\alpha))+l(x)+3}f(U(x;\alpha))\phi_{2}(x;\alpha)dx.$$

Since $U''(x;\alpha) = -\lambda(\alpha)h(x)f(U(x;\alpha)) < 0$ on (0,1], we find that $U'(x;\alpha)$ is decreasing in $x \in (0,1]$. From $U'(0;\alpha) = 0$ it follows that $U'(x;\alpha) < 0$ for $x \in (0,1]$, which implies that $U(x;\alpha)$ is also decreasing in $x \in (0,1]$. Then there exists $x(\alpha) \in (0,1)$ such that $U(x;\alpha) \geq s_0$ for $x \in [0,x(\alpha)]$ and $U(x;\alpha) < s_0$ for $x \in (x(\alpha),1]$. Since $U(x;\alpha)$ is concave on (0,1), we conclude that

$$U(x;\alpha) \ge \alpha(1-x), \quad x \in [0,1],$$

which shows that if $x \in [0, (\alpha - s_0)/\alpha]$, then $U(x; \alpha) \ge s_0$. Therefore, $x(\alpha) \ge (\alpha - s_0)/\alpha$, which implies

$$\lim_{\alpha \to \infty} x(\alpha) = 1.$$

We take $s_1 \geq s_0$ for which $x(\alpha) \geq 3/4$ for $\alpha \geq s_1$. If $\alpha \geq s_1$, then (6) implies

(11)
$$\int_{0}^{x(\alpha)} x^{-1}h(x) \frac{l(x)[g(U(x;\alpha)) - 1] - 4}{g(U(x;\alpha)) + l(x) + 3} f(U(x;\alpha))\phi_{2}(x;\alpha)dx$$

$$\geq \delta f(s_{0}) \int_{0}^{x(\alpha)} x^{-1}h(x)\phi_{2}(x;\alpha)dx$$

$$\geq \delta f(s_{0}) \int_{1/4}^{3/4} x^{-1}h(x)\phi_{2}(x;\alpha)dx.$$

Recalling $\max_{\xi \in [0,1]} \phi_2(\xi) = 1$, we have

(12)
$$\int_{x(\alpha)}^{1} x^{-1}h(x) \frac{l(x)[g(U(x;\alpha)) - 1] - 4}{g(U(x;\alpha)) + l(x) + 3} f(U(x;\alpha))\phi_{2}(x;\alpha)dx$$

$$\geq -\int_{x(\alpha)}^{1} x^{-1}h(x) \frac{(l(x) + 4)f(U(x;\alpha))\phi_{2}(x;\alpha)}{g(U(x;\alpha)) + l(x) + 3} dx$$

$$\geq -f(s_{0}) \int_{x(\alpha)}^{1} x^{-1}h(x) \frac{l(x) + 4}{l(x) + 3} dx.$$

Now we will show that there exists $s_2 \geq s_1$ such that $\mu_2(\alpha) < 0$ for $\alpha \geq s_2$. Assume to the contrary that there exists $\{\alpha_n\}_{n=1}^{\infty}$ such that $\mu_2(\alpha_n) \geq 0$ and $\alpha_n \geq s_1$ for $n \in \mathbb{N}$ and $\lim_{n\to\infty} \alpha_n = \infty$.

Since $\phi_2(x; \alpha_n) > 0$ and

$$\phi_2''(x;\alpha_n) = -h(x)f'(U(x;\alpha_n))\phi_2(x;\alpha_n) - \mu_2(\alpha_n)\phi_2(x;\alpha_n) \le 0, \quad x \in (0,1),$$

we find that $\phi_2(x; \alpha_n)$ is concave on (0,1). From Lemma 2 with $\rho = 1/4$, a = 0 and b = 1, it follows that

$$\phi_2(x; \alpha_n) \ge \frac{1}{4} \max_{\xi \in [0,1]} \phi_2(\xi; \alpha_n) = \frac{1}{4}, \quad x \in \left[\frac{1}{4}, \frac{3}{4}\right].$$

By (11), we have

(13)
$$\int_{0}^{x(\alpha)} x^{-1}h(x) \frac{l(x)[g(U(x;\alpha)) - 1] - 4}{g(U(x;\alpha)) + l(x) + 3} f(U(x;\alpha))\phi_{2}(x;\alpha) dx$$

$$\geq \frac{\delta f(s_{0})}{4} \int_{1/4}^{3/4} x^{-1}h(x) dx.$$

Combining (8) with (9), (12) and (13), we have

$$0 \ge -\mu_2(\alpha_n) \int_0^1 \phi_2(x; \alpha_n) y(x) dx$$

$$\ge \lambda(\alpha_n) f(s_0) \left[\frac{\delta}{4} \int_{1/4}^{3/4} x^{-1} h(x) dx - \int_{x(\alpha_n)}^1 x^{-1} h(x) \frac{l(x) + 4}{l(x) + 3} dx \right],$$

which implies

$$\int_{x(\alpha_n)}^1 x^{-1}h(x)\frac{l(x)+4}{l(x)+3}dx \ge \frac{\delta}{4} \int_{1/4}^{3/4} x^{-1}h(x)dx > 0, \quad n \in \mathbf{N}.$$

This contradicts the fact (10). Consequently, there exists $s_2 \geq s_1$ such that $\mu_2(\alpha) < 0$ for $\alpha \geq s_2$. This completes the proof.

REFERENCES

- [1] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979) 209–243.
- [2] J. Jacobsen and K. Schmitt, The Liouville-Bratu-Gelfand Problem for Radial Operators, J. Differential Equations 184 (2002) 283–298.

- [3] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73) 241-269.
- [4] S.-S. Lin, On non-radially symmetric bifurcation in the annulus, J. Differential Equations 80 (1989) 251–279.
- [5] Y. Miyamoto, Nonradial maximizers for a Hénon type problem and symmetry breaking bifurcations for a Liouville-Gel'fand problem with a vanishing coefficient, *Math. Ann.* **361** (2015) 787–809.
- [6] K. Nagasaki and T. Suzuki, Radial and nonradial solutions for the nonlinear eigenvalue problem $\Delta u + \lambda e^u = 0$ on annuli in \mathbb{R}^2 , J. Differential Equations 87 (1990) 144–168.
- [7] S. Tanaka, Morse index and symmetry-breaking for positive solutions of one-dimensional Hénon type equations, J. Differential Equations 255 (2013) 1709–1733.
- [8] S. Tanaka, Symmetry-breaking bifurcation for the one-dimensional Liouville type equation, in preparation.

岡山理科大学·理学部 田中 敏