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Models in modern engineering often include elements that pose challenges to numerical methods
which should solve them. Difficult aspects can include, for example, singularities, free bound-
aries or nonlinear constraints. In this article, we present an approximation scheme for treating
multiphase oscillatory interfacial motions. We also discuss the algorithm used for encoding and
tracking the evolution of multiphase geometries.

1 Introduction

A frequently used model equation in applications is the mean curvature flow. This geometric
evolution states that interfaces move in the direction of their normal with velocity $v$ , which is
proportional to their mean curvature $\kappa$ :

$v=\sigma\kappa.$

Here, $\sigma$ usually denotes the surface tension of the inteface.
This model has a variational structure, since for a smooth closed curve $\gamma$ : $[a, b]arrow \mathbb{R}^{2}$ it

corresponds to the $L^{2}$-gradient flow of the interfacial surface energy:

$E( \gamma)=\int_{a}^{b}\sigma|\gamma’(s)|ds.$

A wide range of numerical methods for the computation of mean curvature flow and other
interfacial motions are available. They can mainly be divided in two groups: methods explic-
itly tracking the interface (front-tracking) and methods dealing with the interface implicitly
by expressing it as a level set of an auxiliary function. Although front-tracking methods are
effective in various simulations [16] and are usually more straightforward than level-set meth-
ods, they are generally not able to deal with singularities and topological changes. Relatedly,
these computational difficulties can correspond to a natural feature of the phenomena under
investigation.

Recently, models including oscillatory versions of interface motions have been introduced
and have gained much attention. One of the main research topics here is the hyperbolic mean
curvature flow (HMCF, see [11]):

$a=(1-v^{2})\kappa,$

where $a$ denotes the normal acceleration, $v$ is the normal velocity, and $\kappa$ is the mean curvature
vector of the interface. This geometric evolution equation arises in relation to the motion of
relativistic strings, where the speed of light is normalized to unity (see [3]). Considering the case
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where the velocity of the interface is small, relative to the speed of light, it is also interesting to
investigate curvature dependent acceleration. In particular, the geometric evolutionary equation

that we will consider is the case where the normal acceleration of the interface is proportional

to its mean curvature:
$a=\kappa$ . (1)

Here we remark that the interface is also accompanied by a smooth initial velocity field (acting

normal to the interface).

The outline of this manuscript is as follows. We begin by introducing our approximation
method for (1), the HMBO. Then we formally describe an algorithm for detecting and encoding

the precise location of multiphase geometries. We then present numerical results which utilize
our methods, including an examination into the behavior of a multiphase volume preserving

HMCF

2 The HMBO algorithm

Our approximation method for (1) is threshold dynamical and is formulated by using the solution
to single vector-valued wave equation. In particular, choosing a small time step $\Delta t$ , we find a
function $u:\Omegaarrow R^{N-1}$ solving:

$\{\begin{array}{l}u_{tt}=c^{2}\triangle u in (0, \Delta t)\cross\Omega,T\nu\partial u=0 on (0, \Delta t)\cross\partial\Omega,u_{t}(0, x)=v_{0} in \Omega,u(t=0, x)=2z_{\epsilon}^{0}-z_{\epsilon}^{-\triangle t} in \Omega,\end{array}$ (2)

where $N$ denotes the number of phases, $\Omega$ is a smooth bounded domain in $R^{d},$
$v_{0}$ is an appropri-

ate initial velocity, $c^{2}$ is a wave speed depending on the dimension $d$ (see the remark at the end
of this section). The initial condition is defined by the following signed-distance interpolated

vector field:

$z_{\epsilon}^{t}(x)= \sum_{i=1}^{N}p_{i}\chi_{\{d_{l}^{t}(x)>\epsilon/2\}}+\frac{1}{\epsilon}(\frac{\epsilon}{2}+d_{i}^{t}(x))p_{i}\chi_{\{-\epsilon/2\leq d_{l}^{t}(x)\leq\epsilon/2\}}$ , (3)

where $z_{\epsilon}^{-\triangle t}(x)$ is constructed using the initial velocity along the interface. Here, $\epsilon>0$ is an
interpolation parameter and $d_{i}^{t}(x)$ denotes the signed distance function to the boundary of phase
$i$ at location $x$ and time $t,$ $\partial P_{i}^{t}$ :

$d_{i}^{t}(x)=\{\begin{array}{ll}\inf_{y\in\partial P_{k}^{t}}||x-y|| if x\in P_{k}^{t},-\inf_{y\in\partial P_{k}^{t}}||x-y|| otherwise.\end{array}$ (4)

In the above, $\chi_{E}$ denotes the characteristic function of the set $E$ and $p_{i}$ is the $i^{th}$ coordinate
vector of a regular simplex in $R^{N-1},$ $i=1,$ $N$. We remark that, when $N=2$ , equation (2) is

scalar.
At time $\triangle t$ , in a process called thresholding, each phase region is evolved as follows:

$P_{i}^{\triangle t}=\{x\in\Omega$ : $u(\triangle t, x)\cdot p_{i}\geq u(\triangle t, x)\cdot p_{k}$ , for all $k\in\{1,$ $N$ (5)

The vector field $z_{\epsilon}^{0}$ is then reconstructed using the boundaries of these sets and the initial

condition for the wave equation is updated. The procedure is then repeated and one can show

that if $v_{0}=0$ then the geometric evolution of the interface approximates (1) in the cases $d=2$

and $d=3$ $($provided that $one$ takes $c^{2}=2$ when $d=2, and c=1$ when $d=3)$ .
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3 Detection of multiphase geometries

In the numerical implementation of our methods, the domain is first triangulated and numerical
solutions are obtained by means of finite element methods. In our computations, the $P1$ finite
element assumption is utilized and, using the process described below, this allows one to deter-
mine the precise geometry of interfaces within elements. We also remark that, since the target
geometric evolution equation (1) is hyperbolic, care must be taken when tracking the interface
and constructing (3).

Encoding the geometry and tracking the evolution of multiphase regions can be accomplished
by the following procedure. Since the details related to its actual numerical implementation are
rather technical, our explanation is formal. The algorithm is as follows:

Input.

$N$ : number of phases.

$e$ : a tetrahedral element with vertices $x_{1},$ $x_{2},$ $x_{3},$ $x_{4}$ and edges $\ell_{1}^{2},$ $\ell_{1}^{3},$ $\ell_{1}^{4},$ $\ell_{2}^{3},$ $\ell_{2}^{4},$ $\ell_{3}^{4}.$

$\hat{u}$ : a smooth vector field taking values in $R^{N}$ , defined on $e.$

Output.

The multiphase geometry within $e.$

1. Construct a regular simplex in $R^{N}$ with vertex coordinates $p_{1},$ $p_{2},$ $p_{N}.$

2. Construct the $P1$-Lagrange approximation to $\hat{u}$ :

$u(x, y, z)=\alpha x+\beta y+\gamma x+\delta$

$(\begin{array}{llll}x_{1} y_{1} z_{1} 1x_{2} y_{2} z_{2} 1x_{3} y_{3} z_{3} 1x_{4} y_{4} z_{4} 1\end{array})(\begin{array}{l}\alpha_{i}\beta_{i}\gamma_{i}\delta_{i}\end{array})=(\begin{array}{l}\hat{u}_{1_{\rangle}i}\hat{u}_{2,i}\hat{u}_{3,i}\hat{u}_{4,i}\end{array})$

where $\hat{u}_{k,i}$ denotes the $i^{th}$ component of $\hat{u}$ and location $x_{i},$ $(i=1,2, N)$ .

3. For all combinations of $i$ and $j$ (not counting order repetition), construct the set:

$T=\cup T_{ij},$

where each number in the union is a plane defined by

$T_{ij}=\{x\in e|\langle u(x), p_{i}-p_{j}\rangle=0\}.$

The collection of planes within $T$ contains all candidate locations for phase changes, which
completely describe the interfaces.

4. For each edge $\ell_{m}^{n}$ of the element $e$ , detect the location of intersection (or lack thereof) with
each $T_{ij}$ and accumulate them into a set

$C= \bigcup_{m,n,i,j}I_{mn}^{ij}$

where each member of the union is defined:

$I_{mn}^{ij}=\{x\in e|x\in\{\ell_{m}^{n}\cap T_{ij}$ (6)

Note. The intersection may be empty, consist of a single point, or consist of an infinite
number of points when $\ell_{m}^{n}$ lies in the plane described by $T_{ij}$ (in such a case, take the
endpoints of $\ell_{m}^{n}$ as $x.$ )
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5. For each pair of elements in $T$ , find their lines of intersection $\ell_{ij}^{kl}$ , and collect them in a set:

$\mathcal{M}=\bigcup_{i,j,kl},\ell_{ij}^{kl}.$

Notes.

$\bullet$ When the planes are parallel and do not coincide, there is no intersection.

$\bullet$ When the planes are coincident, $T_{ij}=T_{kl}.$

$\bullet$ Otherwise, the intersection is a line in $R^{3}.$

6. Determine the location of intersection of the lines in $\mathcal{M}$ and accumulate them into a set

$\mathcal{P}=\bigcup_{a,b\in \mathcal{M}}v_{a}^{b}$

, (7)

where

$v_{a}^{b}=\{x\in e|x\in a\cap ba, b\in \mathcal{M}\}.$

Note. Lines in $R^{3}$ almost never intersect, and so the intersections here need to be checked
using appropriate floating point error measurements.

7. Form the union of $C$ and $\mathcal{P}$ , together with the set of element vertices and their correspond-

ing phases into a set $\hat{\mathcal{P}}.$

8. Remove all points in $\hat{\mathcal{P}}$ that are outside the element (again call the set $\mathcal{P}$

9. Partition and filter $\hat{\mathcal{P}}$ into $N$ subsets (some of which may be empty):

$P_{i}=\{x\in R^{3}|\langle u(x)$ , $p_{i}\rangle\geq\langle u(x)$ , $p_{j}\rangle$ for all $j\}$ . (8)

The points in $P_{i}$ (except possibly those corresponding to vertices of the element) correspond
to locations on the boundary of phase $i.$

10. The points in each $P_{i}$ define a convex polytope, so bne can construct their convex hull to
obtain the precise geometry of each phase.

Note. When displaying the geometry of the interfaces, element vertices should only be
used when a phase change occurs at the location of the vertex.

4 Application to simulation of interfacial motions

Using the numerical counterpart of the algorithm for detecting multiphase geometries described
above, we are able to approximate interfacial motions in two and three dimensions. We will ex-
amine multiphase curvature flow and HMCF in $R^{3}$ , and simulate a multiphase volume preserving
HMCF in $R^{2}.$

4.1 Curvature flow

Using a Delaunay triangulation, a uniform grid with node spacing 1/20 was used to partition

the unit cube into a finite number of tetrahedra. The initial condition corresponds to the
configuration of the three phases shown in the first image of Figure 1. The numerical results
were obtained by means of the MBO algorithm [12].
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Figure 1: Evolution of a three phase mean curvature flow. Time is from top to bottom, left to
right.

4.2 Hyperbolic mean curvature flow

Numerical results corresponding to a two phase HMCF are shown in figure 2. The interfacial
motions were simulated using the HMBO algorithm with the initial condition shown in the first
image of the figure. The initial velocity of the interface was taken as zero, and we utilize the
same triangulation as in the previous curvature flow simulation.

4.3 Minimizing movements and volume preserving motions

In this section, we will explain the basic idea behind minimizing movements and exemplify its
application to the simulation of constrained oscillatory interfacial motions.

For a given Lagrangian $L$ and boundary conditions, consider the prol)$lem$ of constructing
stationary points of the action integral

$\int_{0}^{T}\{\frac{1}{2}\int_{\Omega}u_{t}^{2}dx-\mathcal{E}(u)\}dt$ , (9)

where

$\mathcal{E}(u)=\int_{\Omega^{L(\nabla u(X),u(x)\}}}x)d_{X}.$
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Figure 2: Evolution of a two phase hyperbolic mean curvature flow. Time is from top to bottom,
left to right.

The method of minimizing movements can be used to produce a sequence of functions $\{u_{n}\}$

which approximates stationary points of (9) by recursively minimizing functionals of the form:

$\mathcal{F}_{n}(u)=\int_{\Omega}\frac{|u-2u_{n-1}+u_{n-2}|^{2}}{2h^{2}}dx+\mathcal{E}(u)$ ,

in a suitable function space. Here $u_{n-1}$ and $u_{n-2}$ are appropriately given functions (constructed

from initial conditions) and $h>0$ is the time step.
The Euler-Lagrange equation of each functional $\mathcal{F}_{n}$ expresses a local approximation of the

stationary point:

$u=2u_{n-1}-u_{n-2}-h^{2} \frac{\delta \mathcal{E}(u)}{\delta u},$

where $\frac{\delta \mathcal{E}(u)}{\delta u}$ denotes the functional derivative. For example, when the Lagrangian is taken as
$L=|\nabla u|^{2}/2$ , we obtain a functional whose Euler-Lagrange equation is a time-discretization of
the wave equation. This allows one to treat ”equation of motion” problems, which are often
of the hyperbolic type. We remark that the mathematical properties of the parabolic and
hyperbolic minimizing movements have been investigated in detail (see e.g., [1, 18

In combination with minimizing movements, the algorithm in section (3) also enables one
to investigate volume constrained motions. Solutions to the infinite dimensional minimization
problems are approximated by solutions to corresponding finite dimensional minimizations. We
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remark that computation of functional minimizers can be achieved in a number of ways, for
example by nonlinear conjugate gradient methods, or even by steepest descent.

In particular, we use hyperbolic minimizing movements to approximate solutions to the
wave equation (2) as a sequence of minimization problems. By adding a penalty term for
the volume preservations, this approach allows us to investigate multiphase volume preserving
motions. Figure 3 shows a numerical result obtained though utilizing minimizing movements
corresponding to functionals with the form:

$\mathcal{F}_{n}(u)=\int_{\Omega}\frac{|u-2u_{n-1}+u_{n-2}|^{2}}{2h^{2}}dx+\mathcal{E}(u)+\frac{1}{\tilde{\epsilon}}\sum_{k=1}^{N-1}(vol(P_{k})-V_{k})^{2},$

where $V_{k}$ denotes the prescribed volume of phase $k$ and $P_{k}$ is the region corresponding to phase
$k$ within $u$ . The initial condition is shown in bold, and the initial velocities were zero. We
observe the interfaces oscillate, while individual phase volumes are approximately preserved.

Figure 3: Multiphase volume preserving hyperbolic mean curvature flow.

5 Conclusion

The HBMO algorithm was presented and we described a formal method for detecting and
encoding multiphase geometries. Our approximation method allows one to naturally deal with
topological changes, junctions and nonlocal constraints. Using our methods, we then simulated
motions of hypersurfaces embedded in $R^{3}$ and, by detecting the precise location of interfaces,
we were able to compute the volume of individual phase regions. This technique allowed us to
simulate multiphase interfacial motion by a volume preserving hyperbolic mean curvature flow.
For such motions, the hyperbolic setting is considered a highly challenging topic in mathematics.
We expect that our approximation scheme can provide a system for further understanding such
motions and this is a topic that we aim to pursue.
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