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1 Introduction

This manuscript contains a summary of [5] and new related figures. As one of the violent
flow, tornadoes occur in many place of the world. In order to reduce the loss of human
lives and material damage caused by tornadoes, there are many research methods. One of
the effective methods is numerical simulation. The swirling structure is significant both
in mathematical analysis and the numerical simulations of tornadoes. In the work [5], we
try to clarify the swirling structure. More precisely, we do numerical computations on axi-
symmetric Navier-Stokes flows with no-slip flat boundary. We compare a hyperbolic flow
with swirl and one without swirl and observe some phenomenons occur only in the swirl
case. Our main purpose in this work is to combine the point of view from mathematical
analysis (especially regularity results) and numerical approach to observe phenomenons
which highly related to the structure of tornadoes.

More precisely, we consider alocal behavior of the $3D$-Navier-Stokes flow near a saddle
point (with hyperbolic flow configuration) and no-slip flat boundary. The Navier-Stokes
equations with no-slip flat boundary are expressed as

$\partial_{t}v+(v\cdot\nabla)v-\nu\triangle v+\nabla p$ $=$ $0$ in $\mathbb{R}_{+}^{3}\cross[0, T)$ , (1.1)

$v_{0}=v|_{t=0},$ $v|_{\partial\pi_{+}^{3}}=0,$
$\nabla\cdot v$ $=$ $0$ in $\mathbb{R}_{+}^{3}\cross[0, T)$ ,

where $v$ is a vector field representing velocity of the fluid, and $p$ is the pressure. The term
“hyperbolic flow configuration”’ which used here and after means there is $\delta>0$ (depending
on t) such that $v(t, x)\cdot e_{z}>0,$ $v(t, x)$ $\cdot e_{r}(x)<0$ , or $v(t, x)\cdot e_{z}<0,$ $v(t, x)\cdot e_{r}(x)>0$

for $0<|x_{h}|<\delta$ and $0<x_{3}<\delta$ , where $e_{z}=(0,0,1)$ , $e_{r}(x)=(x_{1}/|x_{h}|, x_{2}/|x_{h}|, 0)$ and
$|x_{h}|=\sqrt{x_{1}^{2}+x_{2}^{2}}.$

At first, let us look back the history of Navier-Stokes equations briefly. After the
pioneering work of Leray (1934) and Hopf (1951), many different regularity criteria of
solutions to (1.1) was established by many researchers working in the regularity theory
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of (1.1). For example, a regularity criterion along streamlines (characteristic curves) was
constructed (see [2]). Besides these, other important works such as [4], in which type I
blow up was excluded for solutions to (1.1) under a regularity condition on the vorticity
direction in the half space to the case of the no-slip boundary conditon (see also [1], which
is the pioneer work in this field), and [3, 8] for axisymmetric solutions to (1.1)

In other hand, from literatures (such as [7]), it is natural to consider that the hyperbolic
flow with swirl and saddle point on the boundary might be the key structure of flow and
probable place for unstability effects occur near the no-slip flat boundary. Although there
are many fruitful results based on mathematical analysis as we recalled above, it is not
easy to analyze locally such fluid mechanics to go a step further mathematically. Thus,
it should be effective for us to attempt numerical approach.

In our numerical computation in [5], we use the following cylindrical domain

$\Omega$ $:=\{x=(x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3}$ : - $\frac{1}{8}<x_{3}<\frac{1}{2},$ $\sqrt{x_{1}^{2}+x_{2}^{2}}<1\}$ (1.2)

with no-slip boundary condition

$v=0$ on $\partial\Omega$ . (1.3)

We set the initial data in the following manner.

$u_{r}= sign(z)(\frac{1}{r^{2}+1})^{2}u_{\theta}=(\frac{1}{r^{2}+1})(\frac{1}{z^{2}+1})u_{z}=(\frac{1}{r^{2}+1})(\frac{1}{z^{2}+1})$

As for the no-swirl case we only change $u_{\theta}=0$ . For the figures of initial data, we refer
the readers to [5, figure 1].

The following are the main results in [5]. We showed the clear structure for the
axisymmetric hyperbolic flow with swirl and observed the following phenomenons which
are distinctly different from those without swirl: (1) The distance between the maximum
point of the velocity and the $z$-axis is drastically changing around some time we called it
turning point (Refer to [5, figure 2 (2) The velocity increases and obtains its extreme
value (maximum) near the axis of symmetry and the boundary when time is close to
the turning points (Refer to [5, figure 2 The comparison of these results with studies
on tornadoes might help in understanding the behavior of the velocity of wind near the
ground which is very significant in the research on tornadoes for reducing the damage
cause by tornadoes or similar phenomena (Also refer to [5, figure 3] for no swirl case).
(3) The downward flow near the $z$-axis in the swirl case was observed (Refer to [5, figure
6 The downward wind inside the core of real tornado was also observed in a two-celled
vortex structure in the studies of numerical simulations for time-averaged velocity, as
shown in [6, figure $4(b)$ ]. By comparing our observation with studies on tornadoes might
enhance our understanding about the behavior inside the core of a tornado for a high
swirl ratio.

For the details and more references we refer the readers to [5]. We present new related
figures in the following section.
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2 Numerical results

In this section we compare the axial velocity in the swirl case and the no swirl case. The

work by [5] implies that the flow dissipates in a straightforward manner as $t$ increases in

the no swirl case and that an interesting flow structure is observed near the $z$-axis in the
swirl case (Refer to [5, figure 6 A downward flow arises near the $z$-axis at approximately
$t=0.3$ , and the maximum value of $|v|$ is attained near the $z$-axis and the lower boundary

at approximately the same time $(t=0.3)$ . Those phenomena are observed only in the
swirl case. Comparing to the swirl case, there are no such kind of downward flows in

the no swirl case. We can observe from Figure 1 that the axial velocity near the $z$-axis
is always in the same direction, which shows the phenomena near the $z$-axis is totally

different for the swirl case and the no swirl case. This observation is highly related to the
researches on the behavior inside the core of tornadoes for different swirl ratios. $Rom$ the

studies of tornadoes, the vortex structures are different for low swirl ratio (note that the
swirl ratio of no swirl flow is zero) and high swirl ratio. The upward flow near the $z$-axis

observed in [5] is also observed inside the core of tornadoes in the high swirl ratio flows.

For more references, refer to [4] for regularity results, refer to [9] for numerical studies
of the Navier-Stokes and Euler equations, refer to [6] for studies on tornado-like vortices,

and refer to [10, 11, 12, 13] for the stabilized Lagrange-Galerkin (finite element) scheme
used in [5] and this summary manuscript.
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Figure 1: Time evolution of the axial velocity $u_{z}$ on the plane $x_{1}=0$ in the no swirl case
with $Re=50$ , 000. $t=0.1$ (top left), 0.3 (top right), 1.0 (middle left), 1.3 (middle right),
2.3 (bottom left) and 3.0 (bottom right). Note that the red and blue colors represent
positive and negative values in this figure.
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