BB FERTIFFC T Tk
% 1997 & 2016 4F 1-15

Existence of weak solution for volume
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1 Introduction

Let U, C R? be a open set with smoothn boundary M, for any ¢t € [0,T). A family of
hypersurfaces {M,}.co,) is called the volume preserving mean curvature flow if the
velocity vector v of M, is given by

v=h—(h-v)v on M, te(0,T), (1.1)

where h and v are the mean curvature vector and the inner unit normal vector for M,

respectively, and
1
h-v) = ————r h-vdH*
) HEY M) Ju,
Here H%! is the (d — 1)-dimensional Hausdorff measure. By (1.1), M, satisfies the
volume preserving property, that is

iﬁd(Ut = —/ v-vdHT = 0. (1.2)
dt M

t
Here £? is the d-dimensional Lebesgue measure. By (1.2) we obtain
%Hd“l(Mt) = —/ h-vdH! = ——/ (v+ (h-v)v) - vdH?
M M (1.3)
= —/ |v]? dHE ! — (h - 1/)/ v-vdH* = —/ [v? dH4
My M, M,
The time global existence of the classical solution to (1.1) with a convex initial data
U, is proved by Gage [11] (d = 2) and Huisken [13] (d > 2). Escher and Simonett (8]
proved that if M, is sufficiently close to a Euclidean sphere, then there exists a time
global solution for (1.1). Recently, Mugnai, Seis and Spadaro [19] showed the time
global existence of the distributional solution for (1.1) by using a variational approach.
In this article we study the phase field method for the volume preserving mean
curvature flow and show the global existence theorem which is obtained in [23].



2 L2-flow

The L*-flow is a kind of an weak solution for the surface evolution equations [17, 18].
In this section, we derive the concept of the L?-flow. The precise definition is given in
Section 4.

Let M, be a closed smooth hyper surface in R? and v be the normal velocity vector.
Then for n € C}(R? x (0,T)) we have

d

— f ndH*! = / (=hn + V1) - v+ g dH4L (2.1)
dt Ju, M,

Here, h is the mean curvature vector of M;. Then, by (2.1), for any T > 0, there exists
C1 > 0 such that

T
‘ / / e + V'}') . Ud%d-ldtI < Cl”n”co(Rdx(O,T)) (22)
My

for any n € C(R? x (0,T)). Note that C; > 0 is given by

C, = / /M [v|? dH4 ldt / / }h{zd’}-ld‘ldt (2.3)

/nde~l =/ nded-—l
M, =0 Jum,

By the following proposition, we can regard v of (2.2) as a normal velocity vector of
M, and this is the concept of the L?-flow.

and

= 0.
t=T

Proposition 2.1. Assume that {U,}.cjo,7) is a family of open sets. Set M, := 8U;.
Assume that Ugejo M x {t} C R4+ is smooth. Then the normal velocity vector of M,
is v if and only if there exists C; > 0 such that (2.2) holds for any n € C1(R% x (0, T)).

Proof. Tt is clear that if v is the normal velocity of M, then there exists C;. > 0
such that (2.2) holds for any n € C}(R? x (0,T)). Assume that (2.2) holds for any
n € C}(R? x (0,T)) and w is a normal velocity vector of M,. We only need to prove
that v = w. By the assumption there exists Cy > 0 such that

n+Vn-v d%dvldt] < Cillnllcomax o)
M (2.4)

T
i/ /M n + Vﬂ'Wd'Hd_ldt’ < CalInlleorax(o.m)
0 t

for any 77 € CHR? x (0,T)). Thus for any € C}(R? x (0,T)) we have

T
]/ 0 w-w) d’)—td‘ldtI
0 t

T T
g]/ / nt+Vn-fudH"'1dt[+|f / e + V- w dHE
0 M, 1] My

<(Cr + Co)lInllcoweo.1y) -

(2.5)



Define f by v —w = fv, where v is the inner unit normal vector of M;. Then by (2.5)
we obtain

\
[ s ant-ias] < €+ Colmllosmaxam (2.6)

Assume that there exist § > 0, (zo,%y) and R > 0 such that f > >0or —f>d >0
on Bg(zg,tg). Define

dist (.1', Mt), zE Ut,

r(z,t) = { —dist (z, M), z & U; 27)

and ¢5(z,t) := tanh(r(z,t)/e). Choose ¢, such that
_J1, =ze BR/z(xo,. to), :
wlet)={ o oo p 28)

and 0 < ¢g < 1. Set n° ;= ¢5¢2. Then 0 < n <1 and ,
Vi = V¢ids + Voo = e gov + Vof.
Note that there exists C' > 0 which does not depend on ¢ such that ||Vé2¢]|e < C.

Thus we have .
!/ V?f»ufd%d‘ldt}—-—)oo as € — 0.
o Jm,

But this is contradiction to (2.6). Hence we obtain f =0 and v = w. O

Remark 2.2 (Brakke’s mean curvature flow [4]). The definition of the L*-flow is
similar to the formulation of Brakke’s mean curvature flow. Let M, be a closed smooth
hyper surface in R% and v be the normal velocity vector again. Then by (2.1) clearly
we have d

— [ npdH*' < / (=hn+ V1) v+ n dHT! (2.9)
dt Jy, M,

for n € CHR?*x (0,T); R*). (2.9) is called Brakke’s inequality. Formally, the definition
of Brakke’s mean curvature flow is defined by (2.9) with v = h [4]. In fact, if M,
is smooth, then the normal velocity of M, is v if and only if (2.9) holds for any
n € CH{R? x (0,T); R*) (see [24, Section 2]).

3 Phase field method for volume preserving MCF

In this section we consider the three types of the phase field method for (1.1). Let
1 — 2\2
€ (0,1), W(s) := a-s) and Q = T¢ = (R/Z)%. We also use £ to a sct

[0,1)% C R% We consider the following Allen-Cahn equation :
W(¢*)

{( g(pf = EA(,OE - ) (wvt) € x (0,00), (31)
¢ (2,0) = p(2), ze.
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Note that 2 is divided into {¢°(-,t) ~ 1} and {¢°(-,t) = —1} for the solution ¢* to
(3.1). Letting ¢ — 0, the zero level set of (3.1) converges to the mean curvature flow,
that is, for the mean curvature flow N, if {¢°(:,0) = 0} = Np for any € > 0, then
{¥°(-,t) = 0} = N, for sufficiently small £ > 0 under the suitable conditions [9, 15].

For the volume preserving mean curvature flow, Rubinstein and Sternberg [21]
studied the following Allen-Cahn equation with non-local term:

/
{ epi = eAy* — Wig') + ], (z,t) € Q x (0,00), (3.2)
¢ (z,0) = ¥§(x), z € §,
! 1 £
where A, (t) := Wi“’ ) g = 19)/ W) 4.
Q
Using the divergence theorem we obtain the volume preserving property for (3.2):
i/ww~/ﬁM=Qt>& (3.3)

(3.3) means that the ratio of the volume of {¢°(-,t) &~ 1} and {¢°(-,t) ~ —1} is
constant with respect to ¢t > 0.

We assume that {¢°(-,t) = 0} = M, for sufficiently small € > 0, where ¢ and M
are the solution for (3.2) and the solution for (1.1), respectively. Then we have

"‘SOt _ __A(ps_{_}’y_'_gﬁil ho) ~ Y L n Vit
T Ve Vee| 7 elVye|’ V|

Note that the velomty and the unit normal vector for the zero level set {¢°(-,t) = 0}
are given by =% IVw‘ and o Vo e,, respectively. Using (3.3) and the integration by parts we

have
d [e|Ve|? | W(e) , e oe . W) .
-C-it-/ 2 + - d:c-/(thp-Vgat-f- . @t)da:
:/ﬂ( eAYE + Wi ))gotd;v—/( —€p; + A])y; dz (3.5)

=—/s(gaf) dx+/\f/<pfdsc=——/s(cpf) dz.
Q Q Q

Thus we obtain
£12 £ T T
/€|V2¢| L Wi )d:c' 0+/ /g(wf)zdxdtzo - (36)
Q z

and f —I—:ﬁ + ~—(—"1) dz is a monotone decreasing function with respect to ¢. The
formula (3 5) corresponds to (1.3) by using the approximations [15]

2 £
HAL(M,) /stzw Wie )d:c and /Wdud - ;/s(wf)2da:, (3.7)

(3.4)

V-

where o = \/ W (s)ds. Chen, Hilhorst and Logak [7] proved that the zero level
set of the solutlon to (3.2) converges to the volume preserving mean curvature flow
under the suitable conditions.



Remark 3.1. Whether the solution for (3.2) converges to the time global weak solution
of the volume preserving mean curvature flow or not is an open problem, due to the
difficulty of estimates of the Lagrange multiplier. From

1 T £\2 T 2 n—1
~ e(pf)* dzdt ~ [v|* dH™ " dt,
gJo Ja 0o Jm,
T 1 AEYN 2 T
1 / / 5‘1(€A<p6—— M)dxdm f |h[2 dH1dt

and the estimate of (2.2), to obtain the existence of the L2-flow for (1.1), we need the

boundedness of
— sup/ /e:(c,oIt ) dzdt (3.8)

O ee(0,1)
and )
— sup / / -1 EA(p M) dzdt. (3.9)
0 £€(0,1) €
Assume that 1 —_—,
— sup / E‘ L4 ‘ - (,0 )d !
0ccom)yJo 2 =0

Then the boundedness of (3.8) is clear from (3.6). In [3], they proved that there exists
C > 0 such that

T
sup / (A5)dt<C (3.10)

€€(0,1) JO

for (3.2). But to obtain the boundedness of (3.9), it is clear that we need the bound-

edness of -
sup / e"H(X6)? dt.
e€(0,1) JO

In 2011, Brassel and Bretin [6] studied the following reaction diffusion equation:

) WI £
{ egi = et — L) e AT, (@0) € 2 (0,00), (3.11)
¢°(z,0) = pg(x), z e,
where W' (i d
Az = Ag(t) = o /e ds

\/ZW dx

The solution for (3.11) also has the volume preserving property (3.3). Alfaro and
Alifrangis [1] proved that the zero level set of the solution to (3.2) also converges
to the volume preserving mean curvature flow under the suitable conditions and [6)
proved that the numerical experiments via (3.11) is better than (3.2).



Assume that Elv,‘; o W(E“’e) and the zero level set of ¢* approximates the volume
preserving mean curvature flow, for the solution ¢° to (3.11). Then we have

VU R "Wf h-vs —Awi'i_'—vzéﬁz (h l/)"‘)\s QW(QOE) _ e U V‘Ps
[Vee| Vel 7 LoV T [Ve|
(3.12)
By the maximum principle, we have
sup [¢f[ <1

2 [0,00)

for the solution ¢° to (3.11) with supg |¢°(-,0)] < 1 (moreover the solution to (3.14)
also has the property). Note that \/2W(s) = 0 if and only if s = +1.

We assume that there exists C' > 0 such that

~ £12 5 T T
sup { sup / Ve, W) 4, / / (52 dudt, / Gerd} <C (313)
) 9} 2 € Jo Ja 0 :

e€(0,1) *te(0,T)

for (3.11). Then we have

/OT/QE(./.MO€ - W;(;ps))zd:cdt
SATLE(wf)z dmdt+/oTLE(A§m'm/ZW)2dxdt

T £ T
SC+/ (/\"’)2/ gV—V—é(io——)—ala:dt < C+2C/ (A5)%dt < C.
0 Q 0

Hence, from the arguments of Remark 3.1 we may obtain the L?-flow for (1.1) via
(3.11). But whether the solution for (3.11) has estimates (3.13) or not is unknown.
One of the reasons is that the solution for (3.11) has not the property such as (3.5).

In this article, we consider the following reaction diffusion equation studied by
Golovaty [12]:

W/ £
¥#(2,0) = ¢§(), zed,
where
. € £ w
2 JoW(yf)dz

Using the integration by parts, we have
. -zj;,we(i—“’—i—”;"’ + Hle) ) dz
Jo W (ee) dz




In [12], Golovaty studied the singular limit of radially symmetric solutions to (3.14).

Define k(s) := [, /2W(7)dr = s — 1s>. By the definition of A* we have
% k(%) dz = / Oi/2W (¢f) dz = (3.16)
b Ja

Using (3.16) we obtain

d [ eV W(e) , e oo, W) .
«dt/a 5 + . dx—/n(eVga Vi + E,(pt)d:v

:/ﬂ ( Ag® + '(c,a ))wfd:czfne(—wf-i-)\e—ﬁ—i/—((—pe—))cpfdx (3.17)
=—'—/€((pf)2d:l;+,\5/gof\/mdx=~/€(go )? de.
0 Q

Thus by using (3.7), (3.17) also corresponds to (1.3).
Assume that lim,_,g ¢* = *1 a.e. Then' by lim._,0 k(¢°) = £5 a.e. we have

lim [ k(¢ )d = Zlim o dz. (3.18)

e—0 Q e—0 Q

Hence we can regard (3.16) as the volume preserving property.
We also assume that there exists Dy > 0 such that

: £12 £
! sup / elve'| + Wiy )drc < Dy. (3.19)
£€(0,T) 2 € t=0
Then by (3.17) we have
]2 7A€ _ T
sup { sup /sthp‘I —t-‘w((p)dx, / /s(tpf)2 dxdt} <D (3.20)
cc0) Lteoy Ja 2 € Jo Ja

for the solution to (3.14) and T > 0. So if there exists C' > 0 such that
T
sup / (A¥)?*dt < C,
e€(0,1) JO
we may obtain the L2-flow for (1.1). We show the estimate in Section 5 (see (5.1)).

Remark 3.2. From a different perspective, we can regard (3.16) as the volume pre-
serving property. We show

1
*/ v-vdHit = —/gof 2W (pf) dz
M, g Ja

under the suitable conditions. Assume that Elvflg = W(g“’ﬁ) . Using (3.7) and v - v =

IV </>‘l we have

g| Ve |?

L¢§\/2W(w5)dx%~/v v|Vy® I\/—_go_f.dx——./n ( 5 + (E(pa))dx

I~ —-a/ v-vdH
J M,




Remark 3.3. The property E[V“’ * W(fc) is known as the key point of the proof

for the existence of the mean curvature flow via the phase field method [15]. For the
solution ¢° of (3.1), we define the signed measure & by

£l2 €
£5(A) ;:/ 5‘V29”' - W(;p)dx, ACRY (3.21)
A

The measure & is called the discrepancy measure. In [15], Ilmanen proved that £ < 0
forany t > 0if &5 < 0, and |£f| —» 0 as € — 0 a.e. ¢ > 0 for the solution ¢° of (3.1),
under the suitable conditions.

4 Global existence of L?-flow

In this section we define the weak solution (L?*-flow) and explain the time global
existence theorem of [23]. We recall some notations and definitions from geometric
measure theory and refer to [2, 4, 5, 10, 22] for more details.

Let d > k+ 1 and Gx(R?) be a Grassman manifold of unoriented k-dimensional
subspaces in R¢. ,

Definition 4.1. A set M C R? is called a countably k-rectifiable set if M is H*-
measurablé and there exists a family of C' k-dimensional embedded submanifolds
{M;}32, such that H¥ (M \ UR, M;) =0

Definition 4.2. Let M be an H*-measurable subset of R? and 6 € L} (H*¥(M)) is
a positive function. We say M has an approximate tangent plane P € Gi(R?) at
zg € M with respect to 0 if

lim F@)8(z0 + My) dH* () = 6(zo) / f(y) dH* (y)

MO S nag A (M)
holds for any f € C¢(R?). Here ng,a(z) := $(z — z0).

Remark 4.3. If M C R is a k-rectifiable set and H*(M) < oo, then there exists an
approximate tangent plane H*-a.e. on M. v

Definition 4.4. A Radon measure p is called k-rectifiable if there exists a countable
lc-rectiﬁable set M and a function § : M — [0,00) such that § € L} (H*|p) and

= OH* |, that is, u(A) = [,.,, 0 dH* for any measurable set 4 C R?. Moreover if
9 € N H*-ae. on M, p is called k-integral.

Definition 4.5. Let M be an H*-measurable subset of R? and 6 € L,oc(’H’“(M ))isa
positive function. For a (d — 1)-rectifiable Radon measure u = @H* |y, h is called a
generalized mean curvature vector if

/ diVMgdu% -/— h-gdu
R4 R4

holds for any g € C}(R% R?). Here, divy g = Z,‘:J:l O, i(6ky — k), v = (11, . .., Va)
is the unit normal vector of the approximate tangent plane of M and g = (g1,. .., g4)-



Remark 4.6. If M C R? is a smooth hypersurface, then by the divergence theorem
for manifolds, we have

/ divy gdHé ! = —/ h-gd’}{d‘1+/ v gdH4?
M M oM
for any g € C}(R% R?), where h and ~y are the mean curvature vector of M and the

outer unit normal vector of M on M, respectively.

Definition 4.7 (L?-flow [17]). Let {u: }ieo,r) be a family of Radon measures on R?
and define dy := du,dt. We say {p }ieor) is an L*-flow if

1. p is (d—1)-rectifiable and has a generalized mean curvature vector h € (L?(g;))*
for a.e. t € (0,7,

2. and there exist C > 0 and v € L*(0,T'; (L?(p¢))%) such that

v(z,t) L Topy for prae. (z,t) € R x (0,T) (4.1)

T
l/(; Rd(m+vﬂ'v) dpdt| < Cl|nllcomax(o.m) (4.2)

hold for any n € CY(R? x (0,T)) with diam (sptn) < 1. Here Tyu; is the

approximate tangent plane of y,; at z.

A function v € L3(0,T; (L?(u;))?) with (4.1) and (4.2) is called a generalized velocity
vector.

‘We define . ' v 2 W)
ui@) =1 [ (T + 2 e «3)
and 1 [ Ve P | W)
e L e[V o
1 () ’T‘U/o /Rdz/;( i )da:dt (4.4)

for any ¢ € C,(R?) and 3 € C,(R? x [0,00)). Denote

—f Vit .
oo [ Ve 20
0 otherwise.

Theorem 4.8 ([23]). Let d = 2,3 and Uy C Q be a bounded open set with C*
boundary M. Then the following hold:

(a) There exist a family of solutions {%}32, for (3.14) and a family of Radon mea-
sures {4 }eejo,00) ON R? such that '

(al) po = H* mo.
(82) ut - p, as Radon measures for any ¢t € [0, 0o).
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(b) There exists ¥ € BViue(S2  [0,00)) N C2,([0, 00); L1(€2)) such that

(b1) ¢* =29 —1 in Lj,(Q x [0,00)) and a.e. pointwise.
(b2) (-,0) = xu, a.e. on Q and ¢ =0 or +1 a.e. in Q x (0, 00).
(b3) (Volume preserving property 1) 9(:,t) satisfies '

/ Wz, 1) dz = L2(Uy)
A .

for any t € [0, 00).

(b4) For any t € [0,00) and for any ¢ € C.(R%R*) we have |Vy(-,1)||(¢) <
pe(@) and spt ||Vy(-, 6)|| C sptu,. Here ||[V(-,t)| is the total variation
measure of the distributional derivative Va(,t).

(c) There exists A € L} (0,00) such that A* — X in L?(0,T) for any T > 0.

loc

(d) There exists g € L2 (0, 00; (L%(1))?) such that

loc

lim — XA V2W (pF)V® - & du = / g-®du (4.5)

€0 R4x(0,00) R¢x (0,00)
for any @ € C,(R? x [0, 00); R?), where du := dy,dt.

(e) {e}teo0) is a L*-flow with the generalized velocity vector v = h + g, and
{Mt}te(o,oo) satisfies :

lim [ V¢ - Qduf = / v-Ddy (4.6)
€20 JRdx (0,00) R x (0,00)

for any ® € C.(R? x [0,00); R?). Moreover there exists 8*{t) = 1} = N such

that \ ,

v="h-— rid Heae. on 8*{y(-,t) =1}, (4.7)

where 8*{¢(-,t) = 1} is the reduced boundary of {4(-,) = 1} and v is the inner

‘unit normal vector of {¢(-,t) = 1} on &*{y(-,t) = 1}.

(f) (Volume preserving property 2)
[ v-vaivuc, ol =o @8

for a.e.t € (0, 00).



5 Lagrange multiplier \°

Assume that Uy C 2 is a open set with a smooth boundary My, and the solution ®

of (3.14) satisfies (3.19), ||¢®]loo < 1 and My = {¢§ = 0} Then we may suppose that

there exists w > 0 such that
2
| [ ke as] < 5101
Q 3

Note t;hat_} Ja k((pﬁ)dxl = 2|Q| if and only if ©§ = 1 or 9§ = —1. By an argument
similar to [3], we obtain the following estimate:
Proposition 5.1. There exists C3 = Cg(Dl,w) > 0 and €; = €;(Dy,w) > 0 such that
T
sup / INF(O)P dt < Co(1+T). (5.1)

e€(0,e1) JO

6 Outline of the proof of Theorem 4.8

In this section we only show the estimate (4.2) and the volume preserving property
(4.8) under the suitable conditions.

Proposition 6.1. Let ¢° be a solution to (3.14) with (3.19) and (5.1). Let a family
of Radon measures {1 }e[o,00) Satisfy pf — p; as Radon measures for any ¢ € [0, 00).
Then there exist a subsequence ¢ — 0 and v € L2(0,T; (L*(x))?) such that (4.2)
holds.

Proof. Fix T > 0. By (3.17) and (3. 19), we have (3.20). Note that by (3.20) and (5.1)
there exists C' > 0 such that

sup / / -1 A(p Wiyt )> dzdt < C. (6.1)
€€(0,1) Q
For any n € C}(£2 x (0,T)) with diam (spt77) < 1 we compute that

d 3 1 5 £ Wf(wa) € ;
7 ndut —-/mdu,t—!-E/Q?](eVgo -V + . cpt) dx

1 1 .
=/mdu§+~/ ( Ay + ((p ))cptd /E(VW’V‘PE)% dz  (6.2)
0 g 0 Ja

1 Wl £ 5
=/ntdu§+-/m(~As05+ (f))wfdw+/vn-veduf,
Q g Ja €% “Ja

where dji := £|V¢f|%dz. By (3.20), (6.1) and (6.2), there exists C' > 0 such that

[ (i + [ w0orasi)a

<linllco@xory) |

T 1 1 1
1(/ / 5“1(5A ¢ W(“’ " da at)*( / / da:dt }
0 sptn spt 7y ‘

<ClInllco@x(o,r)-

(6.3)

11
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Note that by (3.20), (6.1) and [20, Proposition 4.9] there exists a subsequence & — 0
such that §§ — 0 as Radon measures for a.e. ¢t € [0,T). Hence jif — y, as Radon
measures for a.e. t € [0,7). By (3.20), we have

T T
sup / /Ivslz dii;dt = sup / /s]cpﬂzdmdtSoDl.
c€(0,e1) JO JQ €€(0,e1) JO JQ

Hence there exist v € L?(0,T; (L?(u,))?) and a subsequence € — 0 such that

T T
lim/ /<I>~v5 dﬁfdtz/ /@-vd,u (6.4)
e0Jo Ja 0 Ja

for any ¢ € C,(2 x (0,0); R?) (see [14, Theorem 4.4.2]). Hence by (6.3) and (6.4) we
obtain (2.9). , O

Proposition 6.2. Let all the assumptions of Proposition 6.1 and (b) of Theorem 4.8
hold. Then we have (4.8) for a.e. t € (0, 00).

Proof. Let ¢ :=lim,_,o ¢°. By [17, Proposition 4.5] we have

//v undI|V<p ,Olldt = //cpntda:dt | (6.5)

for ahy T > 0and 7 € C}(R? x (0,T)). Here v is the inner unit normal vector of
{¢(-,t) = 1} on 8*{p(-,t) = 1}. By (6.5), (b3) and the periodic boundary condition,
we have

/ C/v v A V(- )ldt = / gt/mdt —(2L4Ty) — 1) / Gdt =0 (66)

for any ¢ € C2((0,T)). Using (6.6) and IV, )l = $IVe(-, )| for any t > 0,

/ ¢ [ veval v, ol - / ¢ [[vevdIVel, i =0

holds for any ¢ € C}((0,T)). Hence we have (4.8) for a.e. t € (0, 00). O

7 Monotonicity formula

Finally, we show the negativity of the discrepancy measure & and the monotonicity
formula for (3.14).

Set & = &.(z,t) = EW‘*’EZ(m ] W(“"(m ) and define £ by (3. 21) for a solution ¢*
for (3.14). In this section, Wwe assume fe(x 0) < 0 for any z € . By the maximum
principle, we have

Proposition 7.1. &(z,t) < 0 for any (z,t) € 2x[0, 00). Moreover & is a non-positive
measure for ¢ € [0, 00).



Define the backward heat kernel p by

) ]. ___!”_ l2 d
p = pys(,t) ;= ————mg” G-1 t<s, z,y € R
IR

To localize the computations, choose a radially symmetric cut-off function
n(z) € C’c""(B%(O)) with 7=1on B%(O) and 0<np<L
Define

. 1 ==y
Bl (T,8) = pg (T, (@ —Y) = ———gye EIn(z—y), t<s, 7,y R
(An(s—1)) 2

Proposition 7.2. There exists Cy = Cy(d) > 0 such that

(y)) dt) £Cal+{ta—11))
(7.1)

wtn .
/ﬁdp,f(a:)l < (/[)duf(m)‘ +C4/ e” 0 (B
0 te=ig 0 t=ty
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B

forannyQandO_éti<t2.

Proof. By an argument similar to [16], there exists C > 0 such that

W) (72)

L L

d 1 1 1
alt 5dut < —— 5dee 4 Z()E)2 5dus + Ce™ T8=0 yf
dt/gpd“‘ > (S—t)/;;pdgt+2()\) /deﬂt Ce T2 u; (B

for any y €  and 0 < ¢ < s. By Proposition 7.1, (5.1) and (7.2) we obtain (7.1). O
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