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Introduction

Let 1 < N €N, and let ¢ RY be a bounded domain with a smooth boundary o5,
and let vsq be the unit outer normal on 4. Besides, let us set @ := (0,00) x  and
¥ = (0,00) x Of2.

Let v > 0 be a fixed constant. In this paper, the following parabohc type system,
denoted by (S), is considered.

(S):

( Oi(u— Ln) — Au = f(t,7), (t,2)€Q,

u(t,z) =0, (t,z)€X, (0.1)
L u(0,2) = up(x), =€

A

( 0m — An+ 0lpy(m) — (n—w—3) + M)V +vB (N)|VE* 50 inQ,
{ V71-vee =0 on XL, (0.2)
( 7(0,7) =mo(z), z €

(

ap(n) 8,0 — div (a(n) lgzl + 21/;6(17)VO) =0 in Q,
(0.3)

.

( (n )Igz! +2u6(r))V6) ‘vsa=0 on I,
L 6(0,z) = bp(z), z €.

The system (S) is based on a non-isothermal model of grain boundary motion, proposed
by Warren—Kobayashi-Lobkovsky—Carter [25]. In the context, u = u(t, z) is the relative
temperature with the zero-critical degree, n = (¢, z) is an order parameter which indicates



the solidification degree of grains in a polycrystal, and 8 = 6(¢,z) is an order parameter
which indicates the orientation angle of grain. In particular, the value of 7 is supposed to
be constrained on the closed interval [0, 1]. Then, the cases when “n= 1" and “np = 0" are
assigned to “completely solidifying phase” and “completely melting phase”, respectively,
and also, the solidification degree is supposed to link to the orientation degree of grain,
directly. The term Oljp 1) as in (0.1) is the subdifferential of the indicator function Ijgy
on the closed interval [0, 1], i.e

0, ifrelo,1],

r € R+ Iigy(r) :=
oa1(r) { 0o, otherwise;

and one of roles of this term is to constrain the value of n onto the required range [0, 1].

L > 0 is a constant of the latent heat. f = f(¢,z) is a given heat source. 0 < ag = ag(n),

0 < a=a(n) and 0 < B = ((n) are given mobility functions, and -’ and 3’ denote the

differentials d"‘ and —é of o and g, respectively.

The mltla,l-boundary value problem (0.1) is to reproduce the process of heat exchanges,
and the term u— Lz denotes the enthalpy, as in the weak formulation of the Stefan problem
(cf. [24]).

On the other hand, the remaining coupling system {(0.2),(0.3)} is derived as a gradient
flow of the following function, called free-energy:

[7,6] € HYQ)? — Zu(n,6) /1‘77712dx+/ To () do

"%/9(77“““’) da:+/a(n)[V()}dm+u/ﬁ(77)[V9|2dx (0.4)

with given u € L?(Q).

More precisely, (0.2) is an initial-boundary value problem of an Allen—Cahn type equation,
which is governed by the following double-well function (cf. [24]):

1
n€ R Iigy(n) — —2—(77 -y — %)2 € (—00,00], with u € R;

and the role of (0.3) is to reproduce the crystalline orientation process by means of the
singular type diffusion —div(a(n )[va1+2”ﬁ(’7)ve) (cf. [12, 14, 15, 25]). Besides, the term

& (M)|V8]+vB (n)|VH|? in (0.2) is an additional perturbation to reproduce the mtera,ctxons
between solidifications and crystalline orientations.

Under the isothermal settings, i.e. the constant settings of temperature u, there are a
number of relevant studies, e.g. [4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 26, 27],
which worked on mathematical analysis for some simplified versions of the system (8).
The line of the previous results can be summarized as follows.

(Ref.1) [4, 12, 13, 14, 15]: the modellings and auxiliary studies.
(Ref.2) [5, 6, 7, 16, 20, 21, 22, 27]: the existence of solutions to isothermal systems.

. re
(Ref.3) [11, 19, 26]: the energy-dissipations and asymptotic behavior for solutions to
isothermal systems.
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Now, the objective of this paper is to expand the applicable scope of the mathematical
methods developed in (Ref.1)—(Ref.3), to the non-isothermal system (S). For this purpose,
we set the goal in this paper to prove the following two Main Theorems.

Main Theorem 1: to show the existence of solution [u, 7, 6] to (S), which reproduce the
energy-dissipation, appropriately.

Main Theorem 2: to show the association between the steady-state problem for (S),
and the asymptotic behavior of the orbit [u(t),n(t),8(t)] as t — oo.

The statements of Main Theorems are presented in Section 2, on the basis of the pre-
liminaries outlined in Section 1. These two Main Theorems are proved in the following
Sections 3 and 4, respectively.

1 Preliminaries

In this Section, we outline some basic notations and known facts, as preliminaries of
the study.

Notation 1 (Notations in real analysis) Let d € N be any fixed number.  Then, we
simply denote by |z| and z - y the Euclidean norm of z € R? and the standard scalar
product of z,y € RY, respectively, i.e.:

lz| ;== /22 +---+ 25 and z-y:=Zy1 + - + Tayd,.

for all z = {2"17“' axd]ayz {yl:"' 1yd] E]Rd

The d-dimensional Lebesgue measure is denoted by .#¢. Also, unless otherwise spec-
ified, the measure theoretical phrases, such as “a.e.”, “dt” and “dz”, and so on, are with
respect to the Lebesgue measure in each corresponding dimension.

Notation 2 (Notations of functional analysis) For an abstract Banach space X, we
denote by | - |x the norm of X, and when X is a Hilbert space, we denote by (-, - )x its
inner product. . '

Let Id : L%(2) — L?(Q) be the identity map on L*(2). Let Fp : Hy(Q) — H~'(Q)
and F : HY(Q) — H'(Q)* be the duality maps, defined as:

(Foz, w) 1), 13 (@) = / Vz-Vwdz, for[2,w] € Hj()?
Q

and
(FZ,’U))HI(Q)-,Hl(Q) = / Vz -Vwdzr + / 2w d(L’, for [Z, w] € HI(Q)z,
Q Q
respectively. :
In this paper, we simply put V; := H}(f2), and we prescribe the dual space V' =
H~1(Q) as a Hilbert space endowed with the following inner product: '

(z,w)yy = (2, Fg 'w) g-1aymy(e),  for all [z,w] € [P (= V5 x ).



Besides, we denote by Py > 0 the constant of Poincaré’s inequality. More precisely, Fy is
the constant of continuous embedding V, C L*(Q2), such that:

[v|L2@) < Polvlv,, for any v € V. (1.1)

We define the operator of Laplacian Ag, subject to the Dirichlet-zero boundary con-
dition, by letting:

Ay v € Wy :=Von HYQ) C LX) = Av € L*(D).

Also, we define the operator of Laplacian Ay, subject to the Neumann-zero boundary
condition, by letting:

Av:veWn:={2€ H Q)| Vz-vsn =0in H3(8Q) } C L*(Q) — Av € L*(Q).
By the definitions, it is easily checked that:
- A() = F[)‘H?(Q) and — AN == (F - Id)[WN (12)

Notation 3 (Notations in convex analysis) For any proper lower semi-comntinuous
(Ls.c. from now on) and convex function ¥ defined on a Hilbert space X, we denote
by D(¥) its effective domain, and denote by 8¥ its subdifferential. The subdifferential
AV is a set-valued map corresponding to a weak differential of ¥, and it has a maximal
monotone graph in the product space X2. More precisely, for each z € X, the value
O (z) is defined as a set of all elements z; € X which satisfy the following variational
inequality:
(25,2 — z0)x < U(z) — W(z) for any z € D(V¥).

The set D(O¥) := {z € X |9¥(z) # 0} is called the domain of O¥. We often use the
notation “[z, 23] € O¥ in X?”", to mean that “z} € 8¥(z) in X with 2o € D(8¥)”, by
identifying the operator ¥ with its graph in X?2.

Remark 1.1 Let X, ¢ H(Q) be a closed linear subspace in H'(Q2), and let ¥q be a
proper Ls.c. and convex function on L?(Q), defined as:

1
. — | |Vz*dz, if z € X,
2 € I3(9) > To(z) = 2/01 22 dz, if z € Xp

oo, otherwise.

Then, the subdifferential 9%, of this convex function is directly associated with the op-
erator of Laplacian.
For instance (cf. [1, 2]), if Xo = V4, then:

OVo(2) = {—Apz} = {Foz}, for z € Wy.
As well as, if Xy = Hl(ﬂ), then:

OVo(z) = {—-Anz} = {Fz — 2z}, for z € Wn.
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As another example, we mention about the subdifferential 0¥y ;; C L*(€2)? of a proper
1s.c. and convex function ¥(gq) : L*(92) — [0, 00}, defined as:

1
-2-/ |Vz|? dz +/ Ijo.y(2) dz,
Q Q
z € L(Q) = Yo u(2) = if z € HY(Q),

o0, otherwise.
In this example, it is known that (cf. [2, 10]):
DWpy)={2€H'(Q)|0<z<laeinQ},
D(a‘l’[()‘ll) = D(‘Il[()’”) N Wy,
and for any z € D(0¥oy),
OVpy(z) = —Anz+{ E€L¥Q)|&(x) € Blpy(2(z)) ae. z€Q }
wig|v="Anzin L*(Q), and &(z)(0 — z(z)) < 0
' for a.e. z € Q and any o € [0,1] '
Remark 1.2 (Time-dependent subdifferentials) It is often useful to consider the
subdifferentials under time-dependent settings of convex functions. With regard to this
topic, certain general theories were established by a number of researchers (e.g. Kenmochi

[8] and Otani [18]). So, referring to some of these (e.g. [8, Chapter 2]), we can see the
following fact.

(Fact 0) Let Ej be a convex subset in a Hilbert space X, let I C [0, 00) be a time-interval,
and for any t € I, let ¥* : X — (—00,00] be a proper lLs.c. and convex function,
such that D(¥') = Ej for all t € I. Based on this, let us define a convex function
Ul [2(I; X) — (—00, 0], by putting:

/ W((1)) db, i TOC) € LA(D),
I

¢ e LI X) > ¥I(Q) =
0o, otherwise.

Here, if Ey C D(\ilf), i.e. if the function t € I — \I!‘(z):is integrable for any z € Ey,

then it holds that:

[¢,¢*] € 897 in L2(1; X)?, iff.
¢ € D(¥') and [((),¢*(8)] € 0¥ in X2, ae. t€ I.

Finally, we mention about the Mosco convergence, that is known as a representative
notion of the functional-convergence.

Definition 1.1 (Mosco convergence: cf. [17]) Let X be an abstract Hilbert space.
Let ¥ : X —s (—00, 00| be a proper l.s.c. and convex function, and let {¥,}%2, be a
sequence of proper l.s.c. and convex functions ¥, : X — (—00,00], n € N. Then, it is
said that ¥,, —» ¥ on X, in the sense of Mosco [17], as n — oo, iff. the following two -
conditions are fulfilled.



1° The condition of lower-bound: liminf ¥,,(2}) > ¥(21), if 2t € X, {z]}2, c X,

and z! — 2! weakly in X as n — co.

2° The condition of optimality: for any 2 € D(V), there exists a sequence
{28}, C X such that z} — 2} in X and ¥, (z}) — ¥(zt), as n — oo.

Remark 1.3 As a basic matter of the Mosco-convergence, we can see the following fact
(see [8, Chapter 2], for example).

(Fact1) Let X, ¥ and {¥,}%2, be as in Definition 1.1. Besides, let us assume that:

¥, — ¥ on X, in the sense of Mosco, as n — 00,

and

[2,2*) € X2, [2n,2}) €0V, in X? neN,
zp — zin X and 27 — 2* weakly in X, as n — oo.

Then, it holds that:

[2,2"] € 0¥ in X2, and U, (2,) — ¥(z), as n — co.

2 Statements of Main Theorems

We begin with prescribing the assumptions in our study

(A0) v > 0 and L > 0 are given positive constants, and f € L2 ([0,00); L*(2)) is a given
function.

(A1) 0 < ag € Wii™(R), 0 < a € C%(R) and 0 < 8 € C*(R) are given functions, such
that o and 3 are convex functions, o/(0) = #'(0) = 0, and '

8. = inf (ao(R) U B(R)) > 0

(A2) [uo,70,00] is a triplet of initial data, and this is taken from a class D, ¢ L2()3,
prescribed as:

‘ = VO X D(‘If[()l ) X (HI(Q) ﬂLOO(Q))

Note that D, is a subset of the domain of free—energy Fu, given in (0.4).

Under these assumptions, we define the solution to (S) as follows.

Definition 2.1 (Definition of solution) A triplet of functions fu,n,6] € L ([0,00);
L?(€2)%) is called a solution to (S), iff. [u,n, 6] fulfills the following conditions.

(80) u € W2([0, 00); L3(92)) N L2.([0, 00); V) with u(0) = uo in L2(R);

loc

& Wig2([0, 00); LA(9)) N Lz ({0, 00); H'(R)) with 7(0) = 1o in LA(Q);

loc

[
9 € Wi2([0,00); LA(5)) N LS, ([0, 00); HL(R)) with 6(0) = 6o in L2();
(

[u(t),n(t),6(t)] € Du(6o) := { [ii,7,6] € Ds | 1] 000) < |B0lze=(er) }
for a.e. t > 0.
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(S1) u solves (0.1) in the following variational sense:

/ 0;(u — Ln)(t)zdx + / Vu(t)-Vzdz = [ f(t)zdz,
Q ! Q

(2.1)
for any z € Vp, a.e. t > 0.
(S2) 7 solves (0.2) in the following variational sense:
/ an(t) ) dz + / Vn(t) - p)dzx
t) — u(t) — 1) (n(t) - p) dz
/Q (n(2) 3) (@) = ) 22
+ [ 00 - ) n@)IVE s+ [ (00) = ) DIV de <0,
for any ¢ € D(¥(p,1)), and a.e. t > 0. :
(S3) 8 solves (0.3) in the following variational sense:
[ aon®)a0w(6) ) de +20 [ paw)vew) - v(ew) - w)da
Q Q
(2.3)

-;T/Qa(n(t))WB(t)ldxS/Qa(n(t))Ww]dx,.

for any w € H*(Q), a.e. t > 0.

Next, for simplicities of descriptions, we add some speciﬁc notations in our study.

Notation 4 (Specific notations) For any function 7 € L*(£2), we denote by ®(;-) a
proper ls.c. and convex function on L%(f2), defined as:

[ ()2l de +v /ﬂ BV da,
z € L*(Q) — ®(f; 2) := if z € HY(Q),

00, otherwise,

and we denote by 0®(7; - ) the subdifferential of ®(7; - ) in the topology of L%(2).
Next, we define a functional &, on L*(2)?, by letting:

[,6] € L* ()% = Fo(n,0) := Yp(n) — -;— /ﬂ (n—1)7dz+®(n;0) € (0,00].  (24)

Note that %y corresponds to the free-energy %, given in (0.4), in the case of u = 0.
Finally, we set the following two key-constants: '
1 . B

S — = 2.
2(1+L2) and B() A0+ L’ ( 5)

Ao =



71

by using the constant Py > 0 as in (1.1), and for any w € Vp, we define a functional ¥,
on L2(2)3, by letting:

1 _
[u,n,0] € L*(Q)® — Dp(u,n,0):= ﬁlu — @iaq) + (1, @) 2(@) 26)
Ao ' ~
+—2—0[u —wl?, + Fo(n,6) € (—00,00].

Remark 2.1 By using the notations in Notation 4, the variational inequalities (2.1) and
(2.3) can be reformulated to the following forms of evolution equations:

By(u — L)(t) — Agu(t) = f(t) in L*(), a.e. t >0,

and

ao(n(t))0:0(t) + 0®(n(t);6(t)) > 0 in L), a.e. t> 0,
respectively. However, it must be noted that the reformulation by L?-subdifferential is not
available for (2.2), due to the L!-perturbation term v (n)|V6|? (€ LZ,([0,00); L} (£2))).

Now, our two Main Theorems are stated as follows.

Main Theorem 1 (Existence of solution with energy-dissipation) Under the as-
sumptions (A0)-(A2), let Ay and By be the constants given in (2.5). Then, the system
(S) admits at least one solution [u,n, 8] which fulfills the following condition.

(84) (Energy-dissipation) For any o € L*(Q) with w := Fy "o € Wy, the function
€ [0,00) > Zo(t) = _/ |Opu( T)ll,?(n dr + - / 18en( 7’)|L2(n) dr
+ [ /a8 i+ 5 [ 1ute) =y dn

+9a(ul0),1(0,00) ~ 2 [ 117) - el dr € R
satisfies the following dissipation property: .
Fot) < Z,(s) forae s>0andanyt>s,
and in particular,
Ho(t) < Fo(0) for anyt > 0. (2.7)

Main Theorem 2 (Asymptotic behavior) In addition to (A0)-(A2), let us assume
the following condition.

(A3) There ezists a function fo, € L%(Q) such that f — fo € L*(0, 00; L*())..
Also, let [u,n, 0] be the solution to (S) obtained in Main Theorem 1, and let weo(u,n,0) C
L2(Q)3 be the w-limit set of the orbit [u(t),n(t),8(t)], t > 0, i.e.:

there exists a sequence of time 0 <
t1<t2<t3<---<tnTooand

[u(tn)’n(tn))g(tn)] - [Uoo»%o,@co]

in L2(Q)3 as n — 0.

woo(u)lm 9) = [Uoo;";’oo;goo} € L2(Q)3

Then, the following three items hold.
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(0) weo(u,n,8) is nonempty and compact in L*(2)°.
(1) Any w-limit point [Ueo, Noo, Ooo] € Woo(t,M,8) fulfills that:
(i-0) Uoo = Fy  foo in Vo, €. U € Wy and —Aoliee = foo 10 LP(Q2).
(i-b) Moo is a solution to
(Vo0, V(710 = #)) aayw = (oo = too = 3,100 = #) 120y < 0
for any ¢ € D(¥p0,4)),
i.€. Noo € D(O¥)0) and 8% (Mc) — (Mo — Uoo — )20 in L*(Q).

(i-¢c) B is a constant on §, i.e. P(Nu;0s) D 0 in. L*(R), and moreover, the
constant 0o, fulfills that |0s] < |0o|L=(e)-

(2.8)

3 Proof of Main Theorem 1

The Main Theorem 1 is proved by means of the time-discretization method. To this
end, we denote by h € (0, 1] the argument of time-step, and we set the following time-
discretization scheme, denoted by (AP)y, as the approximating problem for (S).

(AP)n:

u

bl

- h _ ph

U1 _L"h — iy '—Al)uil:fzh in LQ(Q),

h h

77? _U?—l
h

— Awnit + 8Ly (ni') — (nf — wl = 3)

+d (M)|VOR_ | + vB (n?)|VEE,|* 2 0 in a weak variational sense,

h 91 9?—- 2
ao(n; )——;Z-——— + 8@(77, ,0 Y30 in L (),

where o
fhi= 3/ f(r)dr in L*(R), fori=1,2,3,.... (3.1)
h Ji-n

Definition 3.1 For any h € (0,1], a sequence {[u? U, T hoh}e2, C L2(Q)3 is called a solu-
tion to (AP)s, iff. {[ul,n? 60}, C D., [uk,n8,08] = [uo,m0)6o] in Lz(Q)3 and for any
1 € N, the following vanatlonal inequalities are fulfilled,

—-/(u:l - u?—l)de - _/(Th _T'i—-l)zdx+ V’U;:‘ Vzdzx
hJa h Ja Q :

52)
=/f,~"zdz, for any z € Vg,
Q
1
+ [t =y = oyde+ [ Vit Vik - p)ds
h
— Y —©)dz
/ﬂ(n ul — 3) (7 - ¢) 53

+ /ﬂ (n = 9)a(n)| V6" | dz + v L (nf = p)B ()| V6L, dz <0,
for any ¢ € D(¥jp)) a.€. in Q,



and
1
[ aalal )@ ~ 616 — ) da -+ B(ali81) < Bnf5w),
h Ja . (3.4)
for any w € H*().
Now, let us set our first task to prove the following Proposition.

Proposition 3.1 There ezists a positive constant hy € (0 1], such that for a‘ny,h €

(0, hg] the problem (AP), admits a unigue solution {[u} Ui h, 682, € L3()3, such that

[ub,nf, 0% € D.(6p), fori=0,1,2,.... (3.5)
For the proof of the above Proposition, we prepare some additional notations. In the
problem (AP),, we simply put
el =l — L fori=0,1,2,3,....

Then, the system {(3.2),(3.3)} can be reformulated to a minimization problem for the
following proper l.s.c . (however possibly non-convex) functional:

lesnl € Vg x LAQ) = Tale,n)

= /| 2d +——/[e+L|2d
2Lhe 77 ml X 77 «4

+Wo,1(n) + /a(n)lve 1]dx+u/ﬂn)[\70 * [ dx

B B (B
if [e,7] € L2(Q) x HY(Q),

L 00, otherwise,
with 7 € N and the given data f* € L*(Q) (C V') and [ et ,nk 08 ,] € D,
The following lemma, is to verify the validity of this reformulation.

Lemma 3.1 Let us assume s € N and [ul_,,n ,,0% ] € D.. Then, there exists a positive
constant ho € (0, 1], such that for any h € (0, ho], the solving pair [uf', ] € Vo x D(¥p,1))
to (3.2)~(3.3) coincides with the unique minimizer of Tp,.

Proof. The non-convex part in Yj:

el € @) 5 [ (1=}’ dze®,

is independent of the variable e € V', and has a quadratic growth order for the variable
n € L*(). So, there will be a small constant ho € (0,1] such that for any h € (0, ho,
Y}, forms a proper l.s.c and strwtly convex function on V; x L?(€2), and hence Th has a
unique minimizer in D(Y},) = L*(Q) x D(¥j,y)).
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Now, let us suppose h € (0,hq]. Then, applying the standard methods of convex
analysis (cf. [3, 9, 24]), it is inferred that [e,.,n*] € L*(Q2) x D(¥,) is the minimizer of
Th iff.:

-1 e*“e?wl h .
Fy —h—.-f"~ =e, + Ly, in V,

and 1
E/m—%am ) dz + Vm ~ ) dx
Q

N / ((e. + Ln.) — *—5))(n*—<p)dx

n /Q (1. = ) (1) V8L o + v [ (e = )8 (n.)| VO, [P dz < 0,
for any ¢ € D(\I/[O 1])

Thus, we can take the minimizer [u,,n.) := [ex + L7\, n,,] € Vo x D(¥p,1)) as the approxx-
mation data [u?,n?] at the i-th step. ]

On the other hand, for the inclusion (3.4), we can see the following lemma, by reférring
to the previous studies [21, 22].

Lemma 3.2 Let 1 € N, and let hy € (0,1] be the constant as in Lemma 3.1. Let us
assume h € (0,ho), 62, € HY(Q) N LX(Q) is given, and [ul,n] € Vo x D(¥joy)) is the
solution pair to {(3. 2) (3.3)} obtained in Lemma 3.1. Then, the variational inequality
(3.4) admits a unique solution 6 € H*(Q2), such that:

|68 o) < 1071 l2om(e): (3.6)

Proof. This lemma can be proved by applying similar analytic methods as‘in [21, 22].
In fact, the inclusion (3.4) is equivalent to the minimization problem for the following
proper l.s.c. and strictly convex function:

0 € L*(Q) — \/ao(m )6 = 6 1) T2y + B(nl'56), (3.7)

namely the variational inequality (3 4) corresponds to the Euler—Lagrange equation for
this convex function.

Therefore, the existence and uniqueness for (3.4) will be straightforward consequence
of the coercivity and strictly convexity of the functional given in (3.7). Also, the inequality
(3.6) is obtained by applying the result of comparison principle for (3.4), discussed in [21,
Lemma 3.5] and [22, Lemma 4.4]. |

Proof of Proposition 3.1. On the basis of the previous lemmas 3.1-3.2, we can prove
Proposition 3.1 through the following iteration steps.

(Step 0) Put i = 1, and set [ug, 7o, 6o] € D.(fo) as the initial value [u}, nf, 65].

(Step 1) Obtain the data [u?, 77| € Vo x D(¥(o,)) by applying Lemma 3.1.

(Step 2) Obtain the data 8 € H'(Q2) with (3.6) by applying Lemma 3.2.

(Step 3) Advance the value of i, i.e. 1 —.i + 1, and return to (Step1).



Here, note that in the above iterations, the property (3.5) can be obtained, inductively,
through the process of (Step 1)—(Step 2). |

Next, we verify the following lemma, concerned with the energy-estimate for approxi-
mating solutions.

Lemma 3.3 Let hy € (0,1] be the constant as in Lemma 3.1, and for any h € (0, hol,
let {[ul,nk, 0232, C D.(80) be the solution to (AP), obtained in Proposition 3.1. Let
us take any o € L*(Q), and let us put w = Fylo € Wy. Then, there exists a small
constant h, € (0, ho], such that for any h € (0, h.], the solution {[ul,nf,6 ; }}1_0 satisfies
the following energy-inequality:

A 1 1 ‘ _
“0“!“? Uy 1|L2(Q) + | Uz—ll]ﬁ(n) + =V 00(77?)(9?' - 9?-1)@2(:1)
2h 4h h :

A Byh
"“fuf -y, — Tlfzh - Qﬁﬂ(n)

+4,, (%777;, )g%w(u?al,n?_l,ﬂ?_l), 1=1,2,3,....

Proof. With (1.2) and the relation ¢ = Fyw = —Aow in L?(£2) in mind, we can see from
(3.2) that: '

1 L . . :

E(ui‘ —ul )~ Al — )= (fF - o)+~ ( 77?_,1) in L*(Q), i=1,2,3,.... (3.9)
Here, let us multiply the both sides of (3.9) by ul — . Then, by using (1.2) and Schwarz’s
inequality, we have:

' 1
h 2 h h
Hlui - w|L2(Q) + |u — wlffo = E('“?q - w,u; — W)r2Q)

+(f - o,ul ~ w)rﬂ(n + "E(”hh — 0y, uf — @)r2a)

1
= 55'“3‘1 1~ i @t 57 oh I w{L2 @ T Polfl = olr2@)luf — @lv,
L L ‘
+“E(ui:71? - 77?_1)1,2(9) - E("Zﬁm)mm) + 'ﬁ(ﬂ?-uw)lﬁ(g), i=1,2,3,...,
so that:
! hon 2
2LI w[LQ(Q) +(nf, w w)r2@) + —fui - wly,
Pih
< ]ul..l @72 + (7h bw)m(n) + 57 | glLa(m (3.10)

+(u; >77; 77,‘__1)[,2(52), 1= 1, 2, 3, e

Also, we multiply the both sides of (3.9) by uf —ul ;. Then, by using (1.2) and Schwarz’s
inequality, it is computed that:

1 1 :
~luf —wl, |72 @+ s |uff — @y — l“?-l - wl},
h 2

L . o
e u?-liiﬁ(ﬂ) + h|fE = olag) + 7{1771 "‘7)?—1&2(9), i1=1,2,3,....

(3.8)
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So, multiplying the both sides by Agh, and applying (2.5), the above inequality can be
reduced to:

— |ul u?—llLQ(Q) ! 77: 1|L=(Q) — Aoh|f} - Q‘L’(Q)
2h 2h (3.11)

A Ag .
+—§glu? - wl}, < —2—[14‘_1 —wly, i=1,2,3,....

Next, let us take 7" | as the test function in (3.3). Besides, with the convexities of a
and @ in mind, we apply Schwarz’s inequality and Taylor’s theorem to derive that:

1

(5 - ~> Imi = hi-1l3a@) + P () = Ppay(niy)

1 1
“5/{2(n£‘—§)2d"3+§/51(7)?_1~—_ _15)2dx
+ [ atmIvetlde = [ atrb (Ve s
-HJ//@n2 |V0 1|2d.':3—V/ﬁ771 )| V6 |2 dx

+(uf, =l Ve <0, i=1,2,3,....

Finally, we put w = 6 ; in (3.4). Then, by using basic theory of convex analysis, it is
inferred that:

Va0~ 01 ey + / a(n)|V6h dz — / a(n)| V8L ;| de

. +V/ﬁ(nf)IV9?|2dx—u/ﬁ (MIVer 2dz <0, i=1,2,3,....
Q N

(3.12)

(3.13)

Now, let us set h, := min{ho, 3}. Then, for any h € (0, h.], we can see that:
1 1 1 1

2h 2 2h(1_h)“ 4h’

and hence, we can obtain the energy-inequality (3.8) by taking the sum of (3.10)—(3.13).
]

Hereafter, let h, be the constants as in Lemma 3.3, and for any h € (0, h.] (C (0, ho)),
let {[ul, nt, 62}, be the solution to (AP), obtained in Proposition 3.1. On this basis,
we define three different kinds of time-interpolations [@h, 7T, On] € Li%([0,00); L*()%),
[uh, 1, 04] € L2.([0,00); LA()®) and [Gn, T, 6n] € Wi ([0, 00); L2(2)*), by letting

( [ﬂh(t), ﬁh(t)a _éh(t)] [u, ’n'l ’ eh )

for any t > 0 and any 0 < 4 € Z satisfying t € ((i — 1)h, ih],
[Eh(t)>'_f]_h(t),Qh(t)] = [u?—l,n?—lvgzh—l]a

for any t > 0 and any ¢ € N satisfying ¢ € [(i — 1)h,1h),

~ N th—1 Lh
(0 ), Bu(0)] = Pt 0] 4 S D e g

| for any ¢t > 0 and any ¢ € N satisfying t € [(i — 1)h,ih).
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Then, from Proposition 3.1, it immediately follows that:

ﬂh(t):—ﬁh(tLah(t)} € D*(90)>
uy,(t), 7, (£), 84(t)] € Di(6h), ¢ for all t >0 and h € (0,h.]. (314

[
[
(G0 (£), T (), On(£)] € D4(60),
)

Also, from (3.8) in Lemma 3.3, we can see that:
AO t 1 t t ~ 5
2 [10@0(0 s+ 5 [ 100Dy dr + [ I(V/aalamod iy dr

Lot By [* o
+§‘L'/ [@n(7) — wl}, dr - 70] | fu(7) = olia(q) dr (3.15)

G (@ (2), T (), B (2)) < Do (5),7,(5), 84 (5)),
for all 0 < s <t < o0, and any [o, @] = [0, Fy ‘o] € L*(Q) x W

=y

where
fu(®) := fin L*(Q), for any ¢ > 0 and any i € N satisfying ¢ € [(i ~ 1)hv,z'h).
Note that kthe assumption (A0) and (3.1) imply: ’
i = f in L2([0,00); L*(R)), as A L 0. (3.16)
The above (3.14)~(3.16) enable us to say that: |

(#1-a) {{ah,ﬁhggh]}he(o,h,] is a bounded sequence in the space W7 ([0 0); LQ(Q)?’)

Lig.([0,00); Vo x H'(Q)?);

(#1-b) {[Eha_ﬁhaah]}he(o)h,} and {[@h,ﬂh, 9, he(on,) are bounded sequenées in the space
Lloc [0)00)3 VO X HI(Q)2) l '

Therefore, by applying the compactness theory of Aubin’s type [23], we find a sequence
he > hy > hy > hg > -+ > h, | 0 asn — oo, and a triplet of functions [u,n,6] €
L2 ([0,00); L*(2)3), such that the sequences:

loc
{[ﬂm“ﬁmb—n]}?ﬂ = {[ﬂhnvﬁhn3§hn}}?i—-i1
{lun>m,, Onl o2y o= {lt,» 7, > Onal}ozs
{[@ By Bl Y2 1= { [ B, B Y321,
fulfill the following properties:

o (u,7,0] € WR2([0,00); L)) 1 Lz ([0, 00); Vo x HH(Q)?),
o [u(t),n(t),6(t)] € D.(8), for any ¢ >0, | (317
g [U’(O) 77 ) (O)] = {un(o)ynn( );en(o)] = ['I.L(}, 770)00} lﬂ Lz(Q)37

for any n € N;

[ﬁn,ﬁn,{?\] [u,n,0] in Cioe([0, 00); LQ(Q)z), weakly in Wli’f([(),oo); L3(Q)3) (3.18)
and weakly-* in L ([0, 00); Vo x H(2)?), as n — oo; o
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[@n, s 0] = [w,7,6] and [—un’ﬂn’-en] — [u,7,0] in Li,([0,00); L*(2)%) (3.19)
and weakly-* in L2 ([0, 00); Vg X H'(2)?), as n — o0; '
Un(t) = u(t), u,(t) — u(t) and B, (t) — u(t) weakly in V4,
{ Tia(t) = 1(t), 1, (£) — n(t) and 7(¢) — n(¢t) weakly in H'(Q),
B,(t) — 6(2), 8,,(t) — 6(t) and 8,(t) — 6(t) weakly in H'(S),
asn — oo, forany t € I;

(a(gn)Vﬁn) nVo)(t), (/8( V9 - (vB(n) VH) (3.21)

Wea.kly in LQ(Q) as n — 00, for any ¢ € I,

(3.20)

and in particular,
0<T()<1,0<n (1) L, 0<MR(t) <1, 0<n(t) < 1,
{ 10,(t)] < |Bol (@), 18, ()] < 60| zeo(), 18,(2)] < b0l L=, 16(8)] < |00l (3-22)
a.e. in (), for any ¢t > 0 and any n € N.

Based on these, we can refer to the previous study [21], to check the following lemma.

Lemma 3.4 Let I C (0,T) be any open interval. Let & . Lz(I;Lé(Q)) — [0,00] and
@I . L2(I; L*())) — [0,00], n € N, be functionals, defined as:

¢ e LI IX(Q)) — 81(Q) = / Bn(t); C(0) at,
¢ e AL L3(9)) — B1(0) = /, S(@,(1); (&) dt, forn €N,

by using n € L*(0,T; L*(Q)) and 7, € L*(0,T; L*(Q)), n € N, asin (3.17)-(3.22). Then,
the following items hold. " '

(A) & and &}, n € N, are proper L.s.c and convez functions on L2(I L2(Q)), such that
D(®") = D(<I>’) L*(I; H*(Q)), for alln € N.

(B) &1 — &1 on L2(I; L*(R)), in the sense of Mosco, as n — co.

(C) If 6' € L*(I;H'(Q), {61}, C L*(,HY(Q)), 6, — 6" in L*(I;L*(Q)) and
®1(81) — d1(6"), as n — oo, then 6} — 61 in L*(I; HI(Q)) as n — 00.

Proof. We omit to show the detailed proof, because the demonstration scenario is just a
slight modifications of those as in [21, Lemmas 4.1-4.2]. ]

Now, the Main Theorem 1 is proved as follows.

Proof of Main Theorem 1. First, the condition (S0) can be obtained, immediately, as
a straightforward consequence of (3. 17) :

Next, we verify conditions (S1)—(S3). Let us fix any bounded open interval I C- (0, 00).
Then, due to (3.2)-(3.4) and Remark 1.2 (Fact0), the functions [Ty, 7, 0], [un,n,,, 60l

and [u,, ﬁn,an], for n € N, must satisfy

/I (Bl — L) (8), 2) oyt + /; (Ta(t), 2)v, dt = /I (o (8), 2) 120 At

for any z € V5 and any n € N,

(3.23)



[(atﬁn(t)’ (_ - w)(t))Lz(Q) dt + /(Vﬁn(t)? v(ﬁn - w)(t))LZ(Q)N dt
~ (= 5= DO~ D)0) i
+f / o )V, 1) dad (321)

w / Ty — V)8 (8)) [V, (1) dedt < 0
for any v € L3(I; H'(Q)) with ¢(t ) € D(‘Il[o,u) ae tel, and any n €N,

and
[Bn, —00(7,)8.8,) € @] in L*(I;L*(Q))? foranyne€N.  (3.25)

By virtue of (3.17)=(3.19), (3.25), Lemma 3.4 (A)-(B) and Remark 1.3 (Fact 1), it is
deduced that: .
[0, —ao(n)8:0] € 8®" in L*(I; L*(Q))?, (3.26)

and _ ’ ‘
®1(8,) — ®'(0) as n — oo. - (3.27)

Here, on account of (3.26), Lemma 3.4 (A) and Remark 1.2 (Fact0), we can show the
compatibility of the pair [n, 8] with (53). )
In the meantime, from (3.17)~(3.19), (3.27) and Lemma 3.4 (C), we infer that
0, — 0 in L*(I; H(Q)) as n — oo, and hence,
6. — 6 and 8, — 6 in L2(I; H}()) as n — oo.

=mn

So, invoking (A1) and (3.22), we further have:

o (7,)V8, — o' (V0 and /7' (7,)VE, — /B (nMVE

(3.28)
in L2(1; L*(Q)N) as n — oo.

Besides, taking a subsequence if necessary, it will be seen that:
Ga(s) — 0(s), 8,(s) — 6(s) and B (s) — 6(s)
in H(Q) as n — oo, for a.e. s € 1,
and furthermore,

(aln, VE,)(5) = (om)V0)(9), (/BRI = (WEVOE), (300

in L2(Q)N, as n — oo, forae. s€ ..

By virtue of (3.16)—(3.19), (3.22) and (3.28), lettmg n — o0 in (3 23) and (3.24) yield -

that:
/I(ai(u - Ln)(t)a Z)L2(Q) dt + /I(u(t), Z)Vo dt = [(f(t); Z)LQ(Q) dt

for any z € Vg,
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and

[ @), (1= )0 1y + [ (9100, 91— 6)(0) gy

- /((n —u=3)(8), (1= %)) 20 Ot
+ [ [ - woaae)vo) e+ | [a=wxopmeyvaeast <o
for any ¢ € L2(I; H*(Q)) with ¢(¢) € D(¥p ) ae. t € I,

respectively.
We thus obtain the compatibility of [u,7,8] with (51)-(52), because the choice of the
bounded open interval I C (0, 00) is arbitrary.

Finally, we verify the condition (S4). For this purpose, let us put ¢ = 7 in (3.24)
to see the limiting situation as n — oo. Then, having in mind (3. 16) (3.19), (3.22) and
-(3.28), we observe from (3.23) and (3.24) that:

i sup / [Tn(t)f3, dt < lim / Tt dt
+ lim ](—at(un = L) (t) + falt), (G = u)(t))m(m dt
- /1 lu(t) ]2, dt, - (3.30)
and
lim sup /] | V(&) Zagqyy dt < lim /I (VI (t), V(L)) oy it
+ lim /1 (=0 (t) + (7 = T = 3)(2), (T = M)(2)) 120y B
+tim [ (= (00 702V 1) ot
wvlim [ [ (1= 0O 70)V8,0 de
_ /I V7)o . | (3.31)
respectively.

From (3.19), (3.30)—(3.31) and the uniform convexities of L2-base topologies, it follows

that: : v
U, — u in L*(I; V) and 7, — n in L*(I; H'(?)), as n — oo,

and hence,

u, — u and 4, — u in L%(I; V),
as n — 00.

1, — 1 and 7, — ¢ in L2(I; H(Q)),



Besides, taking a subsequence if necessary, it is further seen that:

Tn(8) — u(s), u(s) — u(s) and U,(s) — u(s) in Vg,
in(s) = 0(s), n(s) — n(s) and fu(s) — n(s) in H*(12), (3.32)

as n — 00, for a.e. s € I.

Now, the condition (S4) can be verified by putting h = hy in (3.15), letting n — oo,
and taking into account (3.17)-(3.22), (3.29) and (3.32). n

4 Proof of Main Theorem 2

In the proof of Main Theorem 2, the key—pomt isin the energy—mequa.hty (2. 7) obtained
in the previous Main Theorem 1.

Let [u,7,8] € W,22([0, 00); L3()3) N LS ([0, 00); Vo x H(2)?) be the solution to (S)
obtained in Main Theorem 1, and let fo € L%(2) be the function as in (A3). Besides, in
the energy-inequality (2.7), let us put:

0= foo 80d @ = We := Fy ' foo in Vg (W € Wo).
Then, with (2.4) and (2.6) in mind, we can see from (2.7) that:
Ao 2
22(0(t) = weolly + Fo(n(2),6(2)
Ao [t 9 Lt 5
3 [ 1ot sy dr+ 7 [ 1o inay a7

/ \/a() 81 IL2(Q)dT+2L/ 1’11, woo{‘z/od’r

1

< 2Ll“0 woolLﬁ(Q) ‘3‘ IUO wOO‘Vo + Folno,0o)
+(1o — 1(t), Weo) 2(00) + "‘—/ 1) = foolagy dr
By

< (f“o w00!L2 o) T |f - foo}m(oOoL%Q)))

+3’0(?70,‘90) + £V ()% [woo| 20
= _Foo <00, for any t > 0. TR . (4.1)

By using the above estimate, the Main Theorem 2 is proved as follows.

Proof of Main Theorem 2. First, we verify (O). From (44.1),‘ it is observed that:

(#2-a) [Opu, Om, 0,0] € L(0,00; L3(£2)?), and u — wy € L2(0, 00; Vo) N L*(0, 00; Vo);
(§2-b) the orbit {[u(t),n(t),8(¢)] |t > 0} is contained in a class K, defined as

, O A e A
Koo :={ [@,7,6] € D.(6p) —qu“‘wwﬁ2(ﬂ)+§0(n’0) < Fw };

(#2-c) the class Ko is a compact set in L2()3.
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Therefore, we find a triplet [, oo, foo] € L2(2)? and a sequence of times 0 <t; < tp <
t3 <+ <t T 00 as m — 00, such that:

[u(tn), n(tn), 8(tn)] = [thoos Theos Boo] in L*(§2)%, as n — oo. (4.2)

This implies that w(u,n,8) # 0. Also, the compactness of w(u,7, ) is obtained by taking
into account ({2-b) and the fact that:

w(u,n,8) = [ { [w(®),n(),60)] |t 25 } C Koo = Ko.

s2>0

Thus, the item (O) holds.

Next, we venfy (1). Let us take any [tco, Tloo, foo] € w(u,n,0) with a sequence 0 <
ty <ty <tz <---<t,l ooasn — oo, such that (4.2) holds. In this 31tuat10n we can
see from (z2-a)- (KQ- ) that:

(12-d) {un}2, = {u(-+1t,)}2, is a bounded sequence in Wl’g((), 1 L?(Q))OL‘”(O, 1; Vo);

(12-e) {m}, == {n(- + tn)}, and {On}32, = {0(- + tn)}o2, are hounded sequences in
W2(0,1; L*(©)) N L*(0, 1; H()); _

(12-F) {[un(t),m(t),0.(t)] |t € [0,1], n € N} C Ko, and in particular, 0 < 7,(t) < 1 and
16n(t)] < |00|1e(q) a-e. in £, for any ¢ > 0 and any n € N. , :

Owing to (Al), (z2-a)—(#2-f) and the compactness theory of Aubin’s type [23], we infer
that: '

Oyu, — 0 in L*(0,1; L*()),

Up — W in L2(0,1; Vo),'
in C([0,1}; L%(Q)) and
weakly-* in L>(0, 1; Vp),

as n — 00, (4.3)

Omn — 0 and 8,6, — 0 in L%(0,1; L*(2)),

o — N and On — B in C([0,1;L3()) and = asm—oo, ~ (44)
weakly-* in L>(0,1; H}(Q)),

a(nn)VH — (Moo ) Voo and /B(1n) V0, — +/B(710) VHOO, ,

4.5
weakly in L2(0,1; L*(Q)V), as n — oo, (45)
- and
0< 7 <1 and ‘|900| < |6o|Loo(e2) B-€. in £ (4.6)
Now, by the uniqueness of limit, the convergences (4.2)—(4.3) lead to:
Uoo = Weo = Fy ' foo in V. (4.7)

It implies the validity of (i-a).



In the meantime, due to Definition 2.1 (S2)~(S3), the sequence {[tn, 7, O]} 52, must
satisfy that: ‘

/0 (Gettn(t), mn(t) = <P)L2(n) dt + A (v"?n(t)x V(nn(t) — W))Lz(Q)N‘dt
— [ (== D000 = ) ey
/ / Na(t nn(t))]ven(t)l dzxdt

+V/ f(nn(t ©)B' (1 (£)|V8a(1)|* dzdt < 0,
for any ¢ € D(¥[py)) and any n € N,

(4.8)

and

[ (@o1)2)0),00) oy e+ [ 208010

1 (4.9)
< / ®(n(t);0)dt =0, for any n € N.
0

From (4.4) and (4.9), it is observed that:

1 1
0 < ué*/ [VGOOI';’} v dt < v, hmsup/ |V9n12Lz(Q)N di
o ,

n—r00

IA

v lim sup /0 /Q Bl (0) V()] dodt

n—o00

IN

lim sup /01 D(n,(t);0.(1)) dt

00

Tt OO 0

< - lim ((ao(nn)atgn)(t)s en(t))lp(g) dt =0,

and it implies that:

The item (i-c) will be obtained as a consequence of (4 6) and (4. 10)

Furthermore, by virtue of (A1), (4.10) and (§2-f), we can compute that:

o /Q("n(t) — )&/ (1(£))|V6a(t)] drdt

w [ [ (mt) = B n)IV0, (0 dadt @)

< [/ loqon | Vol 221 @) + Y18 oo VOnlZ2(0,1,12¢0)m)
— 0asn — oo, for any ¢ € D(¥pgy)). -

With (4.3)~(4.7) and (4.11) in mind, letting n — oo in (4.8) yields the variational in-
equality (2.8) asserted in (i-b). =
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