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1 Introduction

We consider the time periodic problem of the following system (DCBF), which
describes double-diffusive convection phenomena of incompressible viscous fluid con-

tained in some porous medium.

[ u=vAu—au—Vp+gT+hC+ f (z,t) € RN x[0, 8],
0,T +u-VT = AT + f, (z,t) € RN x]0, 5],
(DCBF){ 8,C +u-VC = AC + pAT + f3 (z,t) € RV x[0, 8],
Vu=0 (z,t) € RV x][0, 9],
| u(-,0) = u(,S), T(,0)=T(,S), C(-,0)=C(,5),

where RV denotes N-dimension Euclidean space. Unknown functions of (DCBF) are

= u(z,t) = (u!(z,t),v3(z,t), - ,ul¥ (z,1)) :  Fluid velocity,

u

T =T(x,t) :  Temperature of fluid,

C =C(z,t) : Concentration of solute,
p = p(z,1) :  Pressure of fluid.

Given positive constants v, a and p are called the viscosity coefficient, Darcy’s co-
efficient and Soret’s coefficient respectively. Constant vectors g = (¢4, 9% ,9")
and h = (k% h2,--- ,h™N) describe the effects of gravity. Moreover fi = fi(z,t) =
(fi(z,t), f2(=z,t), -, [V (x,1), fa = fa(z,t) and f3 = f3(x,t) are given external

forces.

*1 Joint work with Professor Mitsuharu Otani (Waseda University).
*2 E-mail: u-shun@suou.waseda.jp



When there exist two different diffusion processes with different diffusion speeds
(e.g., heat and solute) in the fluid and when the distributions of these diffusion pro-
cesses are heterogeneous, the behavior of fluid becomes more complicated than those
of simplified diffusion models. Such complex fluid phenomena, the so-called double-
diffusive convection, can be observed in various fields, for instance‘, oceanography,
geology and astrophysics. Pé,rticularly, the double-diffusive convection phenomenon
in porous media is regarded as one of the important subjects, since it has large
area of application, for example, models of the soil pollution, ’ché storage of heat-
generating materials (e.g., grain and coal) and the chemical reaction in catalysts.
When we deal with double-diffusive convection phenomena in porous media, the so-
called Brinkman-Forchheimer equation, which is derived from a modified Darcy’s

law, is applied in order to describe the behavior of fluid velocity. A}though the

3 v
original Brinkman-Forchheimer equation has some nonlinear terms and a function

which stands for the porosity (the rate of void space of the medium), we adopt a
linearized Brinkman-Forchheimer equation as the first equation of (DCBF) on the
basis of the fact that some recent researches suggest the smallness of these nonlinear
terms and the assumption that ﬁhe porous medium is homogeneous. Moreover, based
on Oberbeck-Boussinesq approximation, the terms g7" and hC are added to the first
equation of (DCBF) in order to describe the effects of buoyancy. The second and
third equations, dérived from the results of non-equilibrium statistical physics, pos-
sess convection terms u - VT and u - VC, which make (DCBF) difficult to deal with
as non-monotone perturbations. Here, pAT in the third equation designates Soret’s
effect, one of the interactions between the temperature and the concentration. To be
precise, we have to add the term p’AC, called Dufour’s effect, in the second equation
éf (DCBF). However, since Dufour’s effect is much smaller than Soret’s effect, we ne-
glect o AC in our model (for more details and examples, see, e.g., Brandt-Fernando
[2], Nield-Bejan [10] and Radko [17)).

As for previous studies for (DCBF), the solvability of the initial boundary value
problexﬁ and the time periodic problem in bounded 'domaihs is investigated in

Terasawa~Otani [20] and Otani-U. [14] respéctiveljr. In spite of the presence of

convection terms which are quite similar to « - Vu in the Navier-Stokes equations, -

the global solvability of (DCBF) for N < 3 with large data (initial data and external

forces without smallness assumptions) is shown in [20] and [14]. In these papers, the

97



98

existence of solution is assured by the application of abstract results given in Otani
[11] and [12], where evolution equations governed by subdifferential operators with
non-monotone perturbations are considered. Since Rellich-Kondrachov’s theorem
plays a significant role in order to apply the abstract thebry, the boundedness of
domains is an essential condition in [20] and [14]. However, in our recent study
[15], the global solvability of the initial boundary value problem in general domains
for N < 4 with large data is assured via Banach’s contraction mapping principle.
Motivated by these results, we aim to extend the solvability of the time periodic
problem to those for unbounded domains. In particular, since we obtained the
existence of solution with large data in [20], [14] and [15], we construct a periodic
solution of (DCBF) without smallness conditions of external forces.

However, to the best of our knowledge, there are very few studies for the solvabil-
ity of time periodic problem in unbounded domains with large data, especially, for
parabolic type equations with non-monotone perturbations, where the uniqueness of
solution is not assured.

Time periodic problems in unbounded domains have been sttidied in, e.g., Mare-
monti (8], Kozono-Nakao (7] for the Navier-Stokes equations and Villamizar-Roa~
Rodriguez-Bellido-Rojas-Medar [21] for Boussinesq system (coupling of the Navier-
Stokes equations and the second equation of (DCBF)). In their arguments, the small-
ness of given data seems to be essential in order to assure the convergence of itera-
tions. On the other hand, as for the solvability of time periodic problem with large
data, abstract evolution equations associated with subdifferential operators in Hilbert
space have been investigated so far, e.g., in Bénilan-Brézis [1], Nagai [9], Yamada [22]
and Otani [12]. Moreover, in Inoue-Otani [6], the solvability of periodic problem for
Boussinesq system in non-cylindrical domains (moving bounded domains) is shown by
the application of result given in Gtani [12]. In these abstract theories, the coercivity
of subdifferential operators seems to be one of essential conditions. Particularly, in
Otani [12], -level set compactness is assumed so that Schauder-Tychonoff-type fixed
point theorem can be available. These conditions assumed in previous studies for
abstract problems are usually guaranteed by the boundedness of space domains when
we apply them to concrete partial differential equations.

The main purpose of this paper is to construct of a time periodic solution for

(DCBF) in RV with large data via the convergence of solutions for approximate



equations in bounded domains. In the next section, we define some notations and state
our main result. In Section 3, we give an outline of our proof. Our argument follows
the basic strategy given in Otani [13], namely, relies on local strong convergence and
diagonal argument. Our proof is roughly divide into three steps. In Sections 4-6, we

give some details of each step.

2 Notation and Main Result

Let 2 stand for either a bounded domain in RY with sufficiently smooth boundary
or RV itself. We define LI() := (LI(Q))N, Wka(Q) := (Wk(Q))N and H*(Q) :=
(H ()N, where LI(Q), W59(Q) and H*(Q) := W*?(Q) designate the standard
Lebesgue and Sobolev spaces (1 < ¢ < o0, k € N).

We here recall that the Helmholtz decomposition holds for L4(2) with g € (1,00)
(see, e.g., Fujiwara-Morimoto [4] and Galdi [5]). That is to say, for any v € LI(Q2),

the following decomposition is uniquely determined.
v=w +wy, w;€LIQ) and wr € G4(),

where each functional space is defined by

CR() = w € CP() = (CP(W)Y; V- w(z) =0 Vo€ Q),
LI(2) : the closure of C°(Q2) in LI(R2),

G,(Q) = {w e LYQ); Ip e WEIQ), st., w= Vp}.

loc

Let Pq, stand for the orthogonal projection from L2(2) onto L2(Q2). Then we define
the Stokes operator by Aq := —PqA with domain D(Aq) = H? (Q) NHL (£2), where
H. () denotes the closure of CP(£2) in H*(2). We here remark that Agyv = —Av
holds for any v € D(Agn), i.e., v € D(Agn) satisfies Av € LZ(RY) (see Constantin—
Foais [3], Sohr [18] and Temam [19]).

Henceforth, ¢* and ¢’ stand for the critical Sobolev exponent and the conjugate
Hélder exponent associated with g € [1, 00|, namely, ¢* := g¢N/(N —g) for N > g and
¢ = q/(q—1). Moreover, we define C([0, S]; X) := {U € C([0, S]; X); U(0) = U(S)}
(the set of continuous periodic functions with \}alue in Banach space X).

We deal with the periodic solution of (DCBF) in the following sense:

Definition 2.1 (Periodic solution of (DCBF)). Let N = 3 or 4. Then (u,T,C) is
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called a (periodic) solution of (DCBF), if (u,T,C) satisfies the following conditions:

1. (u,T,C) satisfies the following regularities:

u € Cr ([0, S, L2 (RY)), T,C € Cx ([0, 8}; L* (RY)),

8z, u € Cx ([0, S|; L3(RM)), 8:, T, 85,C € Cr([0,5); L*(R"Y)),

dyu € L*(0, S; L2(RN)), a,T, 8,C € L*(0,S; L*(R")),

8,0z, u € L*(0, S;L*(RY)), 82,05, T, 8,,0,,C € L*(0,S; L*(RY)),

Aw € L*(0, S; L2(RM)),

where ¢, p=1,2,--- | N.
2. (u, T, C) satisfies the second and third equations of (DCBF) in L%(0, S; L*(RN)).
3. For any ¢ € L2(0,S;L2(RN)) n L2(0, S; L& (RY)), (u,T,C) satisfies the
following identity:

S
(2.1) / / (Oyu — Au+au—gT — hC — f1) ¢ dzdt = 0.
0 JRN
Then our main result can be stated as follows:

Theorem 2.2. Let N = 3 or 4 and let a > 0. Moreover, assume that

fl € Wl,z(oa SaLz(RN))v fl(o) = fl(S);

fa, f3 € L*(0, S; LA(R™)) 0 L*(0, 5; L&V (RM)).
Then (DCBF) possesses at least one periodic solution (u,T,C).
Remark. We can show that the identity (2.1) in the condition 3 leads to the first
equation of (DCBF). Indeed, recalling the basic property of the Helmholtz decom-
position and the fact that the dual space of L2(0, S;LZ(RM)) N L*(0, $; L& (RNY)

coincides with L2(0,S;L2(RN)) + L?(0,5;L2 (RN)), we can show that the identity
(2.1) yields the first equation of (DCBF) with p = p; + p2, where

pi(- 1) € WLE(RY), po(-,t) € WEZ(RY) for any t € [0, 5],

loc

Vpi € Cx([0, S; L% (RY)), Vpz € Cr((0, S| L*(RY)).

3 Strategy

Our proof consists of the following three steps:



Step 1: We consider the following problem with two approximation parameters
n€ Nand A > 0

(Oyu + vAq,u + au = Pq,gT + Pa, hC + Pa, fila, (z,t) € Q. x[0, 8],

0T +u-VT + AT = AT + f2la, (z,t) € Qnx][0, 5],
(DCBF),, , { 8.C + u-VC + AC = AC + pAT + fala, (z,8) € A x][0, 5],
u=0, T=0, C=0 | (z,t) € 89 X [0, S],

\u("O) = u(')5)7 T(:O) = T(':S)1 C(',O) - C(,S)
Here and henceforth, Qp stands for the open ball in RV centered at the origin with
radius R > 0, i.e., Qg := {z € RY;|z| < R} and F|q, denotes the restriction of F

onto Qg.

Step 2: Let (up,Ty,Cr) be a periodic solution of (DCBF),, » obtained in Step 1.
- Taking the limits of the solution (n, Ty, Cr) and the system (DCBF), ) as n — oo,
we show that the following problem (DCBF), admits a periodic solution for each
parameter A > 0.

Oiu + vAgnu + au = PengT + PrvhC + Pre fi - (z,t) € RV [0, 5],
T +uVT + AT = AT + f, (x,t) € RV x][0, 8],
C +u-VC + AC = AC + pAT + f3 (z,t) € RV x][0, 5],
u(-,0) = u(-,8), T(-,0) =T(,S), C(-,0) =C(,S5).

Step 3: Let (uy, Ty, C,) be a periodic solution of (DCBF), derived in Step 2. Taking
the limits of the solution (uy, Ty, C») and the system (DCBF), as A — 0, we assure

(DCBF),

the existence of periodic solution for the original system (DCBF).

4 Step 1. Approximate Equation in Bounded Domain

Solvability of the time periodic problem for (DCBF) in bounded domains with large
data has been already shown in [14]. To be precise, we have to consider the case where
N = 4 additionally. However, we can easily show that arguments in [14] also can be
carried out for N = 4, if the domain has sufﬁciently smooth boundary (see also [16],
where another proof via Schauder’s fixed point theorem is given).

Therefore, we can assure the following solvability for equations defined in bounded

domains with large data.

Lemma 4.1. Let N < 4 and let Q C RN be a bounded domain with sufficiently
smooth boundary 0Q. Moreover, assume that Fy € L%*(0,S;L2%(Q)) and Fy F3 €

101



102

L%(0,S; L*(Q)). Then for any non-negative constants a and X, the following (4.1)

admits at least one periodic solution (u,T,C).

(0yu + vAqu + au = PagT + PahC + PoF, (z,t) € @x[0,8],
OT +u VT + AT =AT+ F; (z,t) € 2x[0,S],
(41) {8:C+uVC+AC =AC+ pAT + F3 (z,t) € 2x[0, 8],
u=0, T=0, C=0 (z,t) € 62 x [0, 5],
[ u(-,0) = u(-,§), T(-,0) =T(,S), C(-,0) = C(,S).

Here (u, T, C) is said to be a periodic solution of (4.1), if

1. (u,T,C) satisfies the following regularities:
u € Cr([0, S, HL (€2)) N L?(0, S;HA(2)) N WH2(0, S;Lg (),
T,C € CA([0, S]; HE () n L%(0, S; H3(R)) nWh2(0, S; L*(92)).
2. (u,T,C) satisfies the first equation of (4.1) in L*(0, S;1L2()) and the second
and third equations in L2(0, S; L?(£2)).

5 Step 2: Enlargement of the Domain (n — 00)

According to Lemma, 4.1, we can assure that (DCBF),, ) possesses a periodic solu-
tion (wn, Ty, Crn) such that

un € Cr ([0, 8], HE () N L2(0, 5 HA(Qn)) N WH2(0, 5512 (),
Ty, C € Cr([0,S]; Ha () N L*(0, S; H?(Q,)) nWY%(0, 8; L*())
for each parameter n € RY. In this section, we consider Step 2 of our proof, namely,

we demonstrate the following Lemma, 5.1 by discussing the convergence of solutions

(un, Tn,Cn) as n — oo.

Lemma 5.1. Let N = 3,4 and let f1 € L?(0,S;L2(RN)), f2, f3 € L*(0, S; L*(RM)).
Then for any positive constants a and A, the following problem (DCBF)) possesses

at least one periodic solution (u,T,C).

dyu + vAgnu + au = Py gT + Py hC + Pyu fi (z,t) € RN x[0, 8],
(DCBF) 0T +uVT + AT = AT + f2 (z,t) € RV x[0, 9],
A ) 8,C +u-VC + AC = AC + pAT + f3 (z,t) € RV x[0, 5],

u(-,O) = u’('7S)) T(70) = T(:S)v C(’O) = C(:‘S)
Here (u,T,C) is said to be a periodic solution of (DCBF),, if
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1. (u,T,C) satisfies the following regularities:

u € Cr ([0, SI; H; (RY)) n L*(0, S; HA(RM)) n wh2(0, §;LZ(R™Y)),
T,C € C([0, S); H*(RM)) n L2(0, S; HA(RM)) n W12(0, S; L*(RM)).

2. (u,T,C) satisfies the first equation of (DCBF)y in L%(0,S;LE(RN)) and the
second and third equations in L2(0,; L*(RV)).

Proof. To begin with, we prepare the uniform boundedness of (un,Tp,Cy) indepen-
dent of the parameter n by establishing some a priori estimates. Multiplying the

second equation of (DCBF),, » by T),, we have

. d 1 1
(5.1) (—ingn!iz(nn) +2|VTn|i2q,) + MTaliag,) < le2|nn|%2(an) < Xffzﬁ;ﬁ(w)-
Since T}, belongs to Cx([0, S]; Hg (), |Tn(0)[72¢q,) = [Tn(S)|1s(q,) holds. Then
integration of (5.1) over [0, S] gives
s 2 s 2 L2
(5.2) 2/0 VT (8)|72(q.)ds + )\/0 [T (8)12(0,)ds < Xilem(o,s;z,?(mf"))'

Here, from the continuity of T, there exist t7 € [0, 5] where |T'(:)|g1(q,) attains its

minimum, i.e.,
T () = tg[lgg} [T a2 (0,

holds. By using (5.2), we obtain

13 | 1 /1 1
Ty < 5 [ 1Ta(6) s < 35 (5 + 3 ) Vel ssamy

Here and henceforth, v, denotés a general constant independent of n. Therefore,
integrating (5.1) over [tT,¢] with ¢ € [t},} + S] and recalling that T, is a S-periodic

function,» we obtain
(5.4) - sup lTn(t)!%Q(Qn) <N

Similarly, multiplying the third equation of (DCBF),, y by C,, we get

d . 1
/ a‘t‘wn&ﬁ(an) +|VCalta(a,) + MCnliza,y < P°IVTallz(q,) + Xifslia(w),
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which, together with (5.2), yields,

. S
(5.5) Aaawﬁmmu<m
and
(5.6) sup [Cn(t)32(q,) <M
oK<tLSs

Moreover, multiplying the first equation of (DCBF), x by un, Ao, u, and O;u,, we

have

d
zﬁlunlnz,z(nn) + 20| Vun[faq,) + alunlia(q,)

3|g| 3|h|2

lTnlLZ(n y T ICalZ2(a,y + "'lflIL?(lRN)’

d
d—ilvun|12,2(nn) + V'Aﬂn“nlnﬁ(nn) :

2 2
il

Tnl3a(q,) + ——ICnlt2(q,) + ~!.f1le(m~),

d d
lat“n|mﬁ(n T ‘Vunlm(n,,) + a“—[unhz(nn)
< 3191%(Taliz(q,y + 3IR12(Cnlizq,) + 3 filfs@ny-

From (5.4) and (5.6), we can derive

s s S ,
61 [ luneaods + [ Mo, un()sads+ [ 10n(e)Eaa,ds <
0 0 0

and

(5.8) sup |un(t)lin q,) < M-
0<t<S

We here prepare the following inequélities so that we can accomplish the second

energy estimates for T;, and C,.

Lemma 5.2. Let R > 0 and let w € H*(Qr) NHL(Qr) and U € H?(Qg) N H}(Qr).
Then there exist some constant B which is independent of R such that the following

inequalities hold:

(5.9) | lw - VU 2(q,) < BIVWIEa(ag) | VUIL2(0)| AU L2(08)



for N =3,
(5.10) lw . VUI%z(QR) < /BIVwILz(QH)IAQR’w[Lz(QR)IVU}Lz(QR)lAUILz(QR)
for N =4 and

| (5.11) IBwbﬁmpU!Lz(Q y S lAUng(QR), ]6$La%w]wﬂ y S IAQRwle(QR)
for N = 3,4, where 1,y =1,2,---,N.

Proof of Lemma 5.2. We here only prove (5.10), i.e., an estimate of convection term
for N =4 ((5.9) and (5.11) can be demonstrated by almost the same argument as
that stated below).

From Holder’s inequality, we get
(5‘12) ‘w VU{Lz(QR) IWII{}(QR)‘VUILZ(QR)lVUlL‘i(QR)

Moreover, by applying Sobolev’s inequality, elliptic estimates and Poincaré’s inequal-
ity,

(5.13) IVU|r4(qr) € BarlUlnzag) < Bag|AUlL2045)

and

ﬁQRleWI 8/3(Qp) S ﬂQR!w!‘Wl 2(SZR)IwIWl 4{QR)

lwh’is(ﬂﬂ) <
< Baglwlm ap) [ wlnz ) < ﬁnRlelLZ(QR)IAQRwlwnR)

(5.14)
can be obtained, where Bq, and £, . are some general constants which may depend
on R.

Here we define Ug € H?(;) N H} () and wr € H2(Qy) ﬁHl( 1) by Ur(y) =
" U(Ry) and wg(y) := w(Ry), where y € Q. Then, under the scale conversion
= z /R, the following identities hold:

‘sz!%ﬁ(QR) = ,vaR’%,“(Ql)_v !AxUﬁ,?(QR) = fAyURﬁz(nlp

[wltsg = R*wrlEsa,), IVawlfzian) = RIVywarliza,),
where we use the fact that Vo = (9., ,0zy) = K0y, -, 0yy) = £Vy and
JAPRE V?c 77 V2 ~—1—A Moreover, under the change of va,rla,ble y = xz/R, we can

derive

1
(5.15) ParBow(z) = 55 Pay Aywr(y)-
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Indeed, since w € H2($2g), the decomposition Azw = v' +v? is valid with some v' €
L2(Qr) and v? € G2(Qg). By the definition of Go(§2g), there exists P € W1?(Qg)
such that v? = V, P. Here we define v (y) := v!(Ry) and Pr(y) := P(Ry), wherey €
Q;. Obviously, vk € L2(Q) and Pr € W12(Q,,) can be verified. Hence, converting
the variables under the relationship ¥ = z/R, we obtain -]%;Ay'w R=Vh+ %vyPR.
Therefore, since the Helmholtz decomposition is uniquely determined, we can assure
the identity (5.15). Then, from (5.15), we can derive

[Marwlis (g :/Q ParAsw(z)|dz = /g Pa, Aywr()I* dy = [Aa, wrlfa(q,)-
R . 1

Therefore, using these identities under y = z/R and recalling (5.12), (5.13), (5.14),

we can deduce

|w - VU'?,?(QR) lwlﬁa(an)|VwU|L2(QR)]VrU|L4(ﬂR)
Rlwrlfsq,)|VaUlL2 @) VyUR|La(ay)
RBq, [VywrlLa )| Aa, wRIL2 (0,)V2UlL2(0r) Ba: 1Ay Url L2(0))

RBq, Ba, R Vaewli2(ap) [Aar WL er) [ VaUlL2(r) B2Vl L2(05)

N ININA

which implies that (5.10) holds for any R > 0 with the coefficient 8 = 8, Bq, - O

Proof of Lemma 5.1 (continued). Multiplying the second equation of (DCBF),, » by
—~AT, and using (5.9) and (5.10), we have

2dt1VTn|L2(Q )+ ATl 22q,,)
< |un - VTn| 200 |ATw L2 (0, + | f2] L2 RN)IAT |L2(0.)
5.16 < '71|v“n|L’(Q )[VTn|L2 Q lATniLz a.y F 12l @m) AT, L2(a,)
(5.16) () ()

< -|AT 720, + NIVtaliz ) [VTalizq,) + | fol 2 mn)

‘ IVTnILz(g y + AT 2, < ’Yllvunle(nn)lVTnle(n,,) + 2| f2l 32 )y
for N =3 a.nd

2dt|VT 320.) + 1ATnl 22,

(5.17) |AT 3200, + NIVunliaq y[Ae, tnlta )| VTnliaqa,) + lfsz'z(RN)

=ﬁﬁIVTnIL?(n,,) + AT, 2,

< ’71IV“nffz(n,.)|-A0nunfnz,2(an)|VTn|%2(nn) + 2!f212Lz(1kN)



for N = 4. We here recall (5.3), i.e., |[VTo(t})|35(q,) S M holds for some 7' €
- [0,8]. Then applying Gronwall’s inequality to (5.16) and (5.17) over [tT,t] with

t € [t?,t7 + 5], and using (5.7), (5.8) (uniform boundedness of u,), we obtain

(518) sup ;VTn(t)l%Q(Qn) < Y1-
0<ELS

Furthermore, integrations of (5.16) and (5.17) over [0, S] yield

S
(5.19) /D IATa() 22, ds < -

Similarly, multiplying the second equation of (DCBF), » by 8;T;, and using (5.9) and

(5.10), we get

' (5.20) 18:Tu 720,y + %lVTn,%Q(ﬂn) + )\%ITnliz(nn)
| < NIVunlta o) VT2 @) | AT L2, + 21l Ta@n)
for N = 3 and
thni%Z(nn) + ilvﬂzﬁﬂ(nn) + AilTnﬁ,z(nn)
(5.21) di dt

< M|V, e, wnliz @) [ VIn 22 @) [ATnl 2(0,) + 2| 2|72 mmy
for N = 4. Integrating (5.20) and (5.21) over [0, 5], we have

s
(5.22) | 06 anyds <
0
By almost the same procedure as above, multiplications of the third equation by
~AC,, and 8,C,, yield
d .
a;!vcnﬁ,zmn) + lACnliz(nn)
<NVl )| VCal3a . + 30 1 ATnl 25 (q,) + 3Ifsl L2y,
d d
< NIVtunlfao,) VL2 |ACh| 1220 + 36°|ATw L2(q,) + 31 fol L2y
for N = 3 and
d \
% |VCaliz(a,) + 1ACnlLaq,)
<71 Vnlfaq,y [ Aatinliaa,) VCnl 2,y + 30%| AT o720,y + 3lfal72@m),
d d
18:Cnl22¢0,) + E;lvcnlizmn) + ’\azlcnliz(gn)
<V Unla(@n) [ AatnlL2,) VCnl 20, |ACH] L2 +30% | ATnlT2(q,) +31 ol T2
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for N = 4. From these inequalities, we can derive
S s
(5.23) oiltlpSIVC IL;»(Q“) +/ ]AC’n(s)liz(Qn)ds—%—/o ]8tCn(s)[ig(Qn)ds <m.

Hence, in view of (5.4), (5.6), (5.7), (5.8), (5.18), (5.19), (5.22) and (5.23), we get
the followings:

(5.24) sup
0<t<S

Gatt)].

+ sup

+ sup jun(t
HY(RVN)  ogtgS P | n()!HI(RN) 1,

HYRM)  ogigS

(5.25) / I[ATn]A(s)Iisz) +[ACA(6) o) + ([, unl () Laem ) ds <,

o [

where * and [-]" designate the zero-extension of function to the whole space R", i.e.,

— 2
AT gy +[BOH , + 10Ty ) ds <

L2(RV)

L2(RN)

for example,

Tn(z,t) (if z € Q,),
0 ( otherwise )

To(z,t) = [To] (=, 1) = {
(remark that
Viun)* = [Vu,]”, VI = [VT], VIC " = [VC,.]"
are valid since u, € C([0,S];HL(Q,)) and Ty,C, € C([0,S]; H3())). Moreover,
(5.11) and (5.25) yield

g :
2
/0 “az‘az“Tn]A(s)[Lz(RN) ds <, / “amaxuc ILz(IRN) ds <7,
S
2
A |[8xbax#un]/\(s)|m(wv) ds < 041

(5.27)

for all ¢,p=1,2,---,N. Using (5.9) and (5.10), we have

S N
628) [l VL) sy ds+ [ lfun YOIl aam ds <

By (5.24), we can extract a subsequence {(@n,, i:., 57:)}1261‘1 of {(un, T,, é:z)}neN
(simply denoted by {U;}ien := {(w;, T, a)}iew henceforth) which x-weakly con-
verges in L>°(0, S; HL (RV) x HY(RY) x H'(RV)). That is to say, there exist some
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U, := (us, T4, Cy) such that

w; — U x -weakly in L*°(0, S; HL (RY)),
T, —~T. x -weakly in L=(0, S; HY(RV)),
C;—C, % -weakly in L°(0, S; H'(RM)).

Furthermore, by (5.26) and (5.27), we can assure that U, satisfies all the required

regularities except the periodicity, i.e.,

u, € C([0, SEHL(RN)) 1 L2(0, S; HERN)) N WH2(0, $; L2 (RY)),
T.,C, € C([0, S]; H'(RY)) N L*(0, S; H2(RY)) n W2(0, S; L*(R™))

hold. Then (5.25) implies the following convergences:

[Aq,u;]® = Arvu, weakly in L%(0, S; L2 (RY)),
[AT;]N — AT, weakly in L?(0, S; L2(R™)),
[AC]" — AC, ~ weakly in L*(0,S; L(RM)),

namely, we can assure that all linear terms in the system (DCBF)n,x to the corre-
sponding terms in the system (DCBF),.

In order to deduce the periodicity of U, and assure the convergence of nonlinear
terms {[u; - VT;]" hien, {[u: - VCi]* }ien, we employ the following space-local strong

convergence arguments. Recalling (5.24) and (5.26) , we get

2 S 2
s |T 0 o+ [|ak| o) ds<m
ost<s| 19 g, Jo O L2 (0,)
- 2 S . 2
sup |C;| (t) +/ 8,:04 (s) ds < 1,
0<t<S nlH1(Q,) Jo O 1L2(Qn) ’

S
o~ 2 o~ 2
; : <
22 %, e, +/0 |0l (9)liaga,y s <

for any i € N and n € N such that n; > n. These inequalities imply that we can apply
Ascoli’s theorem on 2, to the sequence {U;};en and its subsequences for any n € N.
Therefore, applying Ascoli’s theorem to {U;};en with n = 1, we can extract a

subsequence of {U; };en, which is simply denoted by {Ui; }ien = {(6:;, f’i\;, C/';;)}j@w,
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such that
71.;}[(21 - T! strongly in Cr ([0, S]; L*(;)),
C/‘:; lo, = Cc! strongly in Cr([0, S]; L*()),
12;1](;1 — ul strongly in Cr([0, S]; L?(1)).

Here we can easily deduce the periodicity of the limit U? := (u!,T*,C") from the
periodicity of U; for each 1 € N. Next, applying Ascoli’s theorem to {Uz-]; }ien with
n = 2, we can assure that there exists a subsequence {Ui? }jen = {('ﬁz\?, 1/"%‘, C/':?)}jeN

which satisfies

Cll"i:zlm — T? strongly in Cyr ([0, S]; L*(22)),
Cila, = C? strongly in Cr ([0, S]; L(%2)),
ﬁ'{?[gz - u? strongly in Cr([0, S);L?(€22)).

As for the relationship between U! and U2, we can easily show that
Ul(z,t) = U(z,t) Vtel0,S], forae z€.

Repeating these procedures inductively for each n € N, we can extract a subsequence
{Uir}jen of {U;n-1 }jen such that
2

:’/E‘lﬂn ST strongly in Cr ([0, S]; L*(2W)),
EE‘Q" SO strongly in Cx ({0, S]; L*(2n)),
iz, - u" strongly in C([0, S];L?(24)),

where the limit U™ := (u”,T", C™) satisfies
(5.29) U™ (z,t) = U™ (z,t) Vt€[0,5], forae z€ 8y

for ny > n;. Moreover, extracting a subsequence along the diagonal part {Uig}leN)
simply denoted by {U;}1en, we can show that this subsequence satisfies the following

convergences for all n € N:

Tila, - T" strongly in C([0, S]; L*(2)),
(5.30) Cila, = C™ strongly in C([0, S]; L*(Q,)),

iy]q, > u” strongly in C([0, S]; L?(22,,)).



On the bases of (5.29), we can define
U(z,t) :=U"(=z,t) if z € Q.

Then, from the space-local strong convergence (5.30), it is easy to see that U coincides
with the x-weak limit U,, which implies that U, is S-periodic.

Finally, we check the convergence of {[u; - VT}]" }ien and {[u; - VCj]" hien. From
(5.28), {[w; - VT})* }ien has a subsequence (still denoted by {[u; - VTi)* hen) which
weakly converges in L2(0,S; L(RN)). Let x; be its limit. Here, we fix ¢; € C$°(RY x
(0,5)) arbitrary ?nd we assume that M € N satisfies suppg; C Qpr x [0,S]. Then,

using the integration by parts, we have

S S S
/ / é1[w - VT;]Admdt = / / é1l|q,wr - VITidzdt = -—/ / w1} - Voila,dzdt
0 JRN 0 J i 0 J
S .
= ‘] / wilon Tilaw - Vi, dodt
0 JQOum

for any I € N such that n; > M. Therefore, taking the limit as | — oo, we obtain

S S S
/ b1 x1dzdt = — / / uMTM .V |q,, drdt = — / / uT -V, dzdt.
0 RN 1] Qpr . 0 RN

Moreover, by using the integration by parts again and recalling u = u,, T = T, we

can deduce

s s S
/ $r1x1dzdt = —/ / w, Ty - Vidadt = / D1y - VT dzdt
o Jr¥ o JrN o JRV

for any C§°(RN x (0, S)), which implies that x; coincides with u, - VT,. By exactly
the same procedure, we can assure that {[u; - VC)]" };en weakly converges to u, - VCi
in L2(0, S; L*(RM)).

Consequently, we can assure that (u.,T%,C\) becomes a periodic solution of
(DCBF), . O

6 Step 3: Convergence as A — 0

In this section, we consider Step 3, namely, we show that the time periodic solution

(ux, Ty, C») of (DCBF),, derived in Lemma 5.1, converges to a periodic solution of the
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original system (DCBF). Basic strategy in Step 3 is the same as those in Step 2, i.e.,
we first show some uniform boundedness of (ux, Tx, Cy) by establishing appropriate a
priori estimates and we discuss weak-convergences and space-local strong convergence
as A = 0 by using uniform a priori bounds. In this section, we only show a priori
estimates. Henceforth, v, designates a general constant independent of the parameter
A. Moreover, we write simply |-|z» and || g« in order to designate the norm in LP(R")
and H*(R") respectively in this section, if there is no confusion.

Multiplying the second equation of (DCBF), by T and applying Holder’s inequal-
ity, Sobolev’s inequality, we get

lT,\|L2 + |VT,\|L2 + /\IT,\ILz / sz)‘dCB
< | felpey I Talpas < v2lfelpeo |VTalLe,

2dt

ie.,

1d
2 dt

Under the assumption that f, belongs to L2(0, S; L") (RN)), (6.1) yields

(6.1) — Tz + 5 IVTA|2Lz +MTal32 < vl foliemy-

S S
(6.2) /0 !VTA(S)[%QdS + )\/0 1T,\(S)]%2ds < Ya.

Similarly, multiplying the third equation of (DCBF), by Cj, we havé
1
5 dtICAILz + '2‘|VC/\|%2 + MCA22 < APIVTaL: + 2l f3lh vy -
Integrating this inequality over [0,.5] and using (6.2), we obtain

S S
(63) / |VC)\(3)|%2d8 + )\/ ‘C)‘(S)lizds < Y25
: 0 0

since f3 € L?(0,5; L&' (RV)).

Here we remark that the multiplications of the first equation by u, and G,u, do
not yield useful estimates, since we do not obtain L2-estimates for g7 and hC) in
(6.2) and (6.3). However, multiplying the first equation of (DCBF)y by ARNUA, we

. can obtain the following useful estimate:

2191

d ‘ . 2 h
(6.4) El—i[Vu,\lfg +I/|A’u,)‘l§2 +a[VUAh%2 < (VT ILQ + — I l ]VCA|L2 + "I.flh[ﬂ



Indeed, recalling the regularity of uy, in particular, the fact that ux(t) € D(Agn)
holds for almost all ¢ € [0, S], we can assure that

Arvuy(t) = —Auy(t)  for a.e. t €[0,5]
can be verified. Hence, the integration by parts gives
Arvuy - PrrvgDhhdx = — Auy - gThdzr = Vauy - VgTidz
RN RN RN

2
a
< IVUAH}IQHVTAIL? é Z‘V’U’)\liz + 1g| ‘VT |L2

and }h}2

Auy - PexhChdz < Z-}Vm|ﬁz + 2L vy 2..

RN

Therefore, multiplying the first equation of (DCBF)j by Agvuy = —Au), we obtain

1d

5 dt]Vu;le + v|Auy|Es + a|Vu,lis

= — Auy - Pryvghhdx m[ Auy - PrvhChdx — f1-Auydx
R¥ RN

2
< 4vutts + L wn g+ Bhwe, g + lauilal e,

which yields (6.4). Integrating (6.4) over [0, S] and using (6.2) and (6.3), we have

S S
(6.5) / |Au(s)Eads + / Ve (s)2ds < 72
. ) 0 0

Since uy € Cr([0, S];HL(RY)), there exists t3 € [0,S] where [Vu(-)|2, attains its
minimum. From (6.5), we can derive [Vu(t3)|L2 < 72. Therefore integrating (6.4)
over [£3,t] (¢t € [t3,t3 + S]), we obtain

(6.6) sup |Vuy(t)|L2ds < 72
0<t<S

Moreover, since uy € C([0, S]; HL(R")), Sobolev’s inequality and (6.6) lead to uy €
C([0, S}, L (RM)) and

(67) V Sup ‘u,\ (t)le* dS < 72
oS

Here, by using almost the same argument as that in our proof for Lemma 5.2 and
the fact that C®(RY) (resp. C®(RV)) is dense in H2(RN) (resp. HZ(RY)), we can
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obtain the following inequalities: for any w € H2(RV) and U € H?(RY), there exist

a constant S such that

(6.8) lw - VU 22wy € BIVW[Eagn) VU] L2mn) | AU L2wr)

for N = 3,

(6.9) jw - VU2 gny < BIVWlL2 @) | Aw|Lz@e)| VU L2y | AU L2@w)

for N = 4 and

(6.10)  |02,05,U| agyy < BIAU|agny s [82,02,]pagmy < BlAWLa@n)

for N = 3,4, where ¢, u = 1,2,--- , N. Multiplying the second equation of (DCBF),
by —AT» and 8;T), using (6.8), (6.9) and repeating exactly the same calculations as
those for (5.16), (5.17), (5.20), (5.21), we obtain

d
-ﬁIVTAIiz +]ATy[2, < ’YleuAlﬁziVTAliz +2|f2132,

(6.11)
d
18, T 22 + ?.ZZ‘VT*I 2+ /\ |T,\1L2 Y2 | Vur |22 | VT 12| AT | 12 + 2| f2|32
for N = 3 and
d
-d—tsvmiz +1AT3 s < ’YszuAIfz'AuAliﬂVT,\l%z + 2 falZs;
(6.12)

18:Ta 72 + = |VTA1L2 + /\ [TAsz
< 72_|V"~\|L2|AUAIL2|VTn|L2|ATA|L2 +2|fal3

for N = 4. From the fact that T» € C([0,S); H}(R")) and (6.2) holds, there exists
2 € [0, 5] such that

V() + NT ) = min, (VDOFF + MTa01F:) <

Then applying Gronwall’s inequality to (6.11) and (6.12) over [t3,t] (¢ € [t3,t3 + S]),

we have

(6.13) sup [VT(t)[2a + / AT (5)[2ads + / 18, (5)|2ads <

St



115

Similarly, the third equation of (DCBF), gives

d :
a[vc;*,\r,iz +]AC 72 < ygivuxt];{givcxﬁz +3p%| AT 2 + 3| fal72,
|8tC,\|%2 + — ]VCAI[ﬁ + /\ IC)\iLz ;
< ’Y3IVU,\]LzIVC)\fL2|AC,\'L2 -+ 3p21AT,\I%z + 3|f3[%2
for N = 3 and

d
EZWCA&Q +1AC 3. < qgtvmtﬁzmuﬂ{giva\ﬁz + 3p%| ATy |32 + 3| f3|32,
{atC)\[%z + - QVC,\|L2 + )\ IOAILz
< 73‘vuAiL3’Au)\IU|VC)\IL2]ACA[L2 -+ 3[)2[AT)\}%2 + 3‘f2|2L'3
for N = 4, which yields

S s
(6.14) supSlVC,\(t)]%z +/ |AC)(5)|22ds +/ 10:Cx(s)[22ds < 72
' 0 0 ,

0<tg

In order to deduce L?-estimate for 8,u,, we consider the time subtractions of uy,
which is denoted by Dpuy () := ux(t + h) — u,(t) for h > 0. From the first equation
of (DCBF)y, Drux(t), DpTa(t) := Ta(t + h) — Th(t), DpCi(t) :== Cxr(t + h) — Cx(t)
and Dpfi(t) := fi(t + h) — f1(t) satisfy

(6.15) 8;Dpuy — vAgn Druy + aDpuy = PryvgDpTy + Prv hDpCy + Pre Dy fy.
Multiplying (6.15) by Dpuy, we get
3|hlz

|DrCh 32 + "thfﬂLz

d 2 2 3|g|? 2
EZIDhu’\'LZ +a|Dpuyliz < o [DpTx|72 +

Since Dhuy € Cr([0,S|;L2(RN)), fi € W2(0, S; IL2(IRN)) and we already have
estimates for 0,7 and 8,C) in (6.13) and (6.14), we obtain

. |
/ | Dru(s)[f2ds < v2h?
0

for any h > 0, which immédia,tely yields

S
(6.16) | / |8:ur(s)[E2ds < 72
0
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Consequently, from (6.2), (6.3), (6.5), (6.6), (6.13), (6.14) and (6.16), we can derive

(6.17)  sup |[VI)\(t)|p2@ny+ sup [VCOA()|2gry + sup IVur(®)lL2@ry < 725
0<t<S 0<t<S 0<t<S

S

(6.18) /O (IAT3 (5} 3s ) + 1ACA(S) oy + [Arvua(s) Eacam ) ds < 2
S

619) [ (1006 aan) + 1A Faqur) + 1Br @) Ezgun) ds <

Moreover, (6.10) and (6.18) give

S s
/0 |8z,8x“T,\(s)|i,(RN) ds < v, /0 |ambax“cx(s)|§,m~) ds < 72,

S
2
laxLax“u)\(s)le(RN) ds < 72

(6.20)

0
for all ,,u =1,2,--+,N. Using (6.8) and (6.9), we have

s s
(6.21) /0 |ws - VT5(s)|7agn) ds + /0 |ux - VOA($) |32y ds < 72-
Furthermore, from Sobolev’s inequality and (6.17), we can derive

(6.22)  sup [Tx(t)| e gwy + SUp |CA(E)]por iy + sUP [ (t)lpar mvy < 2.
<S 0<t<S 0<t<S

NP

Hence, (6.17), (6.18), (6.19), (6.20), (6.21) and (6.22) allow us to repeat exactly the
same convergence argument as that in Step 2. We also remark that ATy and AC)

strongly converge to zero in L2(0,S; L*(R™)) as A — 0, since

S S S
/O]AT,\Iizdt=/\/O MT|22dt < Aye, /Otf\cuigdtg,\yz

hold from (6.2) and (6.3). Thus, letting A tend to 0 and following our procedure
for convergence stated in Section 5, {(ux, T, Cx)}a>o (to be precise, some suitable
subsequence of {(ux, Tx, Cx)}r>0) converges to a time periodic solution of the original

system (DCBF), whence follows our result. a
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