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1 Introduction

Concrete carbonation is one of important issues in our real life so that it is necessary to
elucidate its dynamics. On this subject Muntean-Bohm already proposed a free boundary
model on a one-dimensional interval in [19, 21], and we studied the simplified model for
their one and established large-time behavior of the free boundary in [4, 5, 6, 7].

The main topic of this paper is concerned with the mathematical model for con-
crete carbonation in a three-dimensional domain, which was given by Maekawa-Chaube-
Kishi[17] and Maekawa-Ishida-Kishi[18] from a civil engineering point of view. The

model consists of the moisture transport equation and the diffusion equation for carbon
dioxide. In this paper we deal with only the former equation and the latter one was
discussed in [13, 14, 15].

Here, we show our first model for moisture transport, briefly, since the detail of the
modeling was mentioned in [1]. We suppose that the concrete occupies the bounded
domain $\Omega\subseteq \mathbb{R}$ with the smooth boundary. Let $\rho_{w}$ be the density of water, $s$ be
the degree of saturation and $h$ be the relative humidity. From observations for real
experimental result.$s$ it is pointed out that the graph of the relationship between $\mathcal{S}$ and
$h$ is close to one of hysteresis with anti-clockwise trend in [17, 18]. Accordingly, from a
phenomenological point of view we approximated the relationship with a play operator

in [2, 3, 1, 16]. Then we obtain the following system:

$\rho_{w}h,.-div(g(h)\nabla h)=sf$ in $Q(T):=(O,T)\cross\Omega$ , (1.1)

$s_{t}+\partial I(h;s)\ni O$ in $Q(T)$ , (1.2)

$h=h_{b}$ on $\Gamma(T):=(O,T)\cross\partial\Omega$ , (1.3)

$h(O)=h_{0}, s(0)=s_{0} on\Omega$ , (1.4)
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where $f$ is a given function on $Q(T)$ and indicates the generation of water by the chemical

reaction, $h_{b}$ and $h_{0}$ be given function on $Q(T)$ and $\Omega$ , respectively, and $g$ is a continuous

function on $(0, \infty)$ (see Figure 1) and describes the diffusion coefficient depending on

the humidity. The ordinary differential equation (1.2) is one of characterization for the

play operator (see [10, 25] and Figure 2), and $I$ is the indicator function of the closed

interval $[f_{*}(h), f^{*}(h)]$ and $\partial I$ is its subdifferential, where $f_{*}$ and $f^{*}$ are lower and upper

branches of the hysteresis loop, respectively.

Figure 2: Graph of play operator
Figure 1: Diffusion coefficient

For the system $(.1.1)\sim(1.4)$ $(:=CP)$ we already proved:

Theorem 1.1. ([2,3,16])
(A l) $g\in C^{2}((0, \infty g(r)\geq g_{0}$ for $r>0$ , where $g_{0}$ is a positive constant.
$(A2)f\in L^{\infty}(Q(T))$ , $f_{t}\in L^{2}(0, T_{1}L^{2}(\Omega))$ and $f\geq 0a.e$ . on $Q(T)$ .
$(A3)f_{*},$ $f^{*}\in C^{2}(\mathbb{R})\cap W^{2,\infty}(\mathbb{R})$ , $0\leq f_{*}\leq f^{*}\leq s_{*}$ , where $s_{*}$ is a positive constant.
$(A4)h_{b}\in C^{2,1}(\overline{Q(T)})$ , $h_{bt}\in L^{2}(0, T;H^{2}(\Omega))$ , $h_{b}\geq\delta_{0}>0a.e$ . on $\Gamma(T)$ , $h_{0}\in$

$H^{2}(\Omega)\cap W^{1,\infty}(\Omega)$ , $\mathcal{S}_{0}\in H^{1}(\Omega)\cap L^{\infty}(\Omega)$ , $h_{0}\geq\delta_{0}a.e.$ $on\Omega,$ $h_{b}(0)=h_{0}a.e.$ $on\partial\Omega,$

$f_{*}(h_{0})\leq s_{0}\leq f^{*}(h_{0})a.e$ . on $\Omega$ , where $\delta_{0}$ is a positive constant.

If $(Al)\sim(A4)$ hold, then $CP$ has a unique solution on $[O, T].$

As a next step of this research we will consider the following equation as a mathe-

matical description for moisture transport:

$p_{w}h_{t}-div((g(h)+\phi(1-s))\nabla h)=sf$ , (1.5)

where $\phi$ is the porosity function given on $Q(T)$ . Since it is not easy to obtain some
uniform estimates for $\nabla s$ from (1.2) in order to solve the initial boundary value problem

for (1.5), we propose a new two-scale model for moisture transport. The exact form

will be given in the next section. Here, we note that the model consists of two system

defined on the macro and micro domains. Particularly, the system on the micro domain

is a one-dimensional free boundary problem.

The two-scale model with partial differential equations was already studied by many

authors, and was chosen as a mathematical model in investigations of porous media
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with homogenization (see [20,24,11,12,8 We remark that both a macro and a micro

systems are considered on a fixed domain in all of these results, namely, the homogeneous

domain $is$ assumed. In our model we can deal with non-homogeneous case.
The purposes of this paper are to introduce the idea of two-scale modeling for moisture

transport in Section 2 $a\alpha ld$ to $establish_{\sim}the$ existence, uniqueness and the large time

behavior of a solution of the free boundary problem in Section 3. Also, the summary is

shown in the same section.

2 Two-scale model

In this section we show our two-scale model for moisture transport. Let $\zeta$) $\subseteq \mathbb{R}^{3}$ be

a bounded (macro) domain occupied with concrete, and $t$ be the time, $0<t<T.$
We suppose that for any $\xi\in\Omega$ one pore is corresponded and regard the pore as the

interval (micro domain) $(0,1)$ decomposed to the water region $(O, s(t, \xi))$ and the air

region $(s(t, \xi), 1)$ (see Figure $3\rangle$ . Since the physical definition of the degree of saturation
$s$ is the ratio of water area to the total volume of each pore in the porous media, the
degree of saturation is given by $s$ in our formulation,

Figure 3:

Let $u(t, \xi, x)$ be the relative humidity at the place $x$ in the air region. We impose

a diffusion equation for $u$ and the Dirichlet boundary condition at the fixed boundary

$x=1$ . This boundary condition means that the air of each micro domain connects to the

air of the macro domain at $x=1$ . The free boundary condition was already discussed
in [22, 23, 9] so that we omit its physical interpretation. Then we can get the following

free boundary problem for each $\xi\in\Omega$ and a function $h$ on $Q(T)$ : The problem $FBP(h)$

is to find a curve $x=s(t, \xi)$ , $0\leq s(t, \xi)<1$ , and a function $u(t, \xi, \cdot\rangle on (s(t, \xi), 1)$ (see
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Figure 4) sat\’isfying

$\rho_{a}u_{t}-\kappa u_{xx}=0$ on $(s(t,\xi), 1)$ for $0<t<T$, (2.1)

$u(t,\xi, 1)=h(t,\xi)$ for $0<t<T$ , (2.2)

$\kappa u_{x}(t,\xi, s(t))=(\rho_{w}-\rho_{a}u(t,\xi, s(t, \xi)))s’(t, \xi)$ for $0<t<T$, (2.3)

$s’(t, \xi)=a(u(t_{\mathcal{S}}(t_{\mathfrak{j}}\xi))-\varphi(\mathcal{S}(t,\xi for 0<t<T,$ (2.4)

$\mathcal{S}(0,\xi)=s_{0}(\xi)$ , $u(O, \xi, x)=u_{0}(\xi, x)$ for $s_{0}(\xi)\leq x\leq 1$ , (2.5)

where $\rho_{a}$ is the density of water in air, $\kappa$ is a diffusion constant, the positive constant $a$

indicates the growth rate of water region, $\varphi$ : $\mathbb{R}arrow \mathbb{R}$ is bounded and continuous, and
$\mathcal{S}_{0}$ and $u_{0}$ are initial data of $s$ and $u$ , respectively. Here, we give Figure 5 as a graph of

the typical example of $\varphi$ . Also, for each $\xi$ we denote by $S$ the mapping from $h$ $\xi$ ) to

the free boundary $s$ $\xi$), namely, $S(h(\cdot, \xi))=s$ means that $s$ is the free boundary of the
problem $FBP(h(\cdot,\xi$

$\}$

Figure 4: Figure 5:

Thus we obtain the two-scale model MP for moisture transport as follows: This
problem is to find a triple of functions $h$ and $s$ on $Q(T)$ and a function $u$ on $\Sigma_{s}(T)$ $:=$

$\{(t, \xi, x) : 0<t<T, \xi\in\Omega, s(l)<x<1\}$ satisfying

$\rho_{w}h_{t}-div(g(h)\nabla h)=sf$ in $Q(T)$ , (2.6)

$h=h_{b} on\Gamma(T) , h(O)=h_{0} on\Omega$ , (2.7)

$\rho_{a}u_{t}-\kappa u_{xx}=0$ on $(s(t, \xi), 1)$ for $0<t<T$ , (2.8)

$u(t,\xi, 1)=h(t, \xi)$ for $(t,\xi)\in Q(T)$ , (2.9)

$(\rho_{w}-\rho_{a}u(t, \xi, s(t,\xi)))s’(t, \xi)=\kappa u_{x}(t, \xi, s(l))$ for $0<t<T$, (2.10)

$s’(t, \xi)=a(u(t, \xi, s(t, \xi))-\varphi(s(t, \xi for (t, \xi)\in Q(T)$ , (2.11)

$s(O,\xi)=s_{0}(\xi)$ , $u(O, \xi, x)=u_{0}(\xi, x)$ for $s_{0}\leq x\leq 1,$ $\xi\in\Omega$ . (2.12)

This is the system CP with (1.2) replaced by $S(h)=s.$
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3 Results on the free boundary problem and sum-
mary

In this section we show our recent results on FBP. For simplicity we omit the macro
parameter $\xi$ . First, we give assumptions for $\varphi,$ $a_{7}\rho_{w},$ $\rho_{a}$ and etc.

(H1) $\varphi\in C^{1}(\mathbb{R})\cap W^{1,\infty}(\mathbb{R})$ , $\varphi=0$ on $(-\infty, 0], \varphi\leq 1 on \mathbb{R}, \varphi’(r)>0$ on $(0,1]$ , and
$a$ is a positive constant.

(H2) $p_{w}$ and $\rho_{a}$ are positive constants with

$p_{w}>2p_{a)}\rho_{w}\geq p_{a}(|\varphi’|_{L^{\infty}(\mathbb{R})}+2)$ and $9ap_{a}^{2}\leq\kappa\rho_{w},$

(H3) $h\in W_{loc}^{1,2}([0, \infty h’\in L^{1}(0,\infty\rangle\cap L^{2}(0, \infty),$ $\}im_{tarrow\infty}h(t)=h_{\infty},$ $h-h_{\infty}\in$

$L^{1}(0, \infty)$ , $0\leq h\leq h_{*}<\varphi(1)$ on $(0, \infty)$ , where $h_{*}$ is a positive constant.
(H4) $0\leq s_{0}<1,$ $u_{0}\in W^{1,2}(s_{\zeta)}, 1)$ , $u_{0}(1)=h(0)$ , $0\leq u_{1\}}\leq 1$ on $[s_{(\}}$ , 1 $].$

Then we have proved:

Theorem 3.1. $([22, 9J)$ If $(H1)\sim(H4)$ hold, then the problem $FBP(h)$ has a solution
$\{s, u\}$ on [$0,$ $\infty\rangle$ and there exists a constant $s^{*}\in(0,1)$ such that $0\leq s\leq s^{*}$ on $[0, \infty$ ).

Moreover, $\mathcal{S}(i)arrow s_{\infty}$ and $u(t, (1-y)s(t)+y)arrow h_{\infty}$ for $y\in[O$ , 1$]$ as $tarrow\infty$ , where
$s_{\infty}\in[O$ , 1 $)$ with $\varphi(s_{\infty})=h_{\infty},$

At the end of this paper, we list future works on the two-scale model for concrete

carbonation.

$\bullet$ As mentioned in Theorem 3.1, FBP has a global solution in time. Then, since we
have a chance to solve MP, we are trying it, now.

$\bullet$ After we solve MP, we will consider a system consisting of (1.5) and $S(h)=s.$

Furthermore, we would like to deal with a couple of the system and the diffusion

equation for carbon dioxide.

$\bullet$ Recently, we can show the existence of a periodic solution of FBP. But, the unique-

ness of the periodic solution is still open. Now, we guess that it is effective to define

a solution in a weak sense for its proof. However, the definition of a weak solution

of FBP is not established, yet.

$\bullet$ We have some conjectures on the convergence rate of a solution of FBP from the

observations to our numerical results in [9] so that we would like to guarantee those

conjectures.
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