
AUTOMORPHISM GROUPS OF GENERIC STRUCTURES:

A REVIEW

ZANIAR GHADERNEZHAD

ABSTRACT. We will review the main results and questions concerning
the automorphism groups of generic structures. The main themes are:

the automorphism groups that are simple, the small index property, the

extension property for the generic class and ample generics, amenability
and extreme amenability.

Keywords: Fra
\cdot

issé‐Hrushovski method, Generic structures, Smooth

classes, The small index property, Rasmsey property, Extension prop‐

erty, Group‐reducts.

CONTENTS

1, Introduction 1

2. Smooth Classes 3

2.1. Hrushovski generic structures 4

3. Simple Groups 5

4. The small index property and Ample Generics 7

5. Ramsey Property 9

6. Group‐reducts 12

References 13

1. INTRODUCTION

As it is properly described in Chapter 7 in [Hod93], there are two main

reasons why countable structures are interesting: First, �they can be built

as the union of chain of finite pieces�� �Second, there are infinitely many

chances to make sure that the right pieces go in�� One of the most effective

ways to build countable structures is via Fra.issé construction method. In this

method, one builds a countable homogeneous structure (we call it Fraissé‐

limit structure) from a countable class of finite structures which has the

�joint embedding property�� and the �amalgamation property� A countable

class of finite structure has the amalgamation property if for every elements

A,  B_{1}, B_{2} of the class which f_{i} : A \rightarrow B_{i} is an embedding for i = 1, 2, there
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exists an element D in the class such that B_{i} �s embed in D and the diagram
commutes.

Fraissé�s original example was to think of the class of finite linear orders

as a set of approximations to the ordering in the rational numbers. As we

mentioned, one nice feature of Fraissé‐method in constructing a countable

structure is that we start from a countable class of finite structures (with
the amalgamation property), which is called a Fraissé class. This helps us

to verify some basic properties of the universal object by understanding the

elements of the class and the amalgamation property (see, e.g. [Hod97]).
Many interesting objects have been constructed or reconstructed using this

method. For example various kind of universal graphs, the random graph
and more recently rational Urysohn space (see, e.g. [CV06]).

A Generic structure similar to a FYaissé‐limit structure is built out of

classes of finite structures with a stronger property between elements of

the class. It has been originally used by Hrushovski in [Hru93] and many

interesting countable structures have been constructed using this method.

The main motivation for studying automorphism groups of countable

structures comes from the classical theorem of Engeler, Ryll‐Nadrzewski,
Svenonius (see [Cam90]). In this theorem one can see a connection between

a countable  $\omega$‐categorical structure and its automorphism group; namely
we obtain a full characterization of a countable  $\omega$‐categorical structure in

a group‐theoretical terms. Later on, model theorists and group theorists

studying permutation groups became very interested in these implicit fea‐

tures of automorphism groups of structures and the automorphism groups

of first order structures have been studied in the the recent years.

The main direction of the studies are to understand how much information

one can obtain about the automorphism group from knowing the structure.

A separable completely metrizable topological space is called Polish space.

A topological group which the topology is Polish is called a Polish group.

There is a natural topology defined on the symmetric group of a countable

set  $\Omega$ ; that is pointwise convergence. This topology makes  S_{ $\omega$} :=Sym (  $\Omega$ )
into a topological group and a Polish group. Note that the Basic open

sets are \{g\in S_{ $\omega$} : g(\overline{a})=\overline{b}\} where \overline{a} and \overline{b} are tuples of distinct elements

of the same length. It is also well‐known that a subgroup of G of S_{ $\omega$} is

closed if and only if G= Aut ( \mathcal{M} ) for some first order structure \mathcal{M} on

 $\Omega$ (see [Cam90]). Therefore, automorphism groups of first order countable

structures are Polish.

A rich model theoretic studies has been developed for understanding the

first‐order theory of Fraissé‐limit structures. In particular, the automor‐

phism groups of Fraissé‐limit structures have been recently of central atten‐

tion. A good survey for various kind of questions and results in the topic
can be found in [Macll]. Similar paths for adopting these lines of research

for generic structures have been followed and in this paper we try to review

some recent results about them.
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2, SMOOTH CLASSES

A smooth classes is a modified version of a Fra
\cdot

issé classes with a stronger
property between elements of the class that is called self‐suficiency or

closedness and denoted by \leq
�

Here, we present a general definition of

a smooth class and briefly review some the main properties of it.

Definition 1. Let \mathfrak{L} be a countable relational language and C be a class of

\mathfrak{L}-‐structures which is closed under isomorphism and substructure. Let \leq \mathrm{b}\mathrm{e}
a reflexive and transitive relation on elements of A\subseteq B of C and moreover,

invariant under \mathfrak{L}‐embeddings such that it has the following property:
If A, A_{1}, A_{2}\in C and A_{1}, A_{2}\subseteq A , then A_{1}\leq A implies A_{1}\cap A_{2}\leq A_{2}.

The class C together with the relation \leq \mathrm{i}\mathrm{s} called a smooth class. For A,  B\in

 C if A\leq B , then we say A is \leq ‐closed substructure of  B , or simply A is

\leq ‐closed in  B . Moreover, if \mathcal{N} is an infinite \mathfrak{L}‐structure and A\subseteq N , we

denote A\leq \mathcal{N} whenever A\leq B for every finite substructure B of N that

contains A . We say an embedding f : A\rightarrow \mathcal{N} is \leq ‐embedding if  f[A]\leq \mathcal{N}.

Suppose A, B, C are \mathfrak{L}-‐structures with A, B\subseteq C . We write AB for the \mathfrak{L}-

substructure of C with domain A\cup B . For an \mathfrak{L}‐structure \mathcal{N} , write Age ( \mathcal{N} )
for the set of all finite substructures of \mathcal{N} ; up to isomorphism.

Definition 2. Let (C, \leq) be a smooth class.

Write \overline{C} for the class of all \mathfrak{L}‐structures \mathcal{N} such that Age (\mathcal{N})\subseteq C.
We say (C, \leq) has the joint‐emuedding property (JEP) if A, B\in C

there is C\in C such that A, B\leq C.
We say (C, \leq) has the \leq ‐amalgamation property (AP) if for every

 A, B and C elements of C with A\leq B, C , there is D\in C such that

B\leq D and C\leq D.

Let (C, \leq) be a smooth class and suppose A\in C and \mathcal{N}\in\overline{\mathcal{C}} are \mathfrak{L}-

structures such that A\subseteq \mathcal{N} . From the definition of smooth classes it follows

that there is a unique smallest \leq ‐closed set that contains  A in \mathcal{N} , that is

called the \leq‐closure of  A in \mathcal{N} and denoted by \mathrm{c}1_{\mathcal{N}}(A) (see [KL92]).
Then the following theorem that is similar to the Fra

\cdot

issé holds

Theorem 3. [KL92] Suppose (C, \leq) is a smooth class with JEP and AP.

Then there is a unique countable structure \mathcal{M} , up to isomorphism, satisfying:

(1) If A\leq \mathcal{M} and A\leq B\in C then there exists B\leq \mathcal{M} such that

B\cong A'B (this property is called \leq ‐richness);
(2)  M is a union of \{A_{i}:i\in $\omega$\} such that A_{i}\leq A_{i+1} ;

(3) Suppose B and C are finite \leq ‐closed subset of \mathcal{M} and let  $\alpha$ be an

isomorphism of  B and C. Then  $\alpha$ extends to an automorphism of
\mathcal{M}.

Definition 4. Let (C, \leq) be a smooth class with JEP and AP. The structure

\mathcal{M} that is obtained from Theorem 3 is called the Hrushovski‐Fraissé (C, \leq)-
generic structure or simply (C, \leq) ‐generic structure.

3

63



Note that every Fraissé‐class is a smooth class with JEP and AP, if one

consider \leq to be the usual substructure relation, and then its generic
structure is the Fraissé‐limit structure.

The following properties and notions are crucial in understanding the

first‐order theory of generic structure. The notion of \leq
�

can be extended

to \overline{\mathcal{C}}\times\overline{C} . Suppose A, B\in C . We say (A, B) is \mathrm{a}\leq ‐minimal‐pair if  A\subseteq B,

A\not\leq B but A\leq B for every B with A\subseteq B\neq\subset B . Suppose \mathcal{M}, \mathcal{N}\in\overline{C}
and \mathcal{M}\subseteq \mathcal{N} . Write \mathcal{M}\leq \mathcal{N} if and only if for any minimal‐pair (A, B) with

A, B\subseteq \mathcal{N} , if A\subseteq \mathcal{M} , then B\subseteq \mathcal{M} . Let (C, \leq) be a smooth class with AP

and let \mathcal{M} be the (C, \leq) ‐generic structure. Suppose A\subset \mathcal{M} and A\subseteq B\in C.
By a copy of B over A in \mathcal{M} we mean the image of an embedding of B over

A into \mathcal{M} . Write $\chi$_{\mathcal{M}}(B;A) for the number of distinct copies of B over

A in \mathcal{M} . We say (C, \leq) has the algebraic closure property (AC) if there

is a function  $\eta$ :  $\omega$\times $\omega$\rightarrow $\omega$ such that for any  A\leq B and A\subset \mathcal{M} , we

have $\chi$_{\mathcal{M}}(B;A)\leq $\eta$(|A|, |B|) . It is clear that (C, \leq) has AC if and only if

cl (A)\subseteq acl (A) for any  A\subset \mathcal{M}.

2.1. Hrushovski generic structures. In [Hru93] , Hrushovski introduced

the key notion of assigning \mathrm{a} (pre‐)dimension function to finite relational

structures and used it to defined a self‐sufficiency \leq Here for simplicity,
we assume the language \mathfrak{L} consists of one n_{\Re}‐ary relation \Re where \mathfrak{R} is

irreflexive and symmetric. It should be noted that in the results that we have

given here the assumption \Re being symmetric is not essential. Moreover,
similar classes can be defined when \mathfrak{L} is a countable relational language (see
[BS96, Wag94

Let \mathrm{K} be the class of all finite \mathfrak{L}‐structures. For a fixed real number

 $\alpha$\geq 1 , define $\delta$_{ $\alpha$} : \mathrm{K}\rightarrow \mathbb{R} as  $\delta$_{ $\alpha$}(A)= $\alpha$ |A|-|\mathfrak{R}(A)| where \mathfrak{R}(A)
is the set \mathfrak{R}‐relations of A . For every A\subseteq B\in \mathrm{K} , define A\leq_{ $\alpha$}B if

$\delta$_{ $\alpha$}(C/A) :=$\delta$_{ $\alpha$}(C)-$\delta$_{ $\alpha$}(A)\geq 0 , for every C with A\subseteq C\subseteq B . Finally,
put \mathrm{K}_{ $\alpha$} := { A\in \mathcal{K} : $\delta$_{ $\alpha$}(B)\geq 0 , for every B\subseteq A }. It is well‐known that

the (\mathrm{K}_{ $\alpha$}, \leq_{ $\alpha$}) is a smooth class with JEP and AP. We say (\mathrm{K}_{ $\alpha$}, \leq_{ $\alpha$}) is an

ab‐initio class that is constructed from $\delta$_{ $\alpha$} . We write \mathrm{M}_{ $\alpha$} for the count‐

able (\mathrm{K}_{ $\alpha$}, \leq_{ $\alpha$}) ‐generic structures that is obtained from Theorem 3 and it

is called an ab‐initio generic structure or un‐collapsed Hrushovski generic
structure. There are various ways of modifying these classes to obtain very

interesting structures (for questions and variations of these structures see

[Wag09, Ba115

When the coefficient  $\alpha$ of the pre‐dimension  $\delta$_{ $\alpha$} is rational, there is a

way to obtain a generic structure with finite Morley rank, unlike \mathrm{M}_{ $\alpha$} that

has infinite Morley rank. Using a finite‐to‐one function  $\mu$ over  0 ‐minimally
algebraic elements (see Def. 2.2.29 in [Gha13]), one can restrict the ab‐initio

class \mathrm{K}_{ $\alpha$} to \mathrm{K}_{ $\alpha$}^{ $\mu$} in such way that (\mathrm{K}_{ $\alpha$}^{ $\mu$}, \leq_{ $\alpha$}) has AP (see [Hru93] for details).
We write \mathrm{M}_{ $\alpha$}^{ $\mu$} for the (\mathrm{K}_{ $\alpha$}^{ $\mu$}, \leq_{ $\alpha$}) ‐generic structure and it is called a collapsed
Hrushovski generic structure. This method has been originally introduced

by Hrushovski to provide a strongly minimal set that its geometry is not

4

64



locally modular and not field‐like (refuting a conjecture by Zilber). In the

original paper of Hrushovski the coeffcient  $\alpha$ is one and  n_{\Re}=3 . In this

paper, we do not focus on the geometric aspects of these constructions (see
[Zie13] for more details). However, in Section 3 and 5, some aspects of the

geometric properties of Hrushovski construction will be briefly mentioned

to address some possible connections between them and some properties of

certain automorphisms.
There is also a modification of the Hrushovski�s construction method to

obtain  $\omega$‐categorical generic structures (see [Eva02]). We are following Sec‐

tion 5.2 of [EGT16], Suppose  f is a continuous, increasing function with

 f(x)\rightarrow\infty as  x\rightarrow\infty . Let \mathrm{K}_{ $\alpha$}^{f}=\{A\in \mathrm{K}_{ $\alpha$} :  $\delta$(X)\geq f(|X|)\forall X\subseteq A\} . If

B\subseteq A\in \mathrm{K}_{ $\alpha$}^{f} and  $\delta$(A/B)>0 for all B\neq\subset A\subseteq A , then we write B\leq fA.
For suitable choice of f which we call good f (see Remark 5.4 in [EGT16]),

(\mathrm{K}_{ $\alpha$}^{f}, \leq f) has the free‐amalgamation property. In this case, we have an

associated countable (\mathrm{K}_{ $\alpha$}^{f}, \leq f) ‐generic structure \mathrm{M}_{ $\alpha$}^{f} (up to isomorphism).
The structure \mathrm{M}_{ $\alpha$}^{f} is  $\omega$‐categorical.

Before finishing this part we need to define the following dimension func‐

tion that will appear in the statements of the theorems and it is crucial for

understanding the model theory of Hrushovski generic structures. From the

pre‐dimension  $\delta$_{ $\alpha$} , one can define the following dimension function:

\displaystyle \mathrm{d}_{\mathcal{M}}^{$\delta$_{ $\alpha$}}(A) :=\inf\{ $\delta$(A):A\subseteq A\subset f^{in}\mathcal{M}\} ;

where \mathcal{M}\in\{\mathrm{M}_{ $\alpha$}, \mathrm{M}_{ $\alpha$}^{ $\mu$}, \mathrm{M}_{ $\alpha$}^{f}\} . We simply write \mathrm{d} for \mathrm{d}_{\mathcal{M}}^{$\delta$_{ $\alpha$}} when $\delta$_{ $\alpha$} and \mathcal{M} is

clear from the context and write \mathrm{d}(A/B) for \mathrm{d}(AB)-\mathrm{d}(B) when A, B\subset fin
M . An interesting fact is that the forking‐independence is Th ( \mathcal{M} ) where

\mathcal{M}\in\{\mathrm{M}_{ $\alpha$} , \mathrm{M}_{ $\alpha$}^{ $\mu$}, \mathrm{M}_{ $\alpha$}^{f}\} is characterizable using \mathrm{d}_{\mathcal{M}^{ $\alpha$}}^{ $\delta$} (see [BS96]). If we choose

 $\alpha$ to be a rational number then we can consider min instead of \displaystyle \inf. If  X is

an infinite subset of \mathcal{M} , then we define: \displaystyle \mathrm{d}(X)=\max\{\mathrm{d}(X_{0}) : X_{0}\subseteq finX\}.
and for infinite B , let \mathrm{d}(A/B) :=\displaystyle \min\{\mathrm{d}(A/B):B\subset finB\} . The follow‐

ing closure operator can also be defined and it seems to play in important
role \mathrm{c}1^{\mathrm{d}}(A) :=\{x\in \mathcal{M} : \mathrm{d}(x/A)=0\} for A\subseteq \mathcal{M} . The notion of \mathrm{d} in the

generic structure provides a nice technical tool and most of the time it is

the essential part that is missing when want to state or to prove a general
theorem about generic structures of some arbitrary smooth class. One final

remark is that the classes \mathrm{K}_{ $\alpha$}, \mathrm{K}_{ $\alpha$}^{ $\mu$} and \mathrm{K}_{ $\alpha$}^{f} with \leq_{ $\alpha$} all have AC. The smooth

classes without AC has been studied in [Pou02].

3. SIMPLE GROUPS

One initial and standard question with a group theoretical interest is

to determine the normal and maximal normal subgroups of automorphism
groups of countable structures. Suppose \mathcal{M} is any countable gstructure.
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For A\subseteq \mathcal{M} ,
the subgroup of the A ‐strong automorphisms is: \mathrm{A}\mathrm{u}\mathrm{t}\mathrm{f}_{A}(\mathcal{M})=

{ f\in \mathrm{A}\mathrm{u}\mathrm{t}_{A}(\mathcal{M}) : stp (-m/A)= stp (f(m-)/A) for all \overline{m}\in \mathcal{M} }.
If A is the empty set, \mathrm{A}\mathrm{u}\mathrm{t}\mathrm{f}_{\emptyset}(\mathcal{M}) becomes the group of all strong auto‐

morphisms of \mathcal{M} , and it is denoted by Autf ( \mathcal{M} ) . Note that Autf ( \mathcal{M} ) is

a normal subgroup Aut ( \mathcal{M} ) . An automorphism  $\beta$\in Aut ( \mathcal{M} ) is called

bounded if there exists a finite set A\subset \mathcal{M} such that  $\beta$(m)\in acl (mA) for

all m\in \mathcal{M} . Let Bdd ( \mathcal{M} ) be the set of all bounded automorphisms of \mathcal{M}.

In a remarkable result by Lascar in [Las92], it has been shown that that if

\mathcal{M} is a countable saturated structure which is in the algebraic closure of a \emptyset-
definable strongly minimal set, the group Autf (\mathcal{M})/ ( \mathrm{B}\mathrm{d}\mathrm{d}(\mathcal{M})\cap Autf ( \mathcal{M} ))
is simple. It worth mentioning when \mathcal{M} is a strongly minimal struc‐

ture and �Dim� denotes the dimension in the strongly minimal structures,

 g\in Aut ( \mathcal{M} ) is bounded if there exists an entirety n such that for any set

X\subseteq_{< $\omega$}\mathcal{M}, \mathrm{D}\mathrm{i}\mathrm{m}(g(X)/X)\leq n ; this is the original definition of a bounded

automorphism in [Las92].
The mentioned result by Lascar implies that if F and K are algebraically

closed field of characteristic zero such that K\subseteq F and the transcendental

degree of F over K is strictly bigger than \aleph_{0} , then the automorphism group

of F that fixes K point‐wise is a simple group. Especially it implies that the

automorphism group of the complex numbers that fixes algebraic points is a

simple group. Lascar�s result has been directly used in [GT14] to prove the

existence of simple groups with BN‐pairs which do not arise from algebraic
groups.

His method inspired many works recently and has been generalized for a

broader class of structures (see [MTII, TZ13, EGT16 In [TZ13], Tent and

Ziegler provide a criterion for the (bounded) simplicity of the automorphism
groups of certain countable structures. A key feature in their paper is the

use of a natural independence relation, called stationary independence. Then

using that they show the isometry group of the Urysohn space modulo the

normal subgroup of bounded isometries is a simple group.
In [EGT16], it has been shown that the automorphism groups of certain

countable structures obtained using the Hrushovski�s amalgamation method

are simple groups. The structures that have been considered in [EGT16] are

the un‐collapsed structures of infinite Morley rank obtained by the ab‐initio

construction and the (unstable)  $\omega$‐categorical pseudoplanes. The simplicity
of the automorphism groups of these follows from results which generalize
work of Lascar and of Tent and Ziegler.

Theorem 5. lTheorem 4.15. in [EGT16]1 Suppose  $\alpha$ the coeffi cient of the

pre‐dimention  $\delta$_{(y} is rational and  $\alpha$=\displaystyle \frac{n}{m} . Suppose either that n_{\Re}=2 such

that n>m_{f} or that n_{\Re}\geq 3 and n\geq m . Then Aut (\mathrm{M}_{ $\alpha$}/\mathrm{c}1^{d}(\emptyset)) is a

simple group. In fact, if  g\in Aut (\mathrm{M}_{ $\alpha$}/\mathrm{c}1^{d}(\emptyset)) is not the identity then every

element of Aut (\mathrm{M}_{ $\alpha$}/\mathrm{c}1^{d}(\emptyset)) can be written as a product of 96 conjugates

of g^{\pm 1}
6
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In [EGT16] the notion of monodimensionality for a structure with a di‐

mension function has been defined (see Def. 3.5. in [EGT16]). Then for the

 $\omega$‐categorical case the following theorem holds

Theorem 6. lTheorem 5.10. in [EGT16]1 Suppose the assumption that has

been described in Section 2.1 for the class \mathrm{K}_{ $\alpha$}^{f} hold. Suppose \mathrm{M}_{ $\alpha$}^{f} is monodi‐

mensional and  1\neq g\in Aut (\mathrm{M}_{ $\alpha$}^{f}) . Then every element of Aut (\mathrm{M}_{ $\alpha$}^{f}) is

a product of 192 conjugates of g^{\pm 1} In particular, Aut (\mathrm{M}_{ $\alpha$}^{f}) is a simple
group.

In [EGT16], it has been proven that the automorphism group of an un‐

collapsed ab‐initio generic structure with rational coefficients which fixes

pointwise every dimension‐zero set is boundedly simple. However, the de‐

veloped machinery, is not adequate to answer the simplicity question for

two important classes of generic structures: the class is ab‐initio generic
structures that are obtained from pre‐dimension functions with irrational

coefficients and the smooth classes without AC. The generic structures of

the two classes of generic structures mainly lay in a broader framework of

stable and simple theories.

There is another interesting feature about the bounded automorphism
groups. Indeed, Lascar proves that the bounded automorphism group of

the complex numbers that are fixing point‐wise the algebraic points (alge‐
braic closure of the prime field) is trivial. He also shows that the bounded

automorphism group of a locally modular structure is always non‐trivial.

In [Gha13], it has been shown that there are no non‐trivial bounded auto‐

morphisms in the automorphism group of the Hrushovski�s strongly mini‐

mal structures. More recently bounded automorphisms have been studied

in [BHMP15] and [Wag15]. The natural question that arises is whether the

bounded automorphism group can characterize the locally modularity (ques‐
tion in page 248 of [Las92]). It is interesting to determine whether the ample
hierarchy, which is a combinatorial notion of geometric properties of forking,
even in a more general context of stable structures can be characterized by
bounded automorphisms (see Question \mathrm{C} in Chapter 5.2. in [Gha13]).

4. THE SMALL INDEX PROPERTY AND AMPLE GENERICS

Suppose \mathcal{M} is a first‐order countable structure and let G :=\mathrm{A}\mathrm{u}\mathrm{t}(\mathcal{M}) . \mathrm{A}

subgroup H of G is said to have small index in G if [G:H]<2^{\aleph_{0}} . Consider

the usual point‐wise convergence topology on G . One can easily see that

open subgroups of G has small index in G . We say G has the small index

property, denoted by SIP, if every subgroup of G with small index in G is

open.

When G has the small index property, then the topological structure of

G can be recovered from its abstract group structure. This property has

applications in reconstruction of a structure from its abstract group (see
[Las02, Macll] for more details). For instance, when G_{1} has SIP, then any

7
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abstract group isomorphism h:G_{1}\rightarrow G_{2} leads to a topological isomorphism,
in particular when they are automorphism groups of some  $\omega$‐categorical
structures  M_{1} and M_{2} ; respectively, then the two structures M_{1} and M_{2} are

bi‐interpretable (see [AZ86]).
The small index property has been proven for the automorphism groups of

various countable  $\omega$‐categorical first‐order structures: The countable infinite

set without structure; The countable dense linear ordering (\mathbb{Q}, <) ; A vector

space of dimension  $\omega$ over a finite or countable division ring; The random

graph; Countable  $\omega$‐stable  $\omega$‐categorical structures (see [Las02, Macll] for

references). There are few known examples outside the  $\omega$‐categorical case.

There are few known methods for proving the small index property (see
Chaper 5.2. in [Macll] for more details). Since generic structures, similar

to the Fraissé‐limit structures are built from a class of finite structures the

following procedure is a suggestive way of proving the automorphism group

of \mathrm{a}(C, \leq)‐generic has SIP. First, prove the class (C, \leq) has the extension

property. Then similar to Theorem 6.2 in [KPT05] conclude that G has

ample generics (see Def. 2.7 in [\mathrm{H}\mathrm{H}\mathrm{L}\mathrm{S}93\mathrm{a}] ) and then using Theorem 5.3 in

[\mathrm{H}\mathrm{H}\mathrm{L}\mathrm{S}93\mathrm{b}] show G has SIP.

Hrushovski in [Hru92], proved that the class of all finite graphs has ex‐

tension property. His result have been generalized by Herwig in [Her95] to

a broader class of structures. The extension property can be modified for

smooth classes as follows.

Definition 7. We say a smooth class (C, \leq) has the extension property,
denoted by EP, if for every A\in C and e_{0}, \cdots, e_{n} ,

finite elementary maps

of \leq‐closed subsets of  A , there exist B\in C and  f_{i}\in Aut (B) �s such that

A\subseteq B and f_{i} �s extend ei�s; respectively for 0\leq i\leq n.

In the case of Hrushovski generic structures it turns out that EP fails.

In Chapter 5.1 in [Gha13] it has been shown that in the un‐collapsed ab‐

initio classes that are obtained from pre‐dimensions with rational coefficients

and in the collpased ab‐initio classes, EP fails. Recently in [GKP15] \mathrm{a}

connection between having substructures that form a tree‐pair (see Def. 12)
and failure of EP has been observed. It is interesting to comment that for the

classes that are obtained from pre‐dimensions with irrational coefficients (or
simple  $\omega$‐categorical generic structures with rational coefficients see [Gha13,
EGT16]) one can still show EP fails: with a slightly different argument
and with at least two partial isomorphisms. David M. Evans in an email

correspondence has also noted that using a different proof, he can show EP

does not hold for both classes that are obtained from pre‐dimensions with

rational and irrational coefficients. However, the following holds

Theorem 8. lTheorem 6, in [Gha15]] Suppose  $\alpha$ the coefficient of the pre‐

dimention  $\delta$_{ $\alpha$} is rational. Let d be the dimension function that is defined from
$\delta$_{ $\alpha$} . Let \mathrm{M}_{ $\alpha$,0} :=\mathrm{c}1^{d}(\emptyset) and \mathrm{K}_{ $\alpha$,0} :=\{A\subset \mathrm{M}:$\delta$_{ $\alpha$}(A)=0\} , up to iso‐

morphism. Then the class (\mathrm{K}_{ $\alpha$,0}, \leq_{ $\alpha$}) has the extension property. Moreover,

\mathrm{A}\mathrm{u}\mathrm{t}(M_{0}) has ample generics and hence \mathrm{A}\mathrm{u}\mathrm{t}(M_{0}) has SIP.
8
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Moreover, using that the following theorem has been proven

Theorem 9. lTheorem 8. in [Gha15]1 Suppose  $\alpha$ the coefficient of the pre‐
dimension  $\delta$_{ $\alpha$} is rational. Let \mathrm{M}_{ $\alpha$} be the (\mathrm{K}_{ $\alpha$}, \leq_{ $\alpha$}) ‐generic structure. Then

G=\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{M}_{ $\alpha$}) has SIP.

The proof of Theorem 9 is using a technique in Théoremè 2 by Lascar

in [Las92]. Lascar in [Las92] proves the following: Suppose that \mathcal{M} is a

countable saturated structure and it is almost strongly minimal then if H

is a subgroup of a small index in G= Aut ( \mathcal{M} ) , then there exists a finite

set A in \mathcal{M} such that \mathrm{A}\mathrm{u}\mathrm{t}\mathrm{f}_{A}(\mathcal{M})\leq H . We call this almost SIP. Note that

the topology that is generated by \mathrm{A}\mathrm{u}\mathrm{t}\mathrm{f}_{A}(\mathcal{M}) where A a finite subset in \mathcal{M},
is indeed a finer topology that the usual pointwise convergence topology on

G and it is not necessarily Polish. A similar theorem has been suggested
in [Gha13, EGT16] and has been proven in [Gha15] (see Theorem 4, in

[Gha15]). Then from the results in [Gha15] follows that the automorphism
groups of un‐collapsed ab‐initio generic structures that are obtained from

pre‐dimension function with rational coefficients have indeed almost SIP

and moreover, SIP. However, their ab‐initio classes fail to have EP.

The small index property and almost SIP for the automorphism groups
of the following generic structures still remain unanswered: ab‐initio generic
structures which are obtained from pre‐dimension functions with irrational

coefficients, and simple  $\omega$‐categorical generic structures. Moreover, still the

question whether the automorphism groups of Hrushvski generic structures

in have ample generics remains open. Another related interesting property
also remains unanswered: it is not known whether or not for the automor‐

phism groups of Hrushovski generic structures in both cases of collpased and

un‐collapsed Bergman property (see Def. 5.5.3. in [Macll]) holds. Hold‐

ing this property for the automorphism group of Hrushovski�s generic struc‐

tures and then modifying it for the generalized \mathrm{n}‐gons constructed by Tent in

[Ten00], would give us some interesting family of algebraic/geometric objects
which the automorphism group has the Bergman property. In Section 5.4.

in [Macll] Rubin�s approach to reconstruction for countable  $\omega$‐categorical
have been discussed. It is interesting to verify whether Rubin�s approach
can be adopted for some generic structures and some versions of weak \forall\exists_{-}

interpretation (see Def. 5.4.1 in [Macll]) can be proven for Hrushovski

generic structures.

5. RAMSEY PROPERTY

Let G be a topological group. A continuous action  $\Gamma$ of  G on a compact
Hausdorff space X is called a G‐flow. Group G is called extremely amenable

if every G‐flow (G,  $\Gamma$, X) has a fix point in X . A Hausdorff topological
group G is amenable if every G‐flow (G,  $\Gamma$, X) supports an G‐invariant Borel

probability measure on X.

In the seminal paper [KPT05] of Kechris, Pestov and Todorcevic a cor‐

respondence between extreme amenability of Aut ( \mathcal{M} ) , where \mathcal{M} is the
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Fraissé‐limit of a Fra
\cdot

issé class \mathcal{K} and the Ramsey property for the class

\mathcal{K} has been discovered. Since then an extensive research has been devoted

to studying dynamical properties of automorphism groups of Fraissé‐limit

structures (see [Hod97, KPT05] for more information). In [KPT05], they
have shown that the automorphism group of an ordered FYaissé‐limit struc‐

ture \mathcal{M} is extremely amenable if and only if its ordered FYaissé‐class has

the Ramsey property. Later in [Moo13], it has been shown that Aut ( \mathcal{M} ) is

amenable if and only if \mathcal{K} has the convex Ramsey property.
In [GKP15], similar correspondences of [KPT05] and [Moo13] between

extreme amenability and amenability of the automorphism group of \mathrm{a}(C, \leq)-
generic model, and the modified definition of the Ramsey property and the

convex Ramsey property; respectively for (C, \leq) have been proven. Suppose

A\in C and let \mathcal{N} is any \mathfrak{L}-‐structure. We denote \left(\begin{array}{l}
\mathcal{N}\\
A
\end{array}\right) for the set of all

\leq‐embeddings of  A into \mathcal{N} . For k\in \mathbb{N}\backslash \{0\} , we call a function c : \left(\begin{array}{l}
N\\
A
\end{array}\right)\rightarrow
\{0, 1 , \cdots , k-1\} a k ‐coloring function. Suppose A\in C . The group G acts

naturally on \left(\begin{array}{l}
\mathcal{M}\\
A
\end{array}\right) in the following way: When  $\Gamma$\in\left(\begin{array}{l}
\mathcal{M}\\
A
\end{array}\right)
 g\cdot $\Gamma$:= $\Gamma$

if  $\Gamma$(A)=g[ $\Gamma$(A)] . It is worth noting, since elements of G sends \leq‐closed

sets to \leq‐closed sets, this action is well‐defined. We say  G preserves a linear

ordering \preceq on \mathcal{M} if a\preceq b , implies g(a)\preceq g(b) , for every a, b\in \mathcal{M} and

g\in G . Assume A\leq B\leq C\in \mathcal{K} and k\geq 1 . We write

C\rightarrow(B)_{k}^{A},

if for every k‐coloring c : \left(\begin{array}{l}
C\\
A
\end{array}\right)\rightarrow\{0, 1 , \cdots, k-1\} , there exists  $\lambda$\in\left(\begin{array}{l}
C\\
B
\end{array}\right)
such that c( $\lambda$ 0 $\gamma$) is constant for all  $\gamma$\in(^{ $\lambda$(B)}A) . We say that the class

(C, \leq) has the \leq ‐Ramsey property if for every  A\leq B\in C and k\geq 2 , there

exists C\in C with B\leq C such that C\rightarrow(B)_{k}^{A} . Similar to the classical

Ramsey theory it is enough to show \leq‐Ramsey property when  k=2 . Here

is the correspondence similar to Proposition 4.3. in [KPT05]

Theorem 10. lTheorem 18, in [GKP15]1 The followings are equivalent:

(1) G is extremely amenable;
(2) (a) G preserves a linear ordering;

(b) (C, \leq) has  the\leq ‐Ramsey property.

Suppose  A\in \mathcal{K} and \mathcal{N} is a substructure of \mathcal{M} . Denote \langle_{A}^{\mathcal{N}}\rangle for the set of

all finitely supported probability measures on \left(\begin{array}{l}
\mathcal{N}\\
A
\end{array}\right) . If f : \left(\begin{array}{l}
\mathcal{N}\\
A
\end{array}\right)\rightarrow\{0 , 1 \} is

a2‐coloring map, then f extends to a linear function defined on the vector

space generated by \left(\begin{array}{l}
\mathcal{N}\\
A
\end{array}\right) ; with abuse of notation this extension will also be
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denoted by f Suppose X\leq Y\leq Z are \leq‐closed substructures of \mathcal{M} and

let  $\epsilon$\in\langle_{Y}^{Z}\rangle . We define \langle  X $\epsilon$\rangle to be the set

\{ $\delta$\in\langle_{X}^{Z}\rangle:\exists $\theta$\in\langle_{X}^{Y}\rangle,  $\delta$( $\Lambda$ 0 $\Gamma$)= $\epsilon$( $\Lambda$)\cdot $\theta$( $\Gamma$)\forall $\Gamma$\in\left(\begin{array}{l}
Y\\
X
\end{array}\right)\forall $\Lambda$\in\left(\begin{array}{l}
Z\\
Y
\end{array}\right)\}.
We say Aut ( \mathcal{M} ) has the convex \leq ‐Ramsey property with respect to (C, \leq)
if for every A, B\in C with A\leq B and every 2‐coloring function f : \left(\begin{array}{l}
\mathcal{M}\\
A
\end{array}\right)\rightarrow
\{0 , 1 \} , there exists  $\beta$\in\{_{B}^{\mathcal{M}}\rangle such that |f($\alpha$_{1})-f($\alpha$_{2})|\displaystyle \leq\frac{1}{2} for every

$\alpha$_{1}, $\alpha$_{2}\in\langle_{A}^{ $\beta$}\rangle . Similar to Theorem 6.1. in [Moo13] the following holds.

Theorem 11. lTheorem 31. in [GKP15]1 Suppose \mathcal{M} is the (C, \leq) ‐generic
structure of a smooth class (C, \leq) with JEP and AP . Then, the followings
are equivalent:

(1) Aut ( \mathcal{M} ) has the convex \leq ‐Ramsey property with respect to (C, \leq) .

(2) For every A, B\in C with A\leq B , there is C\in C such that B\leq C

and for every f : \left(\begin{array}{l}
C\\
A
\end{array}\right)\rightarrow\{0 , 1 \} there is  $\beta$\in\langle_{B}^{C}\} such that for every

 $\alpha$,  $\alpha$\in\langle_{A}^{ $\beta$}\rangle,
|f( $\alpha$)-f( $\alpha$)|\displaystyle \leq\frac{1}{2}.

(3) For every A, B\in C with A\leq B and every  $\epsilon$>0 , there is C\in C such

that B\leq C and for every f : \left(\begin{array}{l}
C\\
A
\end{array}\right)\rightarrow[0 ,
1 ] there is  $\beta$\in\langle_{B}^{C}\rangle such

that for every  $\alpha$,  $\alpha$\in\langle_{A}^{ $\beta$}\rangle,
|f( $\alpha$)-f( $\alpha$)|\leq $\epsilon$.

(4) For every A, B\in \mathcal{K} with A\leq B and every  $\epsilon$>0 and n\in \mathbb{N},
there is C\in C such that B\leq C for every sequence of functions

f_{i} : \left(\begin{array}{l}
C\\
A
\end{array}\right)\rightarrow[0 ,
1 ] with i<n , there is  $\beta$\in\langle_{B}^{C}\rangle such that for every

 $\alpha$,  $\alpha$\in\langle_{A}^{ $\beta$}\rangle and  i<n,

|f_{i}( $\alpha$)-f_{i}( $\alpha$)|\leq $\epsilon$.
(5) Aut ( \mathcal{M} ) is amenable.

Definition 12. Let (C, \leq) be a smooth class and \mathcal{M} the (C, \leq)‐generic
model. Let A, B\in C with A\leq B . Define an indirected graph on the set

\left(\begin{array}{l}
\mathcal{M}\\
B
\end{array}\right) as follows. For  $\Lambda$,  $\Lambda$\in\left(\begin{array}{l}
\mathcal{M}\\
B
\end{array}\right) we define an edge between A and  $\Lambda$ � if

 $\Lambda$(B)\cap $\Lambda$(B) contains at least one \leq‐closed copy of  A . Call this graph
(A;B)‐graph. We say (A;B) is a tree‐pair if the following conditions hold:

(1)  $\Lambda$(B)\cap $\Lambda$(B) contains at most one \leq‐closed copy of  A for any two

distinct  $\Lambda$,  $\Lambda$\in\left(\begin{array}{l}
\mathcal{M}\\
B
\end{array}\right) ;
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(2) Every connected component of the corresponding (A;B)‐graph forms

a tree.

Then the following general theorem has been proven

Theorem 13. lTheorem 39. in [GKP15]1 Suppose (C, \leq) is a smooth class

with AP and HP , and \mathcal{M} the (C, \leq) ‐generic structure. Suppose there are

A, B\in C and A\leq B such that (A;B) is a tree‐pair with |\left(\begin{array}{l}
B\\
A
\end{array}\right)|=6 . Then,

Aut ( \mathcal{M} ) does not have the convex \leq ‐Ramsey property with respect to (C, \leq) .

Theorems 10,11 and Theorem 13 have been the used to determine whether

the automorphism groups of Hrushovski ab‐initio generic structures are ex‐

tremely amenable and amenable.

Theorem 14. lTheorem 42. in [GKP15]1 Suppose  $\alpha$ the coefficient of the

pre‐dimention  $\delta$_{ $\alpha$} is rational. Let \mathrm{M}_{ $\alpha$} be the (\mathrm{K}_{ $\alpha$}, \leq_{ $\alpha$}) ‐generic structure.

There are A, B in \mathrm{K}_{ $\alpha$} with A\leq_{ $\alpha$}B and |\left(\begin{array}{l}
B\\
A
\end{array}\right)|=6 such that (A;B) is a

tree‐pair. Hence, Aut (\mathrm{M}_{ $\alpha$}) does not have the convex \leq_{ $\alpha$} ‐Ramsey property
with respect to (\mathrm{K}_{ $\alpha$}, \leq_{ $\alpha$}) and Aut (\mathrm{M}_{ $\alpha$}) is not amenable.

Moreover, it has been shown that

Theorem 15. lTheorem 45. in [GKP15]1 The automorphism groups of
ordered Hrushovski generic structures that are obtained from pre‐dimension
functions with rational coefficients are not extremely amenable.

The method in [GKP15] provides an explicit coloring function for a tree‐

pair that the convex Ramsey and Ramsey property fails. David M. Evans

independently using a different method shows, the automorphism groups of

generic structures that are obtained from pre‐dimension functions with irra‐

tional coefficients and the  $\omega$‐categorical generic structures are not amenable.

However, it is interesting to provide an example of a generic structure that

its automorphism group is amenable and it is obtained from a smooth class,
which is a not Fraissé‐class.

6. GROUP‐REDUCTS

Suppose  G is a closed subgroup of S_{ $\omega$} . A closed subgroup H\neq<S_{ $\omega$} that

G\neq<H is called \mathrm{a} (proper) group‐reduct. When G is the automorphism
group of a countable  $\omega$‐categorical structure then group‐reducts and auto‐

morphism of (proper) definable reducts are in one‐to‐one correspondence.
Therefore, the question about the full classification of group‐reducts of  $\omega$-

categorical structures are especially interesting. For a number of  $\omega$‐catgorical
structures the full classification of (group or definable) reducts is known

(see [Cam76, Tho91, Tho96, JZ08 However, the main question asked by
Thomas remains unresolved: we do not know whether every homogeneous
structure on a finite relational language has only finitely many reducts.

Generic structures do not necessarily fall in the case of homogeneous
structures over a finite relational language, however, it turns out still many
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techniques of homogeneous structures can be adopted. It has been show in

[HM13], that the rank  $\omega$ structure obtained by the un‐collapsed Hrushovski

generic structure has a proper definable reduct. In [Gha14] it has been shown

the automorphism groups of Hrushovski�s ab‐initio generic structures that

are obtained from pre‐dimensions with rational coefficients in both case of

collapsed and un‐collapsed, have uncountably many group‐reducts.
The automorphism groups of definable reducts in [HM13] and group‐

reducts in [Gha14] all seem to preserve the geometry of the structure. In

[KS16] Question 3.2, it has been specifically asked whether the automor‐

phism group of the following construction is maximal. Let \Re be a ternary
relation symbol, and let  $\alpha$=1 define the pre‐dimension $\delta$_{ $\alpha$} on the class

of 3‐hypergraphs by $\delta$_{1}(A)=|A|-|\mathfrak{R}(A)| . Consider the family \mathrm{K}_{1}^{+} of

3‐hypergraphs A for which $\delta$_{1}(A_{0})\displaystyle \geq\min\{|A_{0}|, 2\} for any A_{0}\subseteq A . The

usual Fraissé‐Hrushovski generic structure associated with this class and

pre‐dimension gives a countable structure \mathrm{M}_{1}^{+} equipped with a dimension

function \mathrm{d} . It is asked in [KS16] whether the set of all bijections that pre‐

serves the geometry is a maximal closed subgroup. It seems that is the

case based on some partial results in [Gha14, HM13], however it is not fully
answered yet.

REFERENCES

[AZ86] Gisela Ahlbrandt and Martin Ziegler, Quasi‐finitely axiomatizable totally cat‐

egorical theories, Ann. Pure Appl. Logic 30 (1986), no. 1, 63‐82, Stability in

model theory (Trento, 1984). MR 831437

[Ba115] John T. Baldwin, A field guide to hrushovski constructions, preprint (2015).
[BHMP15] Thomas Blossier, Charlotte Hardouin, and Amador Martin‐Pizarro, Sur les

automorphismes borné sde corps munis d�opérateurs, Arxiv (2015).
[BS96] John T. Baldwin and Niandong Shi, Stable generic structures, Ann. Pure

Appl. Logic 79 (1996), no. 1, 1‐35. MR 1390325 (97c:03l03)
[Cam76] Peter J. Cameron, Transitivity of permutation groups on unordered sets, Math,

Z. 148 (1976), no. 2, 127‐139. MR. 0401885

[Cam90] —, Oligomorphic permutation groups, London Mathematical Society Lec‐

ture Note Series, vol. 152, Cambridge University Press, Cambridge, 1990,

MR 1066691 (92f:20002)
[CV06] P. J. Cameron and A. M. Vershik, Some isometry groups of the Urysohn space,

Ann. Pure Appl. Logic 143 (2006), no. 1‐3, 70‐78. MR 2258622 (2008b:54045)
[EGT16] David M. Evans, Zaniar Ghadernezhad, and Katrin Tent, Simplicity of the au‐

tomorphism groups of some Hrushovski constructions, Ann. Pure Appl. Logic
167 (2016), no. 1, 22‐48. MR 3413492

[Eva02] David M. Evans, \aleph_{0} ‐categorical structures with a predimension, Annals of Pure

and Applied Logic (2002), no. 116, 157‐186.

[Gha13] Zaniar Ghadernezhad, Automorphism groups of generic structures., Münster:

Univ. Münster, Mathematisch‐Naturwissenschaftliche Fakultät, Fachbereich

Mathematik und Informatik (Diss.), 2013 (English),
[Gha14] Zaniar Ghadernezhad, Uncountably many group reducts of hrushovski s

generic structure, Preprint, 2014.

[Gha15] Z. Ghadernezhad, The small index property of automorphism groups of ab‐

initio generic structures, submitted (2015).
13

73



[GKP15] Z. Ghadernezhad, H. Khalilian, and M. Pourmahdian, Automorphism of
generic strutures: Extreme amenability and amenability, submitted (2015).

[GT14] Z. Ghadernezhad and K. Tent, New simple groups with a BN‐pair, J. Algebra
414 (2014), 72‐81. MR 3223389

[Her95] Bernhard Herwig, Extending partial isomorphisms on finite structures, Com‐

binatorica 15 (1995), no. 3, 365‐371. MR 1357282 (97a:03044)
[HHLS93a] Wilfrid Hodges, Ian Hodkinson, Daniel Lascar, and Saharon Shelah, The small

index property for  $\omega$ ‐stable  $\omega$ ‐categorical structures and for the random graph,
J. London Math. Soc. (2) 48 (1993), no. 2, 204‐218. MR 1231710 (94d:03063)

[HHLS93b] —, The small index property for  $\omega$ ‐stable  $\omega$ ‐categorical structures and

for the random graph, J. London Math. Soc. (2) 48 (1993), no. 2, 204‐218.

MR 1231710 (94d:03063)
[HM13] Assaf Hasson and Omer Mermelstein, On reducts of Hrushovski�s construction

‐ the non‐collapsed case, ArXiv (2013).
[Hod93] Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applica‐

tions, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741

[Hod97] —, A shorter model theory, Cambridge University Press, Cambridge,
1997. MR 1462612 (98i:0304l)

[Hru92] Ehud Hrushovski, Extending partial isomorphisms of graphs, Combinatorica

12 (1992), no. 4, 411‐416. MR 1194731 (93m:05089)
[Hru93] —,

A new strongly minimal set, Ann. Pure Appl. Logic 62 (1993),
no. 2, 147‐166, Stability in model theory, III (Trento, 1991). MR 1226304

(94d:03064)
[JZ08] Markus Junker and Martin Ziegler, The 116 reducts of (\mathbb{Q}, <, a) , J. Symbolic

Logic 73 (2008) , no. 3, 861‐884. MR 2444273

[KL92] D. W. Kueker and M. C. Laskowski, On generic structures, Notre Dame J.

Formal Logic 33 (1992), no. 2, 175‐183. MR 1167973 (93k:03032)
[KPT05] A. Kechris, V. Pestov, and S. Todorcevic, Fraissé limites, ramsey theory, and

topological dynamics of automorphism groups, GAFA (2005), no. 15, 106−189.

[KS16] Itay Kaplan and Pierre Simon, The affine and projective groups are maximal,
Trans. Amer. Math. Soc. 368 (2016), no. 7, 5229‐5245. MR 3456178

[Las92] Daniel Lascar, Les automorphismes d �un ensemble fortement minimal J. Sym‐
bolic Logic 57 (1992), no. 1, 238‐251. MR 1150937 (93c:03042)

[Las02] D. Lascar, \mathcal{A} utomorphism groups of saturated structures; a review, Proceed‐

ings of the ICM vol. 2 (Beijing 2002), 25‐36.

[Macll] Dugald Macpherson, A survey of homogeneous structures, Discrete Math. 311

(2011), no. 15, 1599‐1634. MR 2800979 (2012e:03063)
[Moo13] Justin Tatch Moore, Amenability and Ramsey theory, Fund. Math. 220

(2013), no. 3, 263‐280. MR 3040674

[MTII] Dugald Macpherson and Katrin Tent, Simplicity of some automorphism
groups, J. Algebra 342 (2011), 40‐52. MR 2824528

[Pou02] Massoud Pourmahdian, Smooth classes without AC and Robinson theories, J.

Symbolic Logic 67 (2002), no. 4, 1274‐1294. MR 1955238 (2004f:03066)
[TenOO] K. Tent, Very homogeneous generalized n ‐gons of finite Morley rank, J. Lon‐

don Math. Soc. (2) 62 (2000), no. 1, 1‐15. MR 1771846 (2001f:5l0ll)
[Tho91] Simon Thomas, Reducts of the random graph, J. Symbolic Logic 56 (1991),

no. 1, 176‐181. MR 1131738

[Tho96] —, Reducts of random hypergraphs, Ann. Pure Appl. Logic 80 (1996),
no. 2, 165‐193. MR 1402977

[TZ13] Katrin Tent and Martin Ziegler, On the isometry group of the Urysohn space,

J. Lond. Math. Soc. (2) 87 (2013) , no. 1, 289‐303. MR 3022717

14

74



[Wag94] Frank O. Wagner, Relational structures and dimensions, Automorphisms of

first‐order structures, Oxford Sci. Publ., Oxford Univ. Press, New York, 1994,

pp. 153‐180. MR 1325473

[Wag09] —, Hrushovski�s amalgamation construction, Logic Colloquium 2006,
Lect. Notes Log., vol. 32, Assoc. Symbol. Logic, Chicago, IL, 2009, pp. 361‐

373. MR 2562559 (2011a:03036)
[Wag15] Frank Olaf Wagner, Bounded automorphisms in simple structures, Arxiv

(2015).
[Zie13] Martin Ziegler, An exposition of Hrushovski�s new strongly minimal set, Ann.

Pure Appl. Logic 164 (2013), no. 12, 1507‐1519. MR 3093399

SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES

(IPM) ,
P.O. Box 19395‐5746, TEHRAN, IRAN.

E‐mail address: zaniar. gh@gmail.com

15

75


