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1 Introduction

We consider the symmetry of knots, precisely, free periods. The details of proofs in this

article can be found in author�s preprint [12]. A knot K in S^{3} is said to have free period

p\in \mathbb{Z}_{\geq 1} if there exists f\in \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(S^{3}, K) such that f^{i} has no fixed point for 0<i<p and

f^{p}=\mathrm{i}\mathrm{d}_{S^{3}} , namely, (S^{3}, K) admits a free action by \mathbb{Z}_{p}=\mathbb{Z}/p\mathbb{Z} . Whether a knot K has

free period p or not is interesting problem and studied by many people.
We first review previous researches on the existence of free periods. In [7], Hartley

proved that the torus knot T_{m,n} has free period p if and only if \mathrm{g}\mathrm{c}\mathrm{d}(mn,p)=1 . For

example, the trefoil T_{3,2} does not admit free involution. The Alexander polynomial of a

torus knot was used in his proof.
Let K be a knot such that the outer automorphism group Out (G(K)) of G(K)=

$\pi$_{1}(S^{3}\backslash K) is trivial. For instance, 9_{32}, 9_{33} and 24 more prime knots with 10 crossings (and
their mirror images) satisfy this condition (see Kawauchi [9, Appendix F.2] or Kodama‐

Sakuma [10, Table 3.1]). Then it follows from Conner‐Raymond [6, Theorem 3.2] and

Burde‐Zieschang [3] that K has no free period.
The purpose of this article is to deduce the above facts from a single result. Before

stating our results, we review previous researches on the uniqueness of free periods.
Sakuma [14], Boileau and Flapan [2] independently proved that for an oriented prime
knot K

,
if f, g\in \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(S^{3}, K) have free period p , then f is conjugate to g in the subgroup

of \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(S^{3}, K) consisting of diffeomorphisms that preserve the orientations of both S^{3}

and K . They also showed that the same is true for composite knots under a condition

regarding �slopes� Recently, Manfredi [11] gave an interesting example regarding the

uniqueness.
In order to state the main result, we describe free periods in another way. Suppose a

knot K has period p . Then we obtain a knot K'=K/\mathbb{Z}_{p} in the lens space L(p, q)=S^{3}/\mathbb{Z}_{p}
for some integer q coprime to p . Conversely, if K is a preimage of a knot K' under the
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covering map  $\pi$:S^{3}\rightarrow L(p, q) , then (a generator of) the deck transformation group

realizes a free period of p . Therefore, we focus on a knot in a lens space, especially, on

the fundamental group of its complement.

Theorem 1 (Theorem 2.6). Let K' be a knot in L(p, q) with the connected preimage
K :=$\pi$^{-1}(K') . Then the image of $\pi$_{*}:$\pi$_{1}(S^{3}\backslash K)-\rangle$\pi$_{1}(L(p, q)\backslash K') coincides with

\mathrm{C}^{p}($\pi$_{1}(L(p, q)\backslash K In particular, the knot group $\pi$_{1}(S^{3}\backslash K) is a \mathrm{C}^{p}‐group (see Defini‐

tion 2.1).

As a corollary of this result, the facts mentioned above is deduced.

Corollary 1 (Corollary 3.5). A knot K in S^{3} with Out (G(K))=1 cannot be represented
as the preimage of any knot in any lens space.

Corollary 2 (Corollary 3.7). Let m, n, p\in \mathbb{Z}_{\geq 2} with \mathrm{g}\mathrm{c}\mathrm{d}(m, n)=1 . There exists an

integer q and a knot K' in L(p, q) such that $\pi$^{-1}(K') is ambient isotopic to the torus knot

T_{m,n} or its mirror image if and only if \mathrm{g}\mathrm{c}\mathrm{d}(mn,p)=1.

2 Definitions and main theorem

Definition 2.1. For a group G and p\in \mathbb{Z}_{\geq 1} , let \mathrm{C}^{p}(G) denote the subgroup of G generated

by the set \{g^{p}|g\in G\}\cup\{[g, h]|g, h\in G\} , where [g, h] :=ghg^{-1}h^{-1} . A group G is called

a \mathrm{C}^{p} ‐group if there exists a group G' such that G\cong \mathrm{C}^{p}(G') .

Remark 2.2. The subgroup \mathrm{C}^{p}(G) coincides with the kernel of the composite map  G\rightarrow

 G_{\mathrm{a}\mathrm{b}}\rightarrow G_{\mathrm{a}\mathrm{b}}/pG_{\mathrm{a}\mathrm{b}}.

Remark 2.3. \mathrm{C}^{2}(G) is denoted by G^{2} in [17] and by S(G) in [8]. For a prime p, \mathrm{C}^{p}(G)
coincides with the first term of the p‐lower central series in [16] and with the first term

of the derived p‐series in [5].

Let  $\pi$: $\Sigma$\rightarrow$\Sigma$' be a p‐fold cyclic covering, where  $\Sigma$ is an integral homology 3‐sphere,
and  K' be a knot in $\Sigma$' with the connected preimage K :=$\pi$^{-1}(K') .

Remark 2.4. K is connected if and only if [K'] generates H_{1}($\Sigma$')\cong \mathbb{Z}_{p} . The last iso‐

morphism is confirmed by using the five‐term exact sequence for the short exact sequence

1\rightarrow$\pi$_{1}( $\Sigma$)\rightarrow$\pi$_{1}($\Sigma$')\rightarrow \mathbb{Z}_{p}\rightarrow 1.

Lemma 2.5. For $\Sigma$' and K' as above, H_{*}($\Sigma$'\backslash K')\cong\left\{\begin{array}{ll}
\mathbb{Z} & if*=0, 1,\\
0 & otherwise
\end{array}\right. The homology

class represented by a meridian of K' corresponds to \pm p\in \mathbb{Z}.
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Theorem 2.6. The image of $\pi$_{*}:$\pi$_{1}( $\Sigma$\backslash K)\mapsto$\pi$_{1}($\Sigma$'\backslash K') coincides with \mathrm{C}^{p}($\pi$_{1}($\Sigma$'\backslash K

Proof. Set G:=$\pi$_{1}( $\Sigma$\backslash K) and G' :=$\pi$_{1}($\Sigma$'\backslash K The covering map  $\pi$ induces the exact

sequence

 1\rightarrow G\rightarrow^{*}G' $\pi$\rightarrow \mathbb{Z}_{p} $\psi$\rightarrow 1.
Here,  $\psi$ factors through  G^{\prime \mathrm{a}\mathrm{b}}/pG^{\prime \mathrm{a}\mathrm{b}}\cong \mathbb{Z}_{p} (Lemma 2.5), and thus {\rm Im}$\pi$_{*}=\mathrm{K}\mathrm{e}\mathrm{r} $\psi$=\mathrm{C}^{p}(G')
(Remark 2.2). \square 

3 Corollaries

We start this section with a remark in group theory.

Remark 3.1. For a normal subgroup H of a group G ,
the restriction map Inn (G)\rightarrow

\mathrm{A}\mathrm{u}\mathrm{t}(H) , \mathrm{A}\mathrm{d}_{g}\mapsto \mathrm{A}\mathrm{d}_{g}|_{H} , is induced by definition. Furthermore, \mathrm{A}\mathrm{u}\mathrm{t}(G)\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(H) is

defined if H is characteristic, that is, f(H)=H for all f\in \mathrm{A}\mathrm{u}\mathrm{t}(G) . However, the

restriction map Inn (G)\rightarrow \mathrm{I}\mathrm{n}\mathrm{n}(H) is not induced in general.

The following lemma is a refinement of the well‐known fact [13, 13.5.8] for a complete

group H. (A group G is said to be complete if the center Z(G) and the outer automorphism

group Out (G) are trivial.)

Lemma 3.2. Let G, H be groups such that H\triangleleft G and \mathrm{A}\mathrm{d}_{g}|_{H}\in \mathrm{I}\mathrm{n}\mathrm{n}(H) for any g\in G.
Then the sequence of groups

1\rightarrow Z(H)\rightarrow $\phi$ H\times C_{G}(H)\rightarrow G $\psi$\rightarrow 1

is exact, where C_{G}(H) is the centralizer of H in G ,
and  $\phi$(h) :=(h, h^{-1}) ,  $\psi$(h, g) :=hg.

Proof. We only confirm the surjectivity of  $\psi$ . Let  g\in G . Then \mathrm{A}\mathrm{d}_{g}|_{H}=\mathrm{A}\mathrm{d}_{h} for some

h\in H . For any h'\in H , we have

[h^{-1}g, h']=h^{-1}gh'g^{-1}hh^{\prime-1}=\mathrm{A}\mathrm{d}_{h^{-1}}(\mathrm{A}\mathrm{d}_{g}(h'))h^{\prime-1}=1.

Hence, h^{-1}g\in C_{G}(H) and  $\psi$(h, h^{-1}g)=g. \square 

The next lemma is a generalization of [8, Theorem 1].

Lemma 3.3. Let G, H be as in Lemma 3.2 and suppose \mathrm{C}^{p}(G)=H, Z(H)=1 . Then

\mathrm{C}^{p}(H)=H.

Proof. By Lemma 3.2,  $\psi$:H\times C_{G}(H)\rightarrow G and its restriction

 $\psi$|:\mathrm{C}^{p}(H)\times \mathrm{C}^{p}(K)\rightarrow \mathrm{C}^{p}(G)=H , (1)
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are isomorphisms, where K :=C_{G}(H) . Since  $\psi$(\mathrm{C}^{p}(H)\times\{1\})=\mathrm{C}^{p}(H) ,
we have \mathrm{C}^{p}(K)\cong

 H/\mathrm{C}^{p}(H) , and thus Z(\mathrm{C}^{p}(K))=\mathrm{C}^{p}(K) . On the other hand, taking the center of (1),
we have Z(\mathrm{C}^{p}(H))\times Z(\mathrm{C}^{p}(K))\cong Z(H)=1 and Z(\mathrm{C}^{p}(K))=1 . Hence, we conclude

\mathrm{C}^{p}(K)=1 ,
and thus  $\psi$| is the identity map. \square 

The quotient G/\mathrm{C}^{p}(G) plays a key role in our argument. The next lemma follows from

Remark 2.2 and the homomorphism theorem for the abelianization G\rightarrow G_{\mathrm{a}\mathrm{b}}.

Lemma 3.4. For a group G whose abelianization is isomorphic to \mathbb{Z}
,

the quotient group

G/\mathrm{C}^{p}(G) is isomorphic to \mathbb{Z}_{p}.

Corollary 3.5 ([6, Theorem 3.2], [3]). A knot K in S^{3} with Out (G(K))=1 is not

represented as the preimage of any knot in any lens space.

Proof. Since Out (G(T_{m,n}))\cong \mathbb{Z}_{2} ([15]), K is not a torus knot, and thus Z(G(K))=1
([3]). Hence, G(K) is complete.

Assume that there exists a knot K' in L(p, q) whose preimage is isotopic to K . Then

we have G(K)=\mathrm{C}^{p}($\pi$_{1}(L(p, q)\backslash K by Theorem 2.6. Since G(K) is complete, by
Lemme 3.3, we conclude \mathrm{C}^{p}G(K)=G(K) . However, this contradicts Lemma 3.4. \square 

In order to prove Corollary 3.7, we quote the next lemma without proof.

Lemma 3.6 (see [12, Lemma 3.5]). Let m, n,p\in \mathbb{Z}_{\geq 1} . If there exists a group G satisfying

\mathrm{C}^{p}(G)\cong \mathbb{Z}_{m}*\mathbb{Z}_{n)}G/\mathrm{C}^{p}(G)\cong \mathbb{Z}_{p} and |G_{\mathrm{a}\mathrm{b}}|=mnp, then \mathrm{g}\mathrm{c}\mathrm{d}(mn, p)=1 . (Moreover,
H_{*}(G) is isomorphic to H_{*}(\mathbb{Z}_{m}*\mathbb{Z}_{n}*\mathbb{Z}_{p}

Corollary 3.7 ([7, Theorem 3.1]). Let m, n, p\in \mathbb{Z}_{\geq 2} with \mathrm{g}\mathrm{c}\mathrm{d}(m, n)=1 . There exist an

integer q and a knot K' in L(p, q) such that $\pi$^{-1}(K') is isotopic to the torus knot T_{m,n} or

its mirror image if and only if \mathrm{g}\mathrm{c}\mathrm{d}(mn,p)=1.

Proof. If \mathrm{g}\mathrm{c}\mathrm{d}(mn,p)=1 , then a construction of a desired knot K' was given in [7,
Theorem 3.1].

Suppose there exists K' as in the statement. We set  $\pi$ í :=$\pi$_{1}(L(p, q)\backslash K') . The covering

map  $\pi$:S^{3}\backslash T_{m,n}\rightarrow L(p, q)\backslash K' induces the exact sequence

1\rightarrow G(T_{m,n})=\langle a, b|a^{m}=b^{n}\}\rightarrow^{*}$\pi$_{1}' $\pi$\rightarrow \mathbb{Z}_{p}\rightarrow 1.

Since the center Z(G(T_{m,n}))=\langle a^{m}\rangle=\mathbb{Z} is characteristic in G(T_{m,n}) ,
the subgroup

N:=$\pi$_{*}(\{a^{m}\rangle) of  $\pi$í is normal. We deduce the exact sequence

 1\rightarrow\langle a, b|a^{m}=1=b^{n}\}\rightarrow$\pi$_{1}'$\pi$_{*}/N\rightarrow \mathbb{Z}_{p}\rightarrow 1

from the third isomorphism theorem. By Theorem 2.6, the group G : = $\pi$í/N satisfies

\mathrm{C}^{p}(G)=\mathrm{C}^{p}($\pi$_{1}')/N=G(T_{m,n})/\langle a^{m}\}=\mathbb{Z}_{m}*\mathbb{Z}_{n}
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and G/\mathrm{C}^{p}(G)\cong \mathbb{Z}_{p} . Hence, by Lemma 3.6, it suffices to prove |G_{\mathrm{a}\mathrm{b}}|=mnp.
The five‐term exact sequence for

l \rightarrow N \rightarrow $\pi$í \rightarrow G \rightarrow l (2)

is as follows:

 0\rightarrow H_{2}(G)\rightarrow \mathbb{Z}_{G}\rightarrow \mathbb{Z}\rightarrow H_{1}(G)\rightarrow 0.

An observation on a meridian of K' proves H_{1}(G)=\mathbb{Z}_{mnp} (see [12, Corollary 3.4] for

details). \square 

Remark 3.8. The above Hartley�s result (Corollary 3.7) was extended by Chbili [4] to

torus links. In fact, the torus link T_{m,n} has free period p if and only if there exists an

integer q such that \mathrm{g}\mathrm{c}\mathrm{d}(p, q)=1 and p| m—nq. Note that \mathrm{g}\mathrm{c}\mathrm{d}(mn,p)=1 implies
that the existence of such a q , however, the converse is not true without the assumption

\mathrm{g}\mathrm{c}\mathrm{d}(m, n)=1.

4 Symmetric groups and braid groups

In this section, we suppose n\geq 3 and p\geq 2 for simplicity. The next lemma follows

from Lemma 3.3 and the fact that \mathfrak{S}_{n} is complete for n\neq 2 , 6. Note that the case n=6

requires an additional argument (see [12, Appendix A.2]).

Lemma 4.1. The nth symmetric group \mathfrak{S}_{n} is a \mathrm{C}^{p} ‐group if and only if p is odd.

Even if a group G is a \mathrm{C}^{p} ‐group, G/H is not necessarily a \mathrm{C}^{p}‐group. However, the

following lemma assert that G/H is a \mathrm{C}^{p}‐group for a characteristic subgroup H.

Lemma 4.2 (see [17, Theorem 1 Let G be a \mathrm{C}^{p} ‐group and f:G\rightarrow H be a surjective

homomorphism whose kernel is a characteristic subgroup of G. Then H is also a \mathrm{C}^{p} ‐group,

Proof. Suppose \mathrm{C}^{p}(G')=G . Then we have

\mathrm{C}^{p}(G'/\mathrm{K}\mathrm{e}\mathrm{r}f)=\mathrm{C}^{p}(G')/(\mathrm{K}\mathrm{e}\mathrm{r}f\cap \mathrm{C}^{p}(G'))=G/\mathrm{K}\mathrm{e}\mathrm{r}f\cong H.

Hence, H is a \mathrm{C}^{p}‐group. \square 

Corollary 4.3. The nth braid group B_{n} is not a \mathrm{C}^{p} ‐group for even p.

Proof. Since the nth pure braid group P_{n} :=\mathrm{K}\mathrm{e}\mathrm{r}(B_{n}\rightarrow \mathfrak{S}_{n}) is characteristic ([1, Theorem

3 by Lemma 4.2, it suffices to prove that \mathfrak{S}_{n} is not a \mathrm{C}^{p}‐group for even p . Lemma 4.1

completes the proof. \square 
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Remark 4.4. One of the definition of B_{n} is the fundamental group of X_{n}/\mathfrak{S}_{n} , where X_{n}
is the configuration space \{(z_{1}, \ldots, z_{n})\in \mathbb{C}^{n}|z_{i}\neq z_{j}(i\neq j)\} of distinct n points in \mathbb{C},
and \mathfrak{S}_{n} acts on X_{n} by permutation of coordinates. Therefore, B_{n} is a \mathrm{C}^{p}‐group if there

exists a topological space Y admitting a p‐fold cyclic covering X_{n}/\mathfrak{S}_{n}\rightarrow Y and satisfying

H_{1}(X)/pH_{1}(X)=\mathbb{Z}_{p}.
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