
Spectral divide‐and‐conquer algorithms for matrix eigenvalue
problems

Yuji Nakatsukasa

Department of Mathematical Informatics, University of Tokyo

Conventional algorithms for the (symmetric or non‐symmetric) eigenvalue decompo‐
sition and the singular value decomposition (SVD) are based on initially reducing the

matrix to a condensed (tridiagonal, Hessenberg or bidiagonal) form. Unfortunately, they
are not optimal in view of recent trends in computer architectures, which require mini‐

mizing communication along with the arithmetic cost. With collaborators thc author has

been developing spectral divide‐and‐conquer algorithms, which can achieve both require‐
ments. Spectral divide‐and‐conquer algorithms recursively decouple the problem into two

smaller subproblems. This report summarizes the developments thus far and gives an

overview of spectral divide‐and‐conquer algorithms for eigenvalue problems and the SVD,
and point to ongoing directions. A large bulk of this report consists of collaborations with

Nicholas J. Higham [19] and Roland W. Freund [20].

1 Introduction

There has been much recent progress on designing algorithms that reduce communication

in addition to the arithmetic cost [5], so that they are well‐suited for parallel computing.
While in [5] many basic matrix operations‐such as matrix multiplication, LU, QR and

Cholesky factorizations‐are shown to have an implementation that minimizes communi‐

cation, notable exceptions are the eigenvalue decomposition and the SVD. Conventional

algorithms for the (symmetric or non‐symmetric) eigenvalue decomposition and the singu‐
lar value decomposition (SVD) are based on initially reducing the matrix to a condensed

form, such as tridiagonal, Hessenberg or bidiagonal [9], and implementing them in a

communication‐minimizing manner is highly nontrivial.

Ballard, Demmel, and Dumitriu [4] have developed the spectral divide‐and‐conquer
algorithm of Bai, Demmel, and Gu [2], into algorithms that achieve, asymptotically, lower

bounds on the costs of communication.

These algorithms, along with other existing spectral divide‐and‐conquer methods, gen‐

erally require significantly more arithmetic than the standard algorithms based on reduc‐

tion to condensed (tridiagonal or bidiagonal) form (the scaled Newton approach is an

exception but its stability was worse than standard algorithms in our experiments). In

addition, none of them has been proven to be backward stable in floating point arithmetic.

In this line of studies the authors introduce spectral divide‐and‐conquer algorithms for

the symmetric eigenvalue decomposition and the SVD that are

proven to be backward stable (under mild assumptions that hold in practice),

数理解析研究所講究録
第2005巻 2016年 43-55

43

minimize communication while having arithmetic costs within a small factor of those

for the standard methods,

parallelizable in many levels.

Experiments in MATLAB with a sequential implementation suggest that the proposed
algorithms can potentially outperform standard algorithms, both in speed and stabil‐

ity. It is therefore of much interest to develop codes optimized for a parallel computing
architecture and examine its performance.

2 Outline of algorithms

Here we summarize the basis for the algorithms for the symmetric eigenproblem and the

SVD.

2.1 Symmetric eigendecomposition

We first explain the essential idea for the symmetric eigenvalue decomposition. Let

A\in \mathbb{R}^{n\times n} be symmetric. We describe how to compute an invariant subspace of A cor‐

responding to the positive (or negative) eigenvalues using the polar decomposition (see
Section 3 for the polar decomposition and its computation). For simplicity we assume

that A is nonsingular; the singular case is discussed in the papers [19, 20]. The first

step is to note the connection between the polar decomposition of a symmetric A and

its cigendecomposition. Let A=U_{p}H be the polar decomposition and let A=V Λ V^{*},
with Λ=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(Λ_{+}, Λ be an eigendecomposition, where the diagonal matrices Λ_{+} and

Λ_{-} contain the positive and negative eigenvalues, respectively. If there are k positive
eigenvalues then

A=V\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(Λ_{+} , Λ_{-})V^{*}
=V\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(I_{k}, -I_{n-k})V^{*}\cdot V\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(Λ_{+}, |Λ_{-}|)V^{*}

(1) \equiv U_{p}H.

Suppose we have computed U_{p} in (1) using the QDWH algorithm, and partition V=

[V_{1}, V_{2}] conformably with Λ . Note that

 U_{p}+I=[V_{1}V_{2}]\left\{\begin{array}{ll}
f_{k} & 0\\
0 & -I_{n-k}
\end{array}\right\}[V_{1}V_{2}]^{*}+I=[V_{1}V_{2}]\left\{\begin{array}{ll}
2I_{k} & 0\\
0 & 0
\end{array}\right\}[V_{1}V_{2}]^{*}=2V_{1}V_{1}^{*},
so the symmetric matrix C=\displaystyle \frac{1}{2}(U_{p}+I)=V_{1}V_{1}^{*} is an orthogonal projector onto span(Vl),
which is the invariant subspace corresponding to the positive eigenvalues. Hence we can

compute span (V_{1}) by computing an orthogonal basis for the column space of C ,
for which

one step of subspace iteration usually suffices.

As proven in [19], the symmetric eigenvalue decomposition computed in this way is

backward stable, which means the computed matrix of eigenvalues \hat{ Λ} and eigenvector
matrix \hat{V} satisfy \hat{V}^{*}\hat{V}=I+ ϵ and A-VAV^{*}+ ϵ\Vert A\Vert where ϵ here represents a matrix of

norm \mathcal{O}(u) ,
where u is the unit roundoff.

44

The condition under which backward stability is established is that the polar decom‐

position is computed in a backward stable manner, and subspace iteration is successful.

Both these conditions can be established [18] and easily verified.

2.2 SVD

For the SVD, we basically follow the strategy introduced in [14], replacing the symmetric
eigendecomposition by the algorithm just described: We first compute the polar decom‐

position A=U_{p}H and then the symmetric eigendecomposition H=V Σ V^{*} . Combining
the two, the SVD is obtained from A=(U_{p}V) Σ V^{*}

The SVD computed via their framework is known [14] to be backward stable pro‐
vided that both the polar decomposition and the eigendecomposition are computed in a

backward stable manner.

2.3 Polar decomposition as the key computational kernel

As described above, one natural way to execute spectral divide‐and‐conquer is via the

polar decomposition. For computing the polar decomposition, the scaled Newton and

QDWH iterations (which we outline below) are two of the most popular algorithms, as

they are backward stable and converge in at most nine and six iterations, respectively.
However, the experiments in [19] indicate that the QDWH‐Uased algorithms are still

considerably slower on a sequential machine (by a factor between 2 and 4) than the fastest

standard algorithm. Although the relative performance is expected to be better on parallel
systems, further improvements to the algorithm itself are therefore much desired. Since

the spectral divide‐and‐conquer algorithms use the polar decomposition as fundamental

building blocks, the design of an improved algorithm for A=U_{p}H would directly lead to

improved spectral divide‐and‐conquer algorithms for the symmetric eigendecomposition
and the SVD.

Following this framework, in [20] we propose a new higher‐order variant of the QDWH
iteration. The key idea of this algorithm comes from approximation theory: we use the

best rational approximant for the scalar sign function due to Zolotarev in 1877, which

lets the algorithm converge in just two iterations, with the whopping rate of convergence
seventeen. The algorithm employs a high‐degree Zolotarev function (best rational approx‐

imant) obtained by composing low‐degree Zolotarev functions, an extraordinary property
enjoyed by the sign function. The resulting algorithms for the polar, symmetric eigenvalue,
and singular value decompositions have higher arithmetic costs than the QDWH‐Uased
algorithms but are better‐suitcd for parallel computing, and exhibit excellent numerical

backward stability. In this report we briefly outline the main ideas. We refer to [20] for

details and the analyses.

45

3 The QDWH algorithm as a rational approximation to \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(x)

Any rectangular matrix A\in \mathbb{R}^{m\times n}(m\geq n) has a polar decomposition [12, Thm. 8.1],
[15, Sec. 7.3]

(2) A=U_{p}H,

where U_{p} has orthonormal columns and H is symmetric positive semidefinite. The polar
decomposition (2) is unique if A has full column rank.

The QDWH algorithm [17] computes the unitary polar factor U_{p} of a full‐rank matrix

A as the limit of the sequence X_{k} defined by

(3) X_{k+1}=X_{k}(a_{k}I+b_{k}X_{k}^{*}X_{k})(I+c_{k}X_{k}^{*}X_{k})^{-1}, X_{0}=A/ α.

Here, α>0 is an estimate of \Vert A\Vert_{2} such that α>\sim\Vert A\Vert_{2} . Setting a_{k}=3, b_{k}=1, c_{k}=3
gives the Halley iteration, which is the cubically convergent member of the family of princi‐
pal Padé iterations [12, Sec. 8.5]. The iterates (3) preserve the singular vectors while map‐

ping the singular values by a rational function R_{k}(\cdots R_{2}(R_{1}(x)) ,
that is, X_{k}=UΣ_{k}V^{*},

where Σ_{k}=R_{k}(\cdots R_{2}(R_{1}(Σ)) is the diagonal matrix with ith diagonal R_{k}(\cdots R_{2}(R_{1}(σ_{i})) ;

equivalently R(Σ) denotes the matrix function in the classical sense [12]. The choice of

the rational functions R_{k}(x) is of crucial importance, and in QDWH R_{k}(x)=x\displaystyle \frac{a_{k}+b_{k}x^{2}}{1+c_{k}x^{2}},
in which the parameters a_{k}, b_{k}, c_{k} are chosen dynamically to speed up the convergence.

They are computed by a_{k}=h(\ell_{k}) , b_{k}=(a_{k}-1)^{2}/4, c_{k}=a_{k}+b_{k}-1 ,
where h(\ell)=

\displaystyle \sqrt{1+ γ}+\frac{1}{2}(8-4 γ+8(2-\ell^{2})/(\ell^{2}\sqrt{1+ γ}))^{1/2}, γ=(4(1-\ell^{2})/\ell^{4})^{1/3} Here, \ell_{k} is a

lower bound for the smallest singular value of X_{k} ,
which is computed from the recurrence

\ell_{k}=\ell_{k-1}(a_{k-1}+b_{k-1}\ell_{k-1}^{2})/(1+c_{k-1}\ell_{k-1}^{2}) for k\geq 1 . Note that all the parameters are

available for free (without any matrix computations) for all k\geq 0 once we have estimates

 α>\sim\Vert A\Vert_{2} and \ell_{0}\sim<σ_{\min}(X_{0}) ,
obtained for example via a condition number estimator.

With such parameters the iteration (3) is cubically convergent and needs at most six

iterations for convergence to U_{p} with thc tolerance u for any matrix A with κ_{2}(A)\leq u^{-1},
that is, \Vert X_{6}-U_{p}\Vert_{2}=\mathcal{O}(u) .

Thc iteration (3) has a mathematically equivalent QR‐based implementation, which is

numerically more stable (this is the actual QDWH iteration):

(4a) [\displaystyle \sqrt{c_{k}}X_{k}I]=\left\{\begin{array}{l}
Q_{1}\\
Q_{2}
\end{array}\right\}R, X_{k+1}=\frac{b_{k}}{c_{k}}X_{k}+\frac{1}{\sqrt{c_{k}}}(a_{k}-\frac{b_{k}}{c_{k}})Q_{1}Q_{2}^{*}, k\geq 0.
Once the computed polar factor \hat{U}_{p} is obtained, we compute the symmetric polar factor

\hat{H} by \displaystyle \hat{H}=\frac{1}{2}(\hat{U}_{p}^{*}A+(\hat{U}_{p}^{*}A)^{*}) [12
, Sec. 8.8].

4 Higher‐order variant

In light of the above observation, a natural idea is to consider approximations R\in \mathcal{R}_{2r+1,2r}
of the sign function \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(x) for general r\geq 1 ,

with the goal to map all the singular values

to 1. Since \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(x) is an odd function, the optimal approximant in \mathcal{R}_{2r+1,2r} has the form

46

R(x)\displaystyle \equiv x\frac{P(x^{2})}{Q(x^{2})} ,
where P, Q\in \mathcal{P}_{r} . As in the QDWH case, one way to obtain P and Q is

to solve the max‐min problem

(5) P,Q\displaystyle \in \mathcal{P}_{r}\max\min_{\ell\leq x\leq 1}x\frac{P(x^{2})}{Q(x^{2})}
subject to the constraint x\displaystyle \frac{P(x^{2})}{Q(x^{2})}\leq 1 on [0 ,

1] . However, solving (5) via extending the

approach in [17] for r=1 to r\geq 2 seems highly nontrivial.

Fortunately, the max‐min problem (5) is equivalent to one of the classical rational

approximation problems that Zolotarev [25] solved explicitly in 1877 in terms of elliptic
functions. For details on Zolotarev functions see for example [1, 22].

A recent preprint [10] also uses Zolotarev functions for computing partial eigenvaules.
Here we are concerned with computing the whole eigendecomposition and the SVD.

To get an idea of the resulting rational functions, below we plot the functions on for

varying degrees. Observe how fast the functions visibly converge to the sign function as

the degree increases.

Figure 1: Zolotarev�s best rational approximants to the sign function on [\ell , 1] of type (2r+1,2r) for

r=1
, 2, . . .

, 6 and \ell=10^{-3}.

There is another remarkable fact about Zolotarev functions: we can compose them to

obtain another Zolotarev functions, of much higher degree. For details see [20].
Figure 2 illustrates this fact, in whcih two Zolotarev functions of type (3, 2) are shown

in blue and green, and its composition is shown in red. Observc how close the red

function (which is a rational function of type (9, 8)) is an excellent approximation to the

sign function.

Indeed, Zolotarev functions are so powerful that if the degrees are appropriately chosen

to be of type (2r+1,2r) where r\in[1 ,
8] ,

then just two iterations would suffice to obtain

numerical convergence (i.e. to \mathcal{O}(u)) in double precision arithmetic. This runs counter

to intuition, since it is known [8] that Abelis impossibility theorem implies that the exact

polar decomposition cannot be computed in a finite number of arithmetic operations, an

approximation correct to \mathcal{O}(10^{-16}) can be obtained.

47

-1 -05

0_{8_{\uparrow}} 0\mathrm{g}_{2}
Figure 2: Zolotarev function and its composition.

We call the resulting algorithm for thc polar decomposition Zolo‐pd. A mind‐boggling
aspect of Zolo‐pd is its rate of convergence. A typical numerical algorithm converges

quadratically, that is, with convergence rate 2. Zolo‐pd, on the other hand, converges
with rate seventeen. Proving this is not difficult, see [20].

Similarly, we call the resulting algorithms for symmetric eigendecomposition and the

SVD Zolo‐eig and Zolo‐SVD, respectively.

4.1 Evaluating a Zolotarev function at matrix arguments

To apply the Zolotarev functions to the singular values of A
,

we need an efficient and

stable way of computing R(X) :=UR(Σ_{k};\ell)V^{*} ,
where X_{k}=UΣ_{k}V^{*} is thc SVD. For

stability and communication efficiency, we look for an inverse‐free implementation, that

is, one that does not explicitly invert matrices or require solutions to linear systems; this

was thc original motivation for the QDWH iteration [17].
Crucial to this task is the following result, which was given in [24], [12, p. 219], and

was also used in the QDWH iteration (which is Zolo‐pd for the special case r=1).

Lemma 4.1 Let \left\{\begin{array}{l}
 η X\\
I
\end{array}\right\}=\left\{\begin{array}{l}
Q_{1}\\
Q_{2}
\end{array}\right\}R be the QR decomposition of \left\{\begin{array}{l}
 η X\\
I
\end{array}\right\}) where X, Q_{1}\in \mathbb{C}^{m\times n}

and Q_{2}, R\in \mathbb{C}^{n\mathrm{x}n} . Then

(6) Q_{1}Q_{2}^{*}= η X(I+η^{2}X^{*}X)^{-1}

We now show that by using the partial fraction representation of Zolotarev functions

wc can use this lemma for the stable computation of R(X) for any r\geq 1.
In general, a partial fraction representation expresses a given rational function in terms

of a sum of fractions involving polynomials of low degree. For the Zolotarev function we

48

obtain thc following partial fraction decomposition representation:

\displaystyle \prod(x^{2}+c_{2j})r
(7) \displaystyle \frac{j=1}{\prod_{J^{=1}}^{r}(x^{2}+c_{2_{J}-1})}=1-\sum_{J^{=1}}^{r}\frac{a_{j}}{x^{2}+c_{2j-1}},
where

(8) a_{j}=(\displaystyle \prod_{k=1}^{r}(c_{2j-1}-c_{2k})) (\prod_{)}^{r}(c_{2_{J}-1}-c_{2k-1})) .

Equation (8) provides a simple and stable way to compute the coefficients a_{J} in (7), and

an easy way to verify (8) is to multiply (7) by x^{2}+c_{2_{J}-1} and take x=ic_{2_{J}-1}.
In matrix form, our task is to compute

R(X)=X\displaystyle \prod_{j=1}^{r}P_{j}(X^{*}X)\prod_{J^{=1}}^{r}(Q_{j}(X^{*}X))^{-1},
where P_{j}(X^{*}X)=X^{*}X+c_{2_{j}}I and Q_{j}(X^{*}X)=X^{*}X+c_{2j-1}I . Using (7), we see that

R(X) can be obtained by computing

(9) R(X)=X+\displaystyle \sum_{j=1}^{r}a_{j}X(X^{*}X+c_{2_{J}-1}I)^{-1},
which, by Lemma 4.1, is equivalent to

(10) \left\{\begin{array}{l}
[\sqrt{c_{2_{J}-1}}IX] = [Matrix] R_{\mathrm{J}},\\
R(X) = X+\sum_{j=1}^{r}\frac{a_{J}}{\sqrt{c_{2,-1}}}Q_{j1}Q_{J^{2}}^{*}.
\end{array}\right.
Note that the r QR factorizations and matrix multiplications Q_{j}1Q_{J^{2}}^{*} in (10) are com‐

pletely independent of each other, therefore we can easily compute Q_{g1}Q_{j2}^{*} in a parallel
fashion for j=1 ,

. . .

, r and compute R(X) simply by adding up the matrices. Further‐

more, numerically the evaluation (10) based on partial fractions is much more accurate

than a direct evaluation.

We note that the use of partial fractions for Padé‐type matrix iterations was employed
by Kenney and Laub in [16] for the matrix sign function, and by Higham and Papadim‐
itriou [13] for the polar decomposition. For the action of a matrix function on a vector it

was used for example in [7, 23].

49

4.2 Faster iterations via Cholesky factorization

The QDWH iteration (4) is mathematically equivalent to (3), which can be implemented
according to

(lla) Z_{k}=I+c_{k}X_{k}^{*}X_{k}, W_{k}=\mathrm{c}\mathrm{h}\mathrm{o}1(Z_{k}) ,

(llb) X_{k+1}=\displaystyle \frac{b_{k}}{c_{k}}X_{k}+(a_{k}-\frac{b_{k}}{c_{k}})(X_{k}W^{-1})W^{-*},
where cho1 (Z_{k}) denotes the Cholesky factor of Z_{k} . Note that (11) involves m\times n matrices,
in contrast to (4), which contains an (m+n)\times n matrix. The arithmetic cost of (11) is mn^{2}

flops for forming the symmetric positive definite matrix Z_{k}, n^{3}/3 flops for computing its

Cholesky factorization, and 2mn^{2} flops for two multiple right‐hand side triangular substi‐

tutions. Therefore this implementation requires 3mn^{2}+n^{3}/3 flops, which is cheaper than

evaluating (4) by Householder QR factorization and exploiting the structure of [^{\sqrt{c_{k}}X_{k}}I],
which needs 5mn^{2} flops. Furthermore, the Cholesky decomposition and triangular sub‐

stitution both have a known arithmetic and communication‐minimizing implementation.
Thus (11) is expected to be faster than (4). The same is true of Zolo‐pd.

The numerical stability of (11), however, is compromised if Z_{k} is ill conditioned, as

standard error analysis shows that X_{k+1} has errors of order κ_{2}(Z) ϵ[11] . The implemen‐
tation (4) is also subject to errors, arising from a QR factorization of the matrix [^{\sqrt{c_{k}}X_{k}}I],
but this matrix has 2‐norm condition number equal to the square root of that of Z_{k} ,

and

in any case numerical stability of the polar decomposition computed by (4) is independent
of κ_{2}(Z_{k}) , as shown in [18].

To investigate (11) further, we note that κ_{2}(Z)\leq 1+c_{k}\Vert X_{k}\Vert_{2}^{2} and \Vert X_{k}\Vert_{2}\leq 1 (provided
that α\geq\Vert Λ\Vert_{2}), and moreover b_{k}/c_{k} and a_{k}-b_{k}/c_{k} are both of order 1 for all k[18].
Hence X_{k+1} is computed from (11) with forward error bounded by c_{k} ϵ . Fortunately, c_{k}

converges to 3 and the convergence is fast enough so that c_{k}\leq 100 for k\geq 2 for any

practical choice \ell_{0}>10^{-16} . In QDWH we switch from (4) to (11) once c_{k} is smaller than

100, which improves the speed and also in practice slightly improves the stability. In

particular, if \ell_{0}>10^{-5} then we have c_{k}\leq 100 for k\geq 1 (for a given k, c_{k} is a decreasing
function of \ell_{0}), so we need just one iteration of (4).

For Zolo‐pd, on the other hand, checking c_{k} is not necessary because we know a priori
that in the second iteration we have c_{l}\leq 100 . In other words, no matter what the

situation is, in the second iteration we invoke the faster implementation via Cholesky.
Moreover, when the input matrix was well‐conditioned we can invoke Cholesky right from

the start.

We note that there is an alternative, straightforward implementation of (3) which

uses matrix inversion or solution to linear systems with multiple right‐hand side. The

resulting algorithm DWH is unfortunately numerically unstable, as observed in [17], and

this instability carries over to Zolo‐pd if implemcntcd this way.

4.3 Cost comparison

Here we compare the computational cost of our Zolotarev‐based algorithms with the

standard algorithms.

50

Polar decomposition Table 1 compares Zolo‐pd with QDWH and the scaled Newton

iteration [12, Ch. 8], the two most practical algorithms for the unitary polar factor of

A\in \mathbb{C}^{m\times n} (we need m=n for the scaled Newton iteration as it is applicable only
to nonsingular matrices). It summarizes the backward stability, the dominant type of

operation, the maximum iteration count and arithmetic cost in flops required for κ_{2}(A)\leq
 10^{16} ; for well‐conditioned matrices the flop count generally decreases. The arithmetic

cost for QDWH is taken from the flop count in [19], and we can also derive that of Zolo‐

pd similarly. The parenthesized entry at the bottom of the table shows the arithmetic

cost along the critical path when the r QR and Cholesky factorizations are computed in

parallel. The arithmetic cost of the scaled Newton iteration assumes that matrix inverses

are computed in the standard way based on LU factorization with partial pivoting.
Zolo‐pd requires more arithmetic cost than QDWH and scaled Newton, by about a

factor 3. However, along the critical path it requires the fewest flops, so in a parallel
implementation we expect Zolo‐pd to be the fastest.

Table 1: Comparison of algorithms for the polar decomposition.

aMatrix inverses need to be computed in a mixed backward‐forward stable manner

to prove backward stability of scaled Newton [6, 18]. Using the standard method

of LU with partial pivoting for inversion this condition is not guaranteed, and it

can be indeed unstable [18]. The parenthesized (\sqrt{}) means the stability is observed

numerically but not yet established theoretically.

Symmetric eigendecomposition Table 2 compares the spectra‐divide‐and‐conquer algo‐
rithms Zolo‐eig QDWH‐eig, IRS (implicit repeated squaring [3]), and ZZY [24], along
with the standard algorithm that performs tridiagonalization followed by the symmetric
tridiagonal QR algorithm [21, Ch. 8]. The algorithms compute both the eigenvalues and

eigenvectors. In addition to the information shown in Table 1, Table 2 shows whether the

algorithm minimizes communication in the asymptotic sense.

Following [19], the arithmetic cost of QDWH‐eig and Zolo‐eig is obtained assuming
that the splitting points σ are chosen such that κ_{2}(A- σ I)\leq 10^{5} ,

for which r=5 is

Table 2: Comparison of algorithms for symmetric eigendecomposition.

51

sufficient. We can take a different σ if this does not hold. Note that the arithmetic cost

along the critical path of Zolo‐eig in a parallel implementation is nearly the same as that

of the standard algorithm.

SVD Table 3 compares four SVD algorithms: Zolo‐SVD, QDWH‐SVD, IRS, and the

standard algorithm that performs bidiagonalization followed by bidiagonal QR. The arith‐

metic cost shows the flop counts for a square n\times n matrix A
,

and since for Zolo‐SVD and

QDWH‐SVD it depends on the condition number κ_{2}(A) ,
we show the arithmetic cost in

the range κ_{2}(A)=[1.1, 10^{16}].

The arithmetic cost along thc critical path of Zolo‐SVD is slightly smaller than that

of the standard algorithm.
In MATLAB experiments, we observe that the sequential runtime of Zolo‐eig and Zolo‐

SVD is slower than the QDWH‐Uased counterparts, and much slower than standard algo‐
rithms (or MATLAB�S built‐in functions eig, svd). However, along the critical path the

runtime is significantly shorter, even ourperforming standard algorithms. This indicates

the potential speed when Zolo‐Uased algorithms are implemented in a proper parallel
fashion. For numerical experiments and more details we refer to [20]

4.4 Backward stability

As mentioned in the introduction, the backward stability of Zolo‐eig and Zolo‐SVD rests

on that of Zolo‐pd for thc polar decomposition. For iterations for the polar decomposition,
Nakatsukasa and Higham [18] perform stability analysis, who show that the computed
polar decomposition is backward stable if two conditions are satisfied: (i) Each iterate

is backward‐forward stable‐, that is, the computed approximant \hat{Y} to Y=f(X) satisfies

\hat{Y}=f(\overline{X})+ ϵ\Vert\hat{Y}\Vert_{2} where X=\hat{X}+ ϵ\Vert\hat{X}\Vert_{2} , where ϵ denotes a matrix whose norm is \mathcal{O}(u) .

(ii) The function f(x) lies above y=x.

Of the two conditions, the second is morc nonintuitive and indeed gives insights into

some unstable itcrations proposed in the literature. It is shown in [18] that QDWH
satisfies the two conditions and hence is backward stable if pivoting (row and column) is

used for computing the QR factorizations.

For Zolo‐pd, it is easy to verify that the second condition is satisfied, because the

mapping function f(x) is the best approximant to the sign function, and y=x can be

regarded as a member of (2r+1,2r) rational functions. However, regarding the first

condition, the presence of r QR factorizations seems to make the discussion nontrivial.

52

Although experiments demonstrate the excellent backward stability of Zolo‐pd, its proof
therefore remains an open problem.

5 Ongoing work and open problems

As mentioned above, one important open problem is to prove the backward stability of

the Zolotarev‐Uased polar decomposition algorithm, which experiments strongly suggest
in the affirmative. To do so one would need to extend the discussion in [18] so that the

algorithm fits in the framework of the analysis.
The key idea of spectral divide‐and‐conquer methods is dividing the spectrum into two

groups and mapping one to a single value (e.g. 1) and the other to another value (e.g.
-1) . We have focused on the symmetric eigenvalue decomposition and the SVD, both

of which enjoy the numerically attractive property that the decompositions involve only
orthogonal and diagonal matrices.

However, the essense of spectral divide‐and‐conquer is generalizable to other settings,
such as nonsymmetric eigenvalue problems and generalized eigenvalue problems. For these

problems spectral divide‐and‐conquer may have even pronounced benefits, as the stan‐

dard QR and QZ algorithm for solving nonsymmetric (generalized) eigenvalue problems
typically perform much worse in speed compared with what the arithmetic cost predicts.
These, along with extension to more general problems such as polynomial eigenvalue
problems, are among the ongoing projects.

References

[1] N. I. Akhiezer. Elements of the Theory of Elliptic Functions, volume 79 of Transla‐

tions of Mathematical Monographs. American Mathematical Society, 1990.

[2] Z. Bai, J. Dcmmel, and M. Gu. An inverse free parallel spectral divide and conquer

algorithm for nonsymmetric eigenproblems. Numer. Math., 76(3):279-308 , 1997.

[3] G. Ballard, J. Demmel, and I. Dumitriu. Minimizing communication for eigenprob‐
lems and the singular value decomposition. Tcchnical Report 237, LAPACK Working
Note, 2010.

[4] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in

linear algebra. Technical Report 218, LAPACK Working Note, 2009.

[5] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in

numerical linear algebra. SIAM J. Matrix Anal. Appl., 32(3):866-901 , 2011.

[6] R. Bycrs and H. Xu. A new scaling for Newtonjs iteration for the polar decomposition
and its backward stability. SIAM J. Matrix Anal. Appl., 30:822−843, 2008.

[7] V. Druskin, S. Güttel, and L. Knizhnerman. Near‐optimal perfectly matched layers
for indefinite helmholtz problems. MIMS EPrint, Manchester Institute for Mathe‐

matical Sciences, The University of Manchester, UK, 2013.

53

[8] A. George and K. Ikramov. Is the polar decomposition finitely computable? SIAM

Journal on Matrix Analysis and Applications, 17:348, 1996.

[9] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins Uni‐

versity Press, 4th edition, 2012.

[10] S. Güttel, E. Polizzi, P. Tang, and G. Viaud. Zolotarev quadrature rules and load

balancing for the FEAST eigensolver. MIMS EPrint 2014.39, Manchester Institute

for Mathematical Sciences, The University of Manchester, UK, 2014.

[11] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia,
PA, USA, second edition, 2002.

[12] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, Philadelphia,
PA, USA, 2008.

[13] N. J. Higham and P. Papadimitriou. A parallel algorithm for computing the polar
decomposition. Parallel Computing, (20):1161−1173, 1994.

[14] N. J. Higham and P. Papadimitriou. A new parallel algorithm for computing the sin‐

gular value decomposition. In Proceedings of the Fifth SIAM Conference on Applied
Linear Algebra, pages 80‐84, 1994.

[15] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, second

edition, 2012.

[16] C. Kenney and A. Laub. A hyperbolic tangent identity and the geometry of padé sign
function iterations. Numerical Algorithms, 7:111−128, 1994. 10. 1007/\mathrm{B}\mathrm{F}02140677.

[17] Y. Nakatsukasa, Z. Bai, and F. Gygi. optimizing Halley�s iteration for computing the

matrix polar decomposition. SIAM J. Matrix Anal. Appl., 31(5):2700-2720 , 2010.

[18] Y. Nakatsukasa and N. J. Higham. Backward stability of iterations for computing
the polar decomposition. SIAM J. Matrix Anal. Appl., 33(2):460-479 ,

2012.

[19] Y. Nakatsukasa and N. J. Higham. Stable and efficient spectral divide and conquer

algorithms for the symmetric eigenvalue decomposition and the SVD. SIAM J. Sci.

Comp, 35(3):\mathrm{A}1325-\mathrm{A}1349 , 2013.

[20] Y. Nakatsukasa and R. W. Freund. Using zolotarev�s rational approximation for

computing the polar, symmetric eigenvalue, and singular value decompositions.
manuscript.

[21] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998.

[22] P. P. Petrushev and V. A. Popov. Rational Approximation of Real Functions, vol‐

ume 28. Cambridge University Press, 2011.

[23] J. van den Eshof, T. Lippert, A. Frommer, K. Schilling, and H. van der Vorst.

Numerical methods for the QCD overlap operator: I. sign‐function and error bounds.

Comput. Phys. Comm., 146:203−224, 2002.

54

[24] Z. Zhang, H. Zha, and W. Ying. Fast parallelizable methods for computing invariant

subspaces of Hermitian matrices. Journal of Computational Mathematics, 25(5):583-
594, 2007.

[25] E. I. Zolotarev. Application of elliptic functions to the questions of functions deviating
least and most from zero. Zap. Imp. Akad. Nauk. St. Petersburg,, 30(5), 1877. In

Russian.

Department of Mathematical Informatics

University of Tokyo
Tokyo 113‐8656

JAPAN

\mathrm{E}‐mail address: nakatsukasa@mist.i.u‐tokyo.ac.jp

55

