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1 Introduction
Consider as a model case the Poisson equation
—Au=f in Q, - (1.1)

where Q is a bounded domain in R? and f is a given function in . The Robin
boundary condition for (1.1), also known as a third boundary condition, is
a simple linear combination of Dirichlet and Neumann conditions as in

Z—Z +au=h on T :=09Q, (1.2)
where %Z is a derivative of u in the normal direction, n being the unit outer
normal on I', « is a constant parameter and h is a given function on T

Let us focus on two features of the Robin boundary condition with o >
0. First, by making o — oo we see that (1.2) approaches the Dirichlet
condition v = 0 on I' at least formally. This fact can be mathematically
justified, and the technique to approximate the Dirichlet condition by the
Robin one, in a variational form, is referred to as a penalty method [1].
Second, (1.2) can be seen as a transmission condition between  and T,
where two equations —Awu = f and au = h are interacting with each other
through the Neumann term g—:‘l. Utilization of a Robin boundary condition
as a transmission condition is found, e.g., in domain decomposition methods
[12] or fluid-structure interaction problems [5].

In this paper, we propose some applications of these two perspectives
regarding Robin boundary conditions, to problems arising in finite element

!tkashiwa@ms.u-tokyo.ac.jp



methods. In the first part (Section 2), we consider the incompressible Stokes
equations with the slip boundary condition in a smooth domain which need
not be polygonal. The smooth boundary is approximated by straight polyg-
onal lines or polyhedral faces, which is usual in finite element approximation.
Then we need a delicate treatment of the outer unit normal on the approxi-
mated boundary, because otherwise we would encounter a variational crime
(also known as a Babuska’s paradox [15]). We will show that a Robin-type
approximation to the slip boundary condition enables us to avoid a varia-
tional crime, achieving the optimal rate of convergence if the Robin (penalty)
parameter « is properly chosen. Our scheme can be easily implemented in
finite element libraries such as FreeFEM++ [7] or FEniCS [10].

In the second part (Section 3), we consider (1.1) with a new transmis-
sion condition, where (1.2) is modified to involve a second-order derivative on
the boundary, i.e., the Laplace-Beltrami operator. This is called a general-
ized Robin boundary condition, and it is related with a dynamic boundary
condition for heat equations [11], fluid-structure interaction problems [2],
or artificial boundary conditions [13]. We will show that, instead of the
standard Sobolev space H'(2), the space of H'(Q)-functions which admit
H1(T')-traces is well-suited for analysis of this generalized Robin problem.
In particular we prove well-posedness and convergence of the finite element
method for this problem in the function space mentioned above.

2 Penalty method to the slip boundary problem?

2.1 Slip boundary condition

We are concerned with the following incompressible Stokes equations:

u—vAu+Vp=f in Q,
N in Q
divu=0 in Q, (2.1)
u-1mn= g on F,
o-(u)=nh on T,

where Q C R?(d = 2,3), and its boundary I is of C%!-class; v, u,p are a
viscosity constant, velocity and pressure, respectively; f, g, h are given data,;
n € W2>(T') is the outer unit normal and, for a generic vector A, we denote
its normal and tangential components by A-n and A, = A — (A-n)n; let

2This study is based on a joint work with I. Oikawa (Waseda Univ.) and G. Zhou
(Univ. of Tokyo).
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o(u,p) = —pI + v(Vu + VuT) be the fluid stress tensor, and set o, (u) :=
(o(u,p)n); to be the tangential component of the traction vector.

The weak formulation for the above problem is well known and stated
as follows. Let ug be an element of H'(Q)? such that uy-n = g on T
and divu, = 0 (this extension is possible if [, gds = 0, which we assume
throughout this section). Find (u,p) € V' x Q such that, u — ug € V; and

a(u,v) +b(v,p) = (f,v) + (h,v), Vv eV,
b(u,q) =0, Vg € Q.
where V = H' ()%, V, ={ve V|vn=0onT}and Q = {g € L2(Q) | Joadz =

0}. We furthermore set V := H}(Q)?. For bilinear forms, given G C R?, we
define

(2.2)

ag(u,v):/u-vdx—i—g/ v(Vu + Vul) - (Vo + Vol) dz,
G G
bg(v,q) = —/ divvgdz.

€]

The inner products in L*(G)? and L*(0G)? are denoted by (-, )¢ and (-, )5
respectively. The subscripts G and G are omitted if G = Q.

As a result of Korn’s inequality and the famous inf-sup condition, we
obtain

Theorem 2.1. There exists a unique solution (u,p) of (2.2).

By the Green formula for the Stokes equations and u - n = g, we have

a(u,v) +b(v,p) +c(v-n,A) = (f,v)a + (h,v)r, Vv e,
b(u,q) =0, Vge@, (23)
C(u'n’_g7ﬂ’):0 V.UJGMa

where M = H-Y2(T'), and ¢(-,-) = (-,-). We notice that X\ := —c(u,p)n -n
is the normal component of the traction vector.

2.2 Meshes and approximate spaces

Because I' is smooth, there exists a covering {U,}*, of T such that each
I'NU, can be represented by a graph x4 = ¢,(z'), where 2’ = (z1,...,24-1),
after some rotation of the coordinates. Furthermore, there exists a strip
neighborhood I's = {z € R?%|dist(z,T') < 6} of I such that the decomposi-
tion z = w(z) + d(z)n(w(x)), where 7(z) € I" and d(z) is the signed distance
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function to I', is uniquely determined for z € I's (see [6, p. 355]). We extend
n from I' to I's by n(z) = n(w(x)).

We introduce a regular family of triangulation {7}xj0 of 2, where h =
maxre7, diam(7T), and put Qn = Upey, T and Ty := 09. The boundary
mesh Sj, inherited from 7 also becomes a regular family of triangulation of
dimension d — 1. We denote by nj, the outer unit normal assigned to I'.

We assume that 7, is fine enough (and thus h is sufficiently small) to
satisfy the following;:

(1) each S € S, is contained in some local neighborhood U,..

(2) for each r, I', N U, is represented by the graph of some piecewise linear
interpolation ¢,p of ¢,.

(3) T}, is contained in the strip neighborhood T';.

Under these assumptions we can show that the map I'y, — I'; z — 7(z) is
bijective, and we call it the orthogonal projection from I'y, onto I.

Next we introduce finite element spaces. We consider P1/P1 or P1b/P1
approximations, to which we refer as [ = 1 and [ = 1b respectively, that is,

{vn € C(Q) | vlr € Pi(T) ® B(T) for T € T} if I = 1b,

Qn = {’Uh S C(Q) I vth S Pl(T) for T € 77,,},

_ {{vheC(ﬁ)dlvthePl(T) for T € Tp} ifl=1,

where B(T') stands for the space spanned by the bubble function on T'. We
furthermore set V3, := Vj, N H} (Q)¢ and Qp, := QN Q.

2.3 FE scheme with penalty term

Before presenting our scheme, we highlight two difficulties in finite element
approximation of (2.1), which do not occur in the no-slip boundary prob-
lem (cf. [4, p. 332]). First, since the normal direction n(z) does not align
with an axis of the coordinates (it varies depending on z), we need a local
transformation, at the element-matrix level, to enforce the Dirichlet con-
dition (2.1)3. This procedure is described e.g. in [3], but it would require
additional implementation technique which is not necessary in the no-slip
boundary condition.

Second, approximation of the space V;, especially the constraint v-n = 0,
is rather problematic. The naive choice Vi = {v, € V3, |vp-np =0 on I} is
known to lead to a variational crime. In fact, if d = 2, Vj, coincides with I7h,
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so that the finite element solution converges to that of the no-slip boundary
problem and never satisfies the slip boundary condition. From theoretical
point of view, Vi, = {vy, € Vi, | (v -n)(z) = 0 at each vertex z € T',} will be
the best choice. However, this implies that one has to remember n, i.e., the
information of the exact geometry I', which would be inconvenient in case
one is given only 0Qy,.

In view of these situations, we would like to propose a scheme to problem
(2.2) such that

e implementation is easy;
e only ny is involved;
e optimal rate of convergence O(h) is achieved.

For this purpose, we approximate the Dirichlet condition u -n = 0 by the
Robin-type one o(u,p)n-n+ u-n = 0 with small € > 0. In the variational
form, this amounts to using the whole V instead of V; and introducing the
penalty term %c(u -n,v-n). To avoid over-constraint, we apply a reduced-
order numerical integration to the penalty term. Then the resulting finite
element scheme now reads as follows: find (up,pr) € Vi X Qp such that, for

all (vp, qn) € Vi, x Q,

an(Un, vn) + bp(vn, pr) + 1Ch(uh nh = G,vn - nn) = (F,0n)n + (R, Vhr ),
br(un, qn) = dr(Pn, qn)-
(2.4)
Here, we let € be a bounded smooth domain containing Q U Qp UT's and
denote by f an extension of f from Q to Q. We also extend g to § and h to h
defined in Q, then their traces on I'; can be defined. We suppose § € C (Th).
We set ap, = agq,,, b = bo,, (-, )n = (-,")q,, and

{ midpoint of S if d = 2,

) = S s =
h (#4n n) Z |Slun(ms)an(ms),  ms barycenter of S if d = 3,

SESy,

1 ifl=1
dn(Pn, ar) = Yh* (Yo, Van)n, = ,
n (P, an) = YR (VPr, Van)n 7 {0 if | = 1b.

We recall Korn’s inequality for ap and the 17h—Q°h inf-sup condition for by,
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which are uniform in h (see [9, 14]):
C”Uh“%pmh)d < ah(”h,vh)a Vv, € V, (2-5)

by (vp, o
Ollanllzzay) — 1ChlIVanl < sup 2WmI) o e (26)
onci, 10pllE1 (@)

Then we have
Theorem 2.2. There exists a unique solution (up,pp) of problem (2.4).

sketch of proof. We can prove the V,-Qp, inf-sup condition

br(vn, q
Cllanllzey) — 1CRIVan] < sup 2HZB)_ o e o
VREVR ”Uh”Hl(Qh)d

Then we have the coupled inf-sup condition

By (un, ph; Vh, qn)
C(h)(||vp + |lgnll 2 < sup
(M) (lvnll prn)z + llanliz2@,)) o o TanTar iy + Tonlzeon

for all (vi, gn) € Vi X Qn, where Bp,(un, Ph; Vh, qn) = an(un, vn)+bn(vh, pr)+
%ch(uh “Np, Uk - ) — br(un, qn) + dp(ph, gn). The solvability of (2.4) is a
consequence of the generalized Lax-Milgram theorem. O

By introducing the auxiliary variable A, := (up,-ny — §)/e € L?(T'y,), one
can rewrite (2.4) as

an (U, vn) + bp(Vh, pr) + cn(Vn - n, M) = (F,vn)n + (hyvdn, Vop € Vi,

br(un, an) = dn(ph, qn), Van, € Qn,
ch(un -y — G, pn) = €cn(An, 1n), Yy € Mp,
@2.7)

where My, = {up, € L3(Ty) | uls € Pi(S) for S € Sy} is a discontinuous P1
space.

2.4 Estimation of consistency error

From now on, we consider the case ¢ = h = § = h = 0 for simplicity. Since
Qp, # 2 and the approximation is nonconforming, we cannot expect to have
the so called Galerkin orthogonality relation. However, we still have the
following estimate.
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Proposition 2.1. Let (u,p,\) and (un,pn, An) be solutions of (2.3) and
(2.7) respectively. We assume f € L3(Q)? and (u,p,\) € H*(Q)% x H'(Q) x
WLoo(T). Then we have, for all v, € Vi,

|an(@—un, vn) +bn(vh, —Pph) +ch(vn-1n, A= An)| < C(@, B, N hl|vall g ye,
(2.8)

where @ and P are (any suitable) extensions of u and p to Q, and X = Xo.

To prove this we need auxiliary lemmas (see [9, 14| for the proof) con-
cerning estimates on the boundary skin Q A Q; = (Q\ Q) U (O \ Q).

Lemma 2.1. There ezists an extension operator P, € L(HY(Qp)4, HE ()%
such that

1 Brvnll g gya < Cllvnllmay)a, Vup € Vh,
“PhUh”Hl(QAQh)d < Ch1/2||vh||Hl(Qh)d» Vup, € Vj.
Lemma 2.2. For all g, € Qr we have ||gn|l12(0,\0) < Ch1/2I|Qh“L2(Qh).
Lemma 2.3. (i) For all f € L3(Q)?, we have || f|| 2@an,)e < Ch1/3|lf“L3(Q)d.
(i) For all v € H*(Q)%, we have vl 1 ag,)e < C’h2/3||v||H2(Q)d.
(i) For all g € H* (), we have lallzz@an,) < Ch2/3||q‘|H1(Q)
Proof. These follows from |Q A Q| < Ch2. O

Lemma 2.4. For all n € HY(Q), we have

(i) Ino w2,y < Clinllzzr-
(i) | fpnds — Jp, nomds| < Ch?||nl|L2(ry-

(iii) [l = 1o 7l o) < Chlnl g,
Lemma 2.5. Under the assumptions of Proposition 2.1, we obtain

le(v-n,X) = cp(v-np, N)| < CNA|Y|, Yo e HY(Q)Z
Proof. First we note that
lc(v-n,A) = (v~ np, A
/ v-nAds — /F o(m(x)) - n(w(z)A(x(z)) ds

<

’/ m(x)) - n(m(z))N(7w(z)) ds — /h v(z) - n(m(z)) (7 (x)) ds

l/ ) -n(m(z))A(n(x)) ds — / v(z) - np(z)\(m(x)) ds

'y

< Chlv|l g1(q,)e M 2 (r)



In fact, one can apply Lemma 2.4(ii)(iii) to bound the first two terms on the
right-hand side. The last term is treated by ||n — n4|| Lo (r,) < Ch. Finally,
because the mid-point formulas are exact for linear functions, one obtains

[(v -1, A)p — cn(v - mp, A Z v np(A — Mms)) ds
ses, *In

< Chl|vll i lIMlw.eo(ry
This completes the proof. O

proof of Proposition 2.1. We add the following three identities:

an (@ — up, vp) = a(u, Pyup) — ap(un, vr) + ag,\a (@, vr) — ag\q,, (4, Pyos),
bn(h, D — pr) = b(Phvn, p) — bn(vh, pr) + ba,\a(vh, B) — bn\nh(thh,p),
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Ch(vh ’I’Lh,)\ /\h) = C(thh n, )\) - ch(vh ’I’Lh,)\h) +ch(vh N, )— C(th n, )\).

Then, from (2.3); and (2.7); we deduce that

an (& — wp, vp) + b (U, B — Pr) + Ch(Vh - T, A — Ap)
= (f, Pavn)ane, + agna(i,vn) — ag\q, (4, Prop)
+ ba,\a(Vh, D) — bona,, (Prvk, D),
+ cn(vn - mon, :\) —c(Pyv - n, 5\)

Now Lemmas 2.1, 2.2, 2.3 and 2.5 conclude (2.8). d

2.5 Error estimate

We change the additive constant of p in such a way that th (p—pn)dz =0.
Let I5,@ and II,p be a Lagrange interpolation of % and L?(Q)-projection of
P respectively.

Lemma 2.6. Let S € Sy, be arbitrary.

(i) When d = 2, we have [n(mg) — np(mg)| < Ch?.

(i) When d = 3, if u € W2®(Q) satisfies divu =0 in Q andu-n =0 on
L, then |Ina - np(mg)| < Ch2[|u||W2,oo(Q).

Proof. (i) This follows from a Taylor expansion of ¢.

(ii) For simplicity we assume that € is convex. Then, for each S € Sy,
the plane containing S, denoted by Pg, divide Q into exactly two parts. We
denote the one which contains 7(.S) by Gs. One sees that 0Gs = (I'NGg)U
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(PsNGg) =: S U S*. By the assumption, fs* u-npds = — fgu -nds = 0.
Since the barycenter formula is exact for linear functions, it follows that

1
Ihu-nh(mg)zm/slhu~nhds
1/(Iu u)nds+1 Iyu - np ds
= RU —U) - Np =i RU - T2 AS.
IS] Jse IS] Jsw\s

The first term is bounded by an interpolation estimate. For the second term,
noting that |S| = Ch%, |8*\ S| = Ch} and that ||n — ny || (s) < Chs, one
obtains the desired bound. O

Theorem 2.3. Let (u,p) and (un,pp) be solutions of (2.2) and (2.4), re-
spectively, for g =h =0. We assume f € L3(Q)? and (u,p) € W2 (Q)? x
Wheo(Q). Then we obtain

- ~ - h?
1% — upll g1 (q,ye + 15 = prllr2,) < C(4,5)(h+ Ve+ ﬁ)’

where (i, p) is any W2 x WL extension of (u,p) to Q. In particular, if
€ = O(h?), then the error is of O(h).

Proof. Let vy = Ipu. It is obvious that (|G — up| g1,y < C(@)h + [lvn —
uh”Hl(Qh)d. By (2.5) one has

Cllvp, — uhll?{l(ﬂh)d < ap(vp — up, vy — up)
= ap(vn — U, vp — up)
+ an(@ — up, v — up) + bp(Vh — Upy B — Pr) + ch((Vh — up) - Ty A — Ap)
= bn(vh — up, b — pr)
— cn((vn — un) - nps A — Ap). (2.9)
Let us majorize each term on the right-hand side. The first line is easily
estimated by C(@)h||v,—usl| g1(q,)s- Proposition 2.1 tells us that the second

line is bounded by C(&, p)hllvr — unll g1(q,)e-
For the third line, it follows that

— bn(vh — un, D — pn) + dn(Ph — qh, Ph — qn)
= by (& — vh, P — Pr) + bu(un, D — pr) + dn(Phs Pr — ar) — dulqn, Ph — an)
= bp (@ — n, D — pr) + bn(un, b — qn) — dn(qn, Pn — qn)
= bp(@ — v, P — pn) + buun — 4,9 — qn) — Yh(Van, RV (pr — qr)), (2.10)



where we have used divd = 0 and (2.4)2. We combine Proposition 2.1, test
functions being in V},, with (2.6) to obtain

P—prllz2(0) < C(@D)h+C (G, B)|lvn—unll g1 (q,ye +YCRIV (gh—pr)ll L2(0)
(2.11)
We conclude from (2.10) and (2.11) that

—bn(vn = un, p — pr) < C(i, B)(h* + Allvn — unll 1, )a)- (2.12)
For the fourth line, it follows that
— cn((vh — un) -y X = An) + €cn(A = A, A= An)
= —cp(vn np, A — Ap) + cn(up -, A — Ap) + €ch(A — A, A — A\p)
= —cn(vn - np, A= M) + ecn (M A = Ap),
where we have used (2.7)3. Applying Lemma 2.6 we get
—cn((vn — un) - npy A — Ap) < C(@, A)(h4 /e + €). (2.13)
The desired estimate now follows from (2.9), (2.12) and (2.13). O

2.6 Numerical results

o Example 1: two-dimensional test.

Let © be the unit disk {(z,y) € R?|2? + y? < 1}. We employ the exact
solution u = (—y(z? + ¥?),z(2% + y?))7, p = 8wy, and try to see numeri-
cal solutions computed by our scheme (2.4) reproduce the exact one. The
numerical test is implemented with the software FreeFEM++.

The result is reported in Table 2.1, where we compare the convergence
behavior of our scheme with that for the Dirichlet boundary problem (N
means the division number of the circle). The P1/P1 element with v = 0.1
is used, and the penalty parameter is chosen as € = 0.1h2.. We see that the
two results are comparable and infer that our scheme for a 2D slip boundary
condition is equipped with a good accuracy.

e Example 2: three-dimensional test.
This time (2 is the unit ball {(z,y,2) € R3|z? + y? + 22 < 1}, and we take
the exact solution u = (10z2yz(y — 2),10y%zz(z — x),102%zy(z — y)), p =
10zyz(z + y + z). The numerical test is implemented with the software
FEniCS. We again use the P1/P1 element with v = 0.1 and € = 0.1h2.

The result is shown in Table 2.2. Although it is not so good as in the
Dirichlet boundary problem, the rate of convergence is O(h) and is consistent
with Theorem 2.3.
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Remark 2.1. For the solution of system of linear equations, we employ
UMFPACK, a direct solver for sparse matrices when d = 2, and GMRES
when d = 3. With the use of GMRES or BICG-stab when d = 2 for smaller
¢, we have experienced non-convergence.

Table 2.1: Convergence behavior of the H'-error for velocity in Example 1

N h [lu — UEir”Hl(Qh)d rate ||u — U,Slhp”Hl(Qh)d rate
32 0.316 0.485 — 0.493 —

64 0.165 0.240 1.09 0.239 1.12
128 0.078 0.118 0.94 0.118 0.94
256 0.045 0.058 1.30 0.058 1.29
512 0.023 0.029 1.02 0.029 1.01

Table 2.2: Convergence behavior of the H!'-error for velocity in Example 2

N h |lw — uEir”Hl(Qh)d rate |lu — u,Sth||H1(Qh)d rate
8  0.240 0.454 — 0.860 —

16 0.117 0.228 0.96 0.310 1.42
32 0.062 0.114 1.09 0.166 0.98

3 Generalized Robin boundary condition?®

We consider

—Au=f in Q,
3y tou—BAru="h on I,

where «, 8 >0 are constants and Ar denotes the Laplace-Beltrami operator.
This can be regarded as a simplified problem of the Stokes case:

—vAu+Vp=f, divu=0 in Q,
o(u,p)n + au — BdivrIlr(u) + Bxllp(u)n =h on T,
which describes a stationary version of a reduced-order model for a fluid-

structure interaction problem [2]. Here, divr is the surface divergence oper-
ator; k = divrn is the mean curvature of I'; IIr(u) = Adivru ! + p(Vru +

3This study is based on a joint work with C.M. Colciago (EPFL), L. Dedé (EPFL) and
A. Quarteroni (EPFL and MOX).
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Vrul) denotes the membrane stress tensor, where A, > 0 are Lamé con-
stants and Vr means the surface gradient.

Let us present an idea which could be used to solve (3.1). Let A : ¢ — g—g
be a DtN operator, where ¢ is a given function on I' and u solves —Au = f
in Q, u=¢ onI. Next we define B : ¢ — u, where % is given on I' and
u solves au — Aru = h — 1 on I Then problem (3.1) is rewritten as a
fixed-point problem BA¢ = ¢, which could be solved by iterative methods.
This strategy separates the equations in Q and on I'" which constitute the
transmission problem (3.1).

We, however, would like to propose another method which seems more
direct and simpler. By the integration-by-parts formulas in © and on T,
problem (3.1) admits the following weak formulation:

/Vu-Vvdx+/(auv+ﬁVpu-va)ds:/fvdz-i—/hvds, (3.2)
Q r Q r

for all test functions v. For this weak form to be well-defined, one finds that
V ={ve H(Q) | v[r € H ()} is a suitable function space to work with.
In fact, because the bilinear form defined by the left-hand side is coercive
on V, we can immediately adapt the celebrated Lax-Milgram theorem to
(3.2) to show its well-posedness. Moreover, we can establish, with V-related
spaces, regularity and convergence of the finite element method, namely,

Theorem 3.1. (i) Let f € HY(Q) and h € HY(T')'. Then there exists a
unique weak solution u of (3.1).

(ii) For m > 2, if I € C™ L1 f ¢ H™2(Q), h € H"%(T), then u €
H™(Q) and ulr € H™(T).

(ii1) Let up, be a Py finite element solution to (8.2), where the subscript h
means the mesh size. Then we have ||u—up|ly < Chmi“{k’m—l}(lluHHm(Q) +

||u”Hm(1"))-

For the details, see our preprint [8].

Our idea is to combine the equation (3.1); and the transmission condition
(3.1)2 into one equation (3.2), without separating them. Then everything
is treated linearly and there is no need for iterative methods to solve the
problem. The idea could be applied to a more general boundary value
problem such as

—Lou=f in €,
3329 —alru=h on T,

where Lq and Lr denotes elliptic operators defined in Q and I respectively,

a > 0, and 85;‘ means the conormal derivative.
Q
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