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1. INTRODUCTION

Let  N\geq 3 and  $\Omega$\subset \mathbb{R}^{N} be a bounded domain whose boundary is smooth. Set a\in L^{\infty}( $\Omega$) be

a function so that a\geq K in  $\Omega$ for some constant  K>-K_{1} , where K_{1} be the first eigenvalue of - $\Delta$

under zero Dirichlet condition on  $\Omega$ . Let  b\in L^{\infty}( $\Omega$) be a function with b\geq 0 in  $\Omega$ and  b\not\equiv 0 . We

discuss the following equation:

()_{ $\lambda$} \left\{\begin{array}{ll}
- $\Delta$ u+au=bu^{p}+ $\lambda$ f & \mathrm{i}\mathrm{n} $\Omega$,\\
u>0 & \mathrm{i}\mathrm{n}  $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right.
Here, p=(N+2)/(N-2) is the critical Sobolev exponent, and f\in H^{-1}( $\Omega$) is a non‐homogeneous
perturbation with f\geq 0 and f\not\equiv 0.  $\lambda$>0 is a parameter.

This equation is involving the critical Sobolev exponent. It is known the existence and nonexis‐

tence of positive solution depends on the dimension N and the shape of the domain  $\Omega$.

Let us recall some facts of the Sobolev embedding. Now we assume  $\Omega$ is a bounded domain,
where the Sobolev space  H_{0}^{1}( $\Omega$) is compactly embedded in L^{q}( $\Omega$) for 1\leq q<p+1 . The Sobolev

space H_{0}^{1}( $\Omega$) is also a subspace of L^{p+1}( $\Omega$) . However, it is not compactly embedded. This fact

make it difficult to analyze critical equations.
Let us recall the definition of a weak solution. u\in H_{0}^{1}( $\Omega$) is a weak solution of ()_{ $\lambda$} if the

following holds for all  $\psi$\in H_{0}^{1}( $\Omega$) :

\displaystyle \int_{ $\Omega$} (Du . D $\psi$+au $\psi$)dx=\int_{ $\Omega$}bu^{p} $\psi$ dx+ $\lambda$\int_{ $\Omega$}f $\psi$ dx.
Here, we have to consider the integral of (p+1) ‐th power of H_{0}^{1} ‐function. If H_{0}^{1}( $\Omega$) were compactly
embedded in L^{p+1}( $\Omega$) , each bounded sequence in H_{0}^{1}( $\Omega$) would have a convergent subsequence in

L^{p+1}( $\Omega$) . We would have a weak solution easily. But it is not the case. To get solutions, we have to

use other methods. We find keys for the critical equations in the next section.
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2. KNOWN RESULTS AND MAIN THEOREM

2.1. Known Results. We recall known results of critical equations. Let us begin with the following
equation:

(1) \left\{\begin{array}{ll}
- $\Delta$ u= $\lambda$(1+u)^{p} & \mathrm{i}\mathrm{n} $\Omega$,\\
u>0 & \mathrm{i}\mathrm{n} $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n}\partial $\Omega$.
\end{array}\right.
This equation, as well as the main problem, is non‐homogeneous and we are interested in positive
solutions. We introduce two type of solutions. They are called the minimal solution and a second

solution. \underline{u}_{ $\lambda$} is called the minimal solution if u\geq\underline{u}_{ $\lambda$} in  $\Omega$ holds for any solution  u . We consider

another solution \overline{u}_{ $\lambda$} other than the minimal solution. For convenience, we call it a second solution.

The facts of the minimal solution of (1) are stated as following:

Theorem 1 ([KK74], [CR75]).  0<\overline{ $\lambda$}<\infty exists which satisfies the following (i)-(iii) :

(i) (1) has the minimal solution \underline{u}_{ $\lambda$} for 0< $\lambda$<\overline{ $\lambda$}.

(ii) (1) has only one weak solution \underline{u}_{ $\lambda$-}when $\lambda$=\overline{ $\lambda$}.
(iii) (1) has no weak solution for  $\lambda$> $\lambda$.

\overline{ $\lambda$} is often called the extremal value. The facts of a second solution of(1) are stated as following:

Theorem 2. There exists a second solution \overline{u}_{ $\lambda$} for 0< $\lambda$<\overline{ $\lambda$} satisfying \overline{u}_{ $\lambda$}\geq\underline{u}_{ $\lambda$}.
This fact was shown by Joseph and Lundgren [JL73] if  $\Omega$ was a ball. They used radially ODE

methods. On the other hand, Brézis and Nirenberg [BN83] showed this fact without restriction of

 $\Omega$ . They used two tools, the mountain pass theorem without (PS) condition and the Talenti function.

Proposition (Mountain pass theorem without (PS) condition [AR73]). Let  X be a Banach space.
Let I be a C^{1} ‐class functional on X. Suppose that there exist a neighborhood U of 0\in X and a

constant  $\rho$ so that  $\Phi$(u)\geq pfor all u\in\partial U. Assume that  I(0)< $\rho$ and  l(v)<pfor some v\in X\backslash U.
Let  c=\displaystyle \inf_{P\in P}\max_{w\in P}I(w)\geq $\rho$ where \mathcal{P} is the set ofpaths from 0 to v in X. Then, there exists a

sequence \{v_{k}\}_{k=0}^{\infty} ofX satisfying the following (i) and (ii):

(i) \displaystyle \lim_{k\rightarrow\infty}I_{ $\lambda$}(v_{k})=c.
(ii) \displaystyle \lim_{k\rightarrow\infty}I_{ $\lambda$}'(v_{k})=0 in X^{*}.

If we use the variational method, critical points are solutions of the equation. To apply this

theorem for critical equations, we often need (\mathrm{P}\mathrm{S})_{c} condition instead of (PS) condition.

Definition. Let X be a Banach space. Let I be a functional on X . Let c\in \mathbb{R} . We say I satisfies

(\mathrm{P}\mathrm{S})_{c} condition if any sequence \{v_{k}\}_{k=0}^{\infty} of X satisfying (i) and (ii) stated in Proposition above has

a convergent subsequence.

Broadly speaking, in our case, if the highest point c is not so high, we can rule out the possibility
of noncompact sequences. Actually, it is related to the Talenti function. We discuss it in the next

section.

We summarize solutions of (1) by using diagrams (Figure 1). On the horizontal axis is  $\lambda$ , On the

vertical axis we would have  H_{0}^{1}( $\Omega$) if we could. Of course, H_{0}^{1}( $\Omega$) is infinitely dimensional. We
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use the L^{\infty} ‐norm instead of that. If we fix a  $\lambda$>0 , we find that the vertical line and the diagram
cross at two points. That means we have two positive solutions. The curve of the minimal solution

starts at 0 and ends at  $\lambda$=\overline{ $\lambda$} . The curve increases. It means the bigger  $\lambda$ is, the bigger  L^{\infty} ‐norm

of the minimal solution is. This fact is actually proved. The curve of the second solution starts at

 $\lambda$=\overline{ $\lambda$} and goes reversely. When  $\lambda$=\overline{ $\lambda$}, (1) has only one solution.

FIGURE 1. The diagram of solutions of (1). On the horizontal axis is  $\lambda$ . On the

vertical axis is  L^{\infty} ‐norm. The branch of the minimal solution starts from 0 and ends

at  $\lambda$=\overline{ $\lambda$} . The branch of a second solution starts from that end point and goes

reversely.

The mountain pass theorem without (PS) condition and the Talenti function are efficient for our

types. The following equation is the main problem ()_{ $\lambda$} with a=0 and b=1 :

(2) \left\{\begin{array}{ll}
- $\Delta$ u=u^{p}+ $\lambda$ f & \mathrm{i}\mathrm{n} $\Omega$,\\
u>0 & \mathrm{i}\mathrm{n} $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n}\partial $\Omega$.
\end{array}\right.
Tarantello [Tar92] proved that it has two positive solutions for sufficiently small  $\lambda$>0.

The following equation is the main problem ()_{ $\lambda$} with a be a constant K and b=1 :

(3) \left\{\begin{array}{ll}
- $\Delta$ u+Ku=u^{p}+ $\lambda$ f & \mathrm{i}\mathrm{n}  $\Omega$\\
 u>0 & \mathrm{i}\mathrm{n} $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n}\partial $\Omega$.
\end{array}\right.
It has a linear term of u . Naito and Sato [NS12] investigated this equation. The results of the

minimal solution are summarized in the same way as Theorem 1. On the other hand, the results of

the second solutions are different from (1) and (2).

Theorem 3 ([NS12] Theorem 1.3). Let 0< $\lambda$<\overline{ $\lambda$}. Assume that either (i) or (ii) holds.

(i) -K_{1}<K\leq 0 and N\geq 3.

(ii) K>0 and N=3 , 4, 5.

Then, (3) has a second solution \overline{u}_{ $\lambda$}\in H_{0}^{1}( $\Omega$) satisfying \overline{u}_{ $\lambda$}>\underline{u}_{ $\lambda$} in  $\Omega$.
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Naito and Sato also proved that, if K>0 and N\geq 6 , there is a case the equation has only one

solution for sufficiently small  $\lambda$>0 . In this sense, the statement of (ii) gives the best result.

We use the diagrams to view these results (Figure. 2). Let K>0 . If N=3 , 4, 5, the branch of

a second solution is approaching to the extent of  $\lambda$=0 . However, if N\geq 6 , the climate changes.
The branch of second solution cannot go beyond some positive  $\lambda$.

FIGURE 2. The diagram of solutions of(3) depends on the dimension N when K>0.

If N=3 , 4, 5, the branch of a second solution is approaching to the extent of  $\lambda$=0

like the left figure, while if N\geq 6 , there is a case that it cannot go beyond some  $\lambda$

like the right figure.

2.2. Main Theorem. Now we consider the main problem ()_{ $\lambda$} . First we state the results of the

minimal solution.

Theorem 4 ([Tak15] Theorem 1.1, 1.2).  0<\overline{ $\lambda$}<\infty exists which satisfies the following (i)-(iii) :

(i) (1) has the minimal solution \underline{u}_{ $\lambda$} for 0< $\lambda$<\overline{ $\lambda$}.

(ii) (1) has only one weak solution \underline{u}_{ $\lambda$}when $\lambda$-=\overline{ $\lambda$} ifb>0 in  $\Omega$.

(iii) (1) has no weak solution for  $\lambda$> $\lambda$.

The main result of the minimal solution is almost the same as Theorem 1. A miner difference

occurs when  $\lambda$=\overline{ $\lambda$} . Since b is a function, we assume b>0 in  $\Omega$ to get the uniqueness of the

solution.

Now we state the main result.

Theorem 5 ([Tak15] Theorem 1.4). Let  0< $\lambda$<\overline{ $\lambda$}. Suppose that b achieves its maximum

M=1b||_{L^{\infty}( $\Omega$)}>0 at a point x_{0} in  $\Omega$ . Suppose that there exists  r_{0}>0 so that \{|x-x_{0}|<2r_{0}\}\subset $\Omega$,
b is continuous in \{|x-x_{0}|<r_{0}\} , and

a(x)=m_{1}+m_{2}|x-x_{0}|^{q}+o(|x-x_{0}|^{q}) in \{|x-x_{0}|<r_{0}\}.

Here, q>0, m_{1}>K, and m_{2}\neq 0 are constants. Assume that either (i)-(iv) holds.

(i) m_{1}<0 and N\geq 3.

(ii) m_{1}>0 and N=3 , 4, 5.

(iii) m_{1}=0, m_{2}<0 and N\geq 3.
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(iv) m_{1}=0, m_{2}>0 and 3\leq N<6+2q.
Then, ()_{ $\lambda$} has a second solution \overline{u}_{ $\lambda$}\in H_{0}^{1}( $\Omega$) satisfying \overline{u}_{ $\lambda$}>\underline{u}_{ $\lambda$} in  $\Omega$.

The main theorem gives sufficient conditions where we have two solutions for 0< $\lambda$<\overline{ $\lambda$} . Though
(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i}) are like Naito and Sato�s results, (iv) seems to be new. In (iv), we have two solutions if

3\leq N<6+2q . This occurs since coefficients a and b are functions on  $\Omega$.

We compare (3) and the main problem ()_{ $\lambda$} . We focus on the dimension where there exists a

second solution for any  0< $\lambda$< $\lambda$ . In Theorem 3 (i) and (ii), when  K stride across zero, the upper
bound of the dimension jumps from \infty to 6. We consider this result from the main problem ()_{ $\lambda$}.
Theorem 3 is regarded as the case that a is a constant K . On the other hand, in the main problem
()_{ $\lambda$}, a is a function. We can think of a function whose order is q at x_{0} , which appears in Theorem 5

(iv). In this case, the upper bound of the dimension is 6+2q . Therefore, this can be regarded as a

intermediate case of Naito and Sato�s results (Figure 3).

FIGURE 3. The dimension where ()_{ $\lambda$} has a second solution varies depending on the

function a(x) . Theorem 5 (iv), in which a increases in order q around zero point x_{0},

can be interpreted as a intermediate case between Theorem 3 (i) and (ii), in which a

is a constant K.

3. PROOF 0F MAIN THEOREM

We move on to the summary of the proof of Theorem 5. We start at the point that we already
have investigated the minimal solution \underline{u}_{ $\lambda$} of ()_{ $\lambda$} . We assume 0< $\lambda$<\overline{ $\lambda$} . We can also assume that

x_{0}=0 by translation of axes if we need. We are now interested in the second solutions. Instead of

chasing a second solution directly, we consider the difference between a second solution \overline{u}_{ $\lambda$} and the

minimal solution \underline{u}_{ $\lambda$} . We name it v=\overline{u}_{ $\lambda$}-\underline{u}_{ $\lambda$} , which satisfies the following:

(v) \left\{\begin{array}{ll}
- $\Delta$ v+av=b((v+\underline{u}_{ $\lambda$})^{p}-\underline{u}_{ $\lambda$}^{p}) & \mathrm{i}\mathrm{n}  $\Omega$,\\
v>0 & \mathrm{i}\mathrm{n} $\Omega$,\\
v=0 & \mathrm{o}\mathrm{n}\partial $\Omega$.
\end{array}\right.
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The main problem ()_{ $\lambda$} has a second solution if and only if (\nabla)_{ $\lambda$} has a solution. It follows that

v>0 in  $\Omega$ because of the definition of the minimal solution and the strong maximum principle.
We use the variational method to prove the existence of  v . We define a functional I_{ $\lambda$} as following:

(4) I_{ $\lambda$}(v)=\displaystyle \frac{1}{2}\int_{ $\Omega$}|Dv|^{2}dx-\int_{ $\Omega$}G(v,\underline{u}_{ $\lambda$})dx,
where

(5) g(t, s, x)=b(x)((t_{+}+s)^{p}-s^{p})-a(x)t_{+},

G(t, s, x)=\displaystyle \int_{0}^{f_{+}}g(t, s, x)dt
(6) =b(x)(\displaystyle \frac{1}{p+1}(t_{+}+s)^{p+1}-\frac{1}{p+1}s^{p+1}-s^{p}t_{+})-\frac{1}{2}a(x)t_{+}^{2},
and we write g(v,\underline{u}_{ $\lambda$}) as g(v,\underline{u}_{ $\lambda$}, x) and G(v, \underline{u}_{ $\lambda$}) as G(v,\underline{u}_{ $\lambda$}, x) . If we find a critical point v of I_{ $\lambda$},
we get a solution of (\wp)_{ $\lambda$} . It means that we get a second solution \overline{u}_{ $\lambda$} as the sum of the minimal

solution \underline{u}_{ $\lambda$} and the critical point v.

We combine the mountain pass theorem and the Talenti function. We need (PS)_{c} condition.

Through some argument, we can find a sufficient condition of (PS)_{c} condition, that is, there exists

a function v_{0}\in H_{0}^{1}( $\Omega$) so that v_{0}\geq 0 in  $\Omega$ and

(7) \displaystyle \int_{ $\Omega$}bv_{0}^{p+1}dx>0,
and

(8) \displaystyle \sup_{t>0}I_{ $\lambda$} (tvo) <\displaystyle \frac{1}{NM^{(N-2)/2}}S^{N/2}.
Here, M is the maximum value of b. S is called the best Sobolev constant. The best Sobolev

constant S is defined by following:

||Du||_{L^{2}(V)}^{2}
(9) S= inf

u\in H_{0}^{1}(V),u\not\equiv 0\overline{||u||_{L^{p+1}(V)}^{2}}
�

where V\subset \mathbb{R}^{N} is a domain. It is known that S does not depend on V . This infimum is actually
achieved by the Tarenti function. This fact is important when we compute the condition (8). To get
this v_{0} , we use the Talenti function. The Talenti function U is given as following:

U(x)=\displaystyle \frac{1}{(1+|x|^{2})^{(N-2)/2}}.
Our aim is to get v_{0} of the condition (8). We define u_{ $\epsilon$} and v_{ $\epsilon$} as following:

(10) u_{ $\epsilon$}(x)=\displaystyle \frac{ $\eta$(x)}{( $\epsilon$+|x|^{2})^{(N-2)/2}},
(11) v_{ $\epsilon$}(x)=\displaystyle \frac{u_{ $\epsilon$}(x)}{\Vert b^{1/(p+1)}u_{ $\epsilon$}||_{L^{p+1}( $\Omega$)}}.
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Here,  $\epsilon$>0 and  $\eta$ is a cut‐off function around O.  v_{ $\epsilon$} is some kind of normalization of u_{ $\epsilon$} . Note that,
in case (i) or (iii), we can change r_{0}>0 for smaller one if we need so that

(12) \displaystyle \int_{ $\Omega$}av_{ $\epsilon$}^{2}dx\leq 0.
Note also that, in case (ii) or (iv), we can change r_{0}>0 for smaller one if we need so that

(13) \displaystyle \int_{ $\Omega$}av_{ $\epsilon$}^{2}dx\geq 0.
Now we compute the condition (8). Through some argument, We can see the supremum in (8) is

actually achieved at some positive t=t_{ $\epsilon$} . We are going to estimate I_{ $\lambda$}(t_{ $\epsilon$}v_{ $\epsilon$}) . We define

H'(v,\displaystyle \underline{u}_{ $\lambda$})=\frac{1}{p+1}(v+\underline{u}_{ $\lambda$})^{p+1}-\frac{1}{p+1}v^{p+1}-\frac{1}{p+1}\underline{u}_{ $\lambda$}^{p+1}-\underline{u}_{ $\lambda$}^{p}v.
Then, we have

\displaystyle \sup_{t>0}I_{ $\lambda$}(tv_{ $\epsilon$})=I_{ $\lambda$}(t_{ $\epsilon$}v_{ $\epsilon$})
(14) =\displaystyle \frac{1}{2}t_{ $\epsilon$}^{2}||v_{ $\epsilon$}||^{2}-\frac{1}{p+1}t_{ $\epsilon$}^{p+1}-\int_{ $\Omega$}H'(t_{ $\epsilon$}v_{ $\epsilon$},\underline{u}_{ $\lambda$})dx+t_{ $\epsilon$}^{2}\int_{ $\Omega$}av_{ $\epsilon$}^{2}dx,
where

||v_{ $\epsilon$}||=(\displaystyle \int_{ $\Omega$}|Dv_{ $\epsilon$}|^{2}dx)^{1/2}
The term containing a is important for this argument. The  $\epsilon$‐order of that term depends on  q . We

divide the proof into two cases.

For case (i) and (iii), by (12), we have

\displaystyle \sup_{t>0}I_{ $\lambda$}(tv_{ $\epsilon$})\leq\frac{1}{2}t_{ $\epsilon$}^{2}||v_{ $\epsilon$}||^{2}-\frac{1}{p+1}t_{ $\epsilon$}^{p+1}-\int_{ $\Omega$}H'(t_{ $\epsilon$}v_{ $\epsilon$},\underline{u}_{ $\lambda$})dx
\displaystyle \leq\sup_{t>0}(\frac{1}{2}t^{2}||v_{ $\epsilon$}||^{2}-\frac{1}{p+1}t^{p+1})-\int_{ $\Omega$}H'(t_{ $\epsilon$}v_{ $\epsilon$}, \underline{u}_{ $\lambda$})dx
=\displaystyle \frac{1}{N}(||v_{ $\epsilon$}||^{2})^{N/2}-\int_{ $\Omega$}H'(t_{ $\epsilon$}v_{ $\epsilon$},\underline{u}_{ $\lambda$})dx.

By calculation, we have

(15) ||v_{ $\epsilon$}||^{2}=\displaystyle \Vert Dv_{ $\epsilon$}||_{L^{2}( $\Omega$)}^{2}=\frac{S}{M^{2/(p+1)}}+O($\epsilon$^{(N-2)/2})
as  $\epsilon$\searrow 0 , that is,

\displaystyle \frac{1}{N}(||v_{ $\epsilon$}||^{2})^{N/2}=\frac{1}{NM^{(N-2)/2}}S^{N/2}+O($\epsilon$^{(N-2)/2})
as  $\epsilon$\searrow 0 . In H', (p+1) ‐th powered terms are canceled. After some argument, we can show that

there exist $\epsilon$_{0}>0 and C>0 so that for all 0< $\epsilon$<$\epsilon$_{0} , the following holds:

(16) \displaystyle \int_{ $\Omega$}H'(t_{ $\epsilon$}v_{ $\epsilon$}, \underline{u}_{ $\lambda$})dx\geq C$\epsilon$^{(N-2)/4}.
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Summing up these results, there exist $\epsilon$_{0}>0 and C, C'>0 so that for all 0< $\epsilon$<$\epsilon$_{0} , we have

(17) \displaystyle \sup_{t>0}I_{ $\lambda$}(tv_{ $\epsilon$})\leq\frac{1}{NM^{(N-2)/2}}S^{N/2}+(C$\epsilon$^{(N-2)/2}-C'$\epsilon$^{(N-2)/4}) .

For any N\geq 3 , it holds that (N-2)/2>(N-2)/4 . Thus there exists  $\epsilon$>0 so that the terms in

parentheses of the right side of (17) is negative. If we use this  $\epsilon$ for  v_{0}=v_{ $\epsilon$}, v_{0}\geq 0 in  $\Omega$ , (7), and

(8) are all satisfied. Thus we have a second solution of ()_{ $\lambda$}.
For case (ii) and (iv), by (12), we have

\displaystyle \sup_{t>0}I_{ $\lambda$}(tv_{ $\epsilon$})=\frac{1}{2}t_{ $\epsilon$}^{2}(||v_{ $\epsilon$}||^{2}+2\int_{ $\Omega$}av_{ $\epsilon$}^{2}dx)-\frac{1}{p+1}t_{ $\epsilon$}^{p+1}-\int_{ $\Omega$}H'(t_{ $\epsilon$}v_{ $\epsilon$},\underline{u}_{ $\lambda$})dx
\displaystyle \leq\sup_{t>0}(\frac{1}{2}t^{2}(||v_{ $\epsilon$}||^{2}+2\int_{ $\Omega$}av_{ $\epsilon$}^{2}dx)-\frac{1}{p+1}t^{p+1})-\int_{ $\Omega$}H'(t_{ $\epsilon$}v_{ $\epsilon$}, \underline{u}_{ $\lambda$})dx
=\displaystyle \frac{1}{N}(||v_{ $\epsilon$}||^{2}+2\int_{ $\Omega$}av_{ $\epsilon$}^{2}dx)^{N/2}-\int_{ $\Omega$}H'(t_{ $\epsilon$}v_{ $\epsilon$},\underline{u}_{ $\lambda$})dx.

Here we define A( $\epsilon$) as following:

A( $\epsilon$)=\displaystyle \frac{1}{N}(||v_{ $\epsilon$}||^{2}+2\int_{ $\Omega$}av_{ $\epsilon$}^{2}dx)^{N/2}-\frac{1}{NM^{(N-2)/2}}S^{N/2}.
We are now at the point to evaluate the integral of av_{ $\epsilon$}^{2} . We define

I_{1}=\displaystyle \int_{\{|x|<r_{0}\}}\frac{1}{( $\epsilon$+|x|^{2})^{N-2}}dx,
I_{2}=\displaystyle \int_{\{|x|<r_{0}\}}\frac{|x|^{q}}{( $\epsilon$+|x|^{2})^{N-2}}dx.

The estimate of I_{1} is famous. Many paper refers to Brézis‐Nirenberg [BN83]. On the other hand,
I_{2} is not on Brézis‐Nirenberg. We use almost the same method of Brézis‐Nirenberg to evaluate I_{2}.
To describe only the results, we have the following:

(18) \left\{\begin{array}{l}
I_{1}=[Case]\\
I_{2}=[Case]
\end{array}\right.
We can also evaluate

(19) \Vert b^{1/(p+1)}u_{ $\epsilon$}\Vert_{L^{p+1}( $\Omega$)}^{2}=O($\epsilon$^{-(N-2)/2})
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as  $\epsilon$\searrow 0 . Therefore, we admit the following:

(20) \left\{\begin{array}{l}
\int_{ $\Omega$}av_{ $\epsilon$}^{2}dx=O($\epsilon$^{(N-2)/2})+m_{1}I_{1}'+m_{2}I_{2}',\\
I_{1}'=[Case] (N=3(N=4(N\geq 5\\
I_{2}'=[Case]
\end{array}\right.
as  $\epsilon$\searrow 0 . We can see I_{2}' is affected with q . Note that, for all case, I_{i}'\gg$\epsilon$^{(N-2)/2} or I_{i}'=O($\epsilon$^{(N-2)/2})
as  $\epsilon$\searrow 0 for i=1 , 2. Note also that I_{1}\gg I_{2} as  $\epsilon$\searrow 0 for any N\geq 3, q>0 . Considering (15) and

(20), we have the evaluation of A( $\epsilon$) as following:

(21)  $\Lambda$( $\epsilon$)=\left\{\begin{array}{ll}
O( $\epsilon$) & (m_{1}>0, N\geq 5) ,\\
O( $\epsilon$|\log $\epsilon$|) & (m_{1}>0, N=4) ,\\
O($\epsilon$^{1/2}) & (m_{1}>0, N=3) ,\\
O($\epsilon$^{1+q/2}) & (m_{1}=0, m_{2}>0, N>q+4) ,\\
O($\epsilon$^{(N-2)/2}|\log $\epsilon$|) & (m_{1}=0, m_{2}>0, N=q+4) ,\\
O($\epsilon$^{(N-2)/2}) & (m_{1}=0, m_{2}>0, N<q+4)
\end{array}\right.
as  $\epsilon$\searrow 0 . By (16), there exist $\epsilon$_{0}>0 and C'>0 so that for all 0< $\epsilon$<$\epsilon$_{0},

(22) \displaystyle \sup_{t>0}I_{ $\lambda$}(tv_{ $\epsilon$})\leq\frac{1}{NM^{(N-2)/2}}S^{N/2}+(A( $\epsilon$)-C'$\epsilon$^{(N-2)/4}) .

As we discussed before, if there exists  $\epsilon$>0 so that the terms in parentheses of the right side

of (22) is negative, we have a second solution of ()_{ $\lambda$} . If m_{1}>0 and N=3 , 4, 5, it holds that

A( $\epsilon$)\ll$\epsilon$^{(N-2)/4} as  $\epsilon$\searrow 0 by (21). Thus we have the desired  $\epsilon$ . If  m_{1}=0, m_{2}>0 and N\leq q+4,
it holds that  $\Lambda$( $\epsilon$)\ll$\epsilon$^{(N-2)/4} as  $\epsilon$\searrow 0 by (21). If m_{1}=0, m_{2}>0 and N>q+4 , the condition

where A( $\epsilon$)\ll$\epsilon$^{(N-2)/4} as  $\epsilon$\searrow 0 is that 1+q/2>(N-2)/4 . Then we have N<2q+6 . That is,
if m_{1}=0, m_{2}>0 and 3\leq N<2q+6 , we have the desired  $\epsilon$.

In [Tak15] and the talk of this workshop, the author mistakenly dropped t_{ $\epsilon$}^{2} of the last term in

(14). The proof should be replaced as above.

AppENDIx A. PROOF 0F BOUNDEDNESS \mathrm{o}\mathrm{p} $\lambda$

In the workshop, several people asked the author about the proof of Theorem 4 (iii). In this

appendix, we see the summary of that proof. To prove Theorem 4 (iii), we define

\overline{ $\lambda$}= {  $\lambda$\geq 0| The main problem ()_{ $\lambda$} has a solution.}

and we show \overline{ $\lambda$}<\infty . The following argument is almost the same as the proof appeared in [NS12].
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We define  g_{0}\in H_{0}^{1}( $\Omega$) as the unique solution of the following equation:

(23) \left\{\begin{array}{l}
- $\Delta$ g_{0}+ag_{0}=f \mathrm{i}\mathrm{n} $\Omega$,\\
g_{0}=0 \mathrm{o}\mathrm{n}\partial $\Omega$.
\end{array}\right.
We have g_{0}>0 in  $\Omega$ by the strong maximum principle. Next we consider the following linearized

eigenvalue problem:

(24) - $\Delta \phi$+a $\phi$= $\mu$ b(g_{0})^{p-1} $\phi$ in  $\Omega$,  $\phi$\in H_{0}^{1}( $\Omega$) .

It is known that the first eigenvalue $\mu$_{1} is characterized by the Rayleigh quotient:

\displaystyle \int_{ $\Omega$}(|D $\psi$|^{2}+a$\psi$^{2})dx
(25) $\mu$_{1}= inf

 $\psi$\in H_{0^{( $\Omega$), $\psi$\not\equiv 0}\overline{\int_{ $\Omega$}b(g_{0})^{p-1}$\psi$^{2}dx}}^{1}
.

It is also known that if  $\phi$ achieves the infimum of the right side of (25),  $\phi$ is a first eigenfunction of

(24). Through some argument we have  $\mu$_{1}>0 and we find the first eigenfunction $\phi$_{1} which satisfies

$\phi$_{1}>0 in  $\Omega$.

We fix  $\lambda$>0 so that there exists a solution of the main problem ()_{ $\lambda$} . We write u as a solution

of the main problem ()_{ $\lambda$} and we set v=u- $\lambda$ g_{0} , which satisfies

- $\Delta$ v+av=bu^{p}\geq 0.

Then we have v>0 in  $\Omega$ by the strong maximum principle. It means that  u> $\lambda$ g_{0} in  $\Omega$ . Therefore

we get the following:

(26) - $\Delta$ u+au\geq bu^{p}>b$\lambda$^{p-1}(g_{0})^{p-1}u\mathrm{i}\mathrm{n} $\Omega$.
On the other hand, we have the following:

(27) - $\Delta \phi$_{1}+a$\phi$_{1}=$\mu$_{1}b(g_{0})^{p-1}$\phi$_{1} in  $\Omega$.

Integrating (26) \times$\phi$_{1}-(27)\times u on  $\Omega$ , we admit the following:

(28)  0>($\lambda$^{p-1}-$\mu$_{1})\displaystyle \int_{ $\Omega$}b(g_{0})^{p-1}u$\phi$_{1}dx.
Since b\geq 0 in  $\Omega$, b\not\equiv 0 , and g_{0}, u, $\phi$_{1}>0 in  $\Omega$ , the integral of the right side of (28) is positive,
which implies  $\lambda$^{p-1}-$\mu$_{1}<0 . Thus we conclude that \overline{ $\lambda$}\leq$\mu$_{1}^{1/(p-1)}<\infty.
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