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ABSTRACT. We investigate an indefinite superlinear elliptic equation coupled with a sub‐

linear Neumann boundary condition depending on a positive parameter  $\lambda$ . We establish

a global multiplicity result for positive solutions of this concave‐convex problem in the

spirit of Ambrosetti‐Brezis‐Cerami and obtain their asymptotic profiles as  $\lambda$\rightarrow 0^{+}.

Furthermore, we discuss the existence of a global subcontinuum of positive solutions bi‐

furcating from the trivial solutions. Our arguments are based on a bifurcation analysis,
a comparison principle, variational techniques, and a topological method.

1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

Let  $\Omega$ be a bounded domain of \mathbb{R}^{N}(N\geq 2) with smooth boundary \partial $\Omega$ . In this paper

we consider the following nonlinear elliptic problem

\left\{\begin{array}{ll}
-\triangle u=a(x)|u|^{p-2}u & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial u}{\partial \mathrm{n}}= $\lambda$|u|^{q-2}u & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (P_{ $\lambda$})

where

\displaystyle \triangle=\sum_{J}^{N}=1\frac{\partial^{2}}{\partial x^{2}} is the usual Laplacian in \mathbb{R}^{N},
\bullet $\lambda$>0,
\bullet 1<q<2<p<\infty,

a\in C^{ $\alpha$}(\overline{ $\Omega$}) with  $\alpha$\in(0,1) ,

\bullet \mathrm{n} is the unit outer normal to the boundary \partial $\Omega$.

A function u\in X :=H^{1}( $\Omega$) is said to be a weak solution of (P_{ $\lambda$}) if it satisfies

\displaystyle \int_{ $\Omega$}\nabla u\nabla w-\int_{ $\Omega$}a|u|^{p-2}uw- $\lambda$\int_{\partial $\Omega$}|u|^{q-2}uw=0, \forall w\in X.
A weak solution u of (P_{ $\lambda$}) is said to be nontrivial and non‐negative if it satisfies u\geq 0 and

u\not\equiv 0 . Under the condition

p\displaystyle \leq 2^{*}=\frac{2N}{N-2} if N>2 , (1.1)

we shall prove that such solutions are strictly positive on St (Proposition 2.1) and belong to

C^{2+ $\theta$}(\overline{ $\Omega$}) for some  $\theta$\in(0,1) (Remark 2.2). To this end, we use the weak maximum principle
[12] to deduce that any nontrivial non‐negative weak solution u of (P_{ $\lambda$}) is strictly positive
in  $\Omega$ . In addition, by making good use of a comparison principle [16, Proposition A.1], we

shall prove that  u is positive on the whole of St. Finally, a bootstrap argument will provide
u\in C^{2+ $\theta$}(\overline{ $\Omega$}) for some  $\theta$\in(0,1) , so that u is \mathrm{a} (classical) positive solution. Note that
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the standard boundary point lemma (as in [14]) can not be applied directly to nontrivial

non‐negative weak solutions of (P_{ $\lambda$}) .

The purpose of this paper is to study existence, non‐existence, and multiplicity of

positive solutions of (P_{ $\lambda$}) ,
as well as their asymptotic properties as the parameter  $\lambda$ ap‐

proaches O. It is promptly seen that (P_{ $\lambda$}) has no positive solution if a\geq 0 . More precisely,
we shall see that (P_{ $\lambda$}) has a positive solution only if \displaystyle \int_{ $\Omega$}a<0 (cf. Proposition 2.3). This

condition is known to be necessary for the existence of positive solutions of problems with

Neumann boundary conditions at least since the work of Bandle‐Pozio‐Tesei [3]. In this

paper we focus on the case where a changes sign.
In view of the condition 1<q<2<p , we note that if a changes sign then (P_{ $\lambda$})

belongs to the class of concave‐convex type problems with nonlinear boundary conditions.

The main reference on concave‐convex type problems is the work of Ambrosetti‐Brezis‐

Cerami [2], which deals with

\left\{\begin{array}{ll}
-\triangle u= $\lambda$|u|^{q-2}u+|u|^{p-2}u & \mathrm{i}\mathrm{n}  $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (1.2)

where 1<q<2<p . Under the condition (1.1) the authors proved a global multiplicity
result, namely, the existence of some  $\Lambda$>0 such that (1.2) has at least two positive solutions

for  $\lambda$\in(0,  $\Lambda$) , at least one positive solution for  $\lambda$= $\Lambda$ , and no positive solution for  $\lambda$> $\Lambda$ . In

addition, they analysed the asymptotic behavior of the solutions as  $\lambda$\rightarrow 0^{+} . Tarfulea [21]
considered a similar problem with an indefinite weight and a Neumann boundary condition,
namely,

\left\{\begin{array}{ll}
-\triangle u= $\lambda$|u|^{q-2}u+a(x)|u|^{p-2}u & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial u}{\partial \mathrm{n}}=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (1.3)

where a\in C(\overline{ $\Omega$}) . He proved that \displaystyle \int_{ $\Omega$}a<0 is a necessary and sufficient condition for the

existence of a positive solution of (1.3). Making use of the sub‐supersolutions technique,
he has also shown the existence of  $\Lambda$>0 such that problem (1.3) has at least one positive
solution for  $\lambda$< $\Lambda$ which converges to  0 in L^{\infty}( $\Omega$) as  $\lambda$\rightarrow 0^{+} , and no positive solution for

 $\lambda$> $\Lambda$ . Garcia‐Azorero, Peral, and Rossi [10] have considered the problem

\left\{\begin{array}{ll}
-\triangle u+u=|u|^{p-2}u & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial \mathrm{u}}{\partial \mathrm{n}}= $\lambda$|u|^{q-2}u & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right. (1.4)

By means of a variational approach, they proved that if 1<q<2<p and p<2^{*} when

N>2 , then there exists $\Lambda$_{0}>0 such that (1.4) has infinitely many nontrivial weak solutions

for  0< $\lambda$< $\Lambda$ . Moreover, they have also proved that if  1<q<2 and p=2^{*} when N>2

then there exists $\Lambda$_{1}>0 such that (1.4) has at least two positive solutions for  $\lambda$<$\Lambda$_{1} , at

least one positive solution for  $\lambda$=$\Lambda$_{1} ,
and no positive solution for  $\lambda$>$\Lambda$_{1}.

When a changes sign we shall prove a global multiplicity result in the style of

Ambrosetti‐Brezis‐Cerami result. However, in doing so we shall encounter some particu‐
lar difficulties. First of all, the obtention of a first solution by the sub‐supersolution method

seems difficult since the existence of a strict supersolution of (P_{ $\lambda$}) for  $\lambda$>0 small is not

evident at all. As a matter of fact, in [21] the author shows that this is a rather delicate

issue. Another diffculty in this case is related to the variational structure: note that unlike

in problems with Dirichlet boundary conditions, the left‐hand side of (P_{ $\lambda$}) lacks coercivity,
since the term \displaystyle \int_{ $\Omega$}|\nabla u|^{2} does not correspond to \Vert u\Vert^{2} in X . This sort of problems has been

considered in [15, 16] for other kinds of nonlinearities and we shall use a similar approach
here to prove existence results for (P_{ $\lambda$}) . This approach is based on the Nehari manifold

method, which is known to be useful when dealing with elliptic problems with powerlike
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nonlinearities and sign‐changing weights. Brown and Wu [5] used this method to deal with

the problem

\left\{\begin{array}{ll}
-\triangle u= $\lambda$ m(x)|u|^{q-2}u+a(x)|u|^{p-2}u & \mathrm{i}\mathrm{n}  $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (1.5)

where m, a are smooth functions which are positive somewhere in  $\Omega$ . We refer also to

Brown [4] for a combination of sublinear and linear terms and to Wu [23] for a problem with

a nonlinear boundary condition.

Whenever \displaystyle \int_{ $\Omega$}a<0 we set

c^{*}=(\displaystyle \frac{|\partial $\Omega$|}{-\int_{ $\Omega$}a})^{\frac{1}{\mathrm{p}-q}} (1.6)

We also set

\displaystyle \mathrm{A}=\sup {  $\lambda$>0:(P_{ $\lambda$}) has a positive solution}.

Let us recall that a positive solution u of (P_{ $\lambda$}) is said to be asymptotically stable

(respect. unstable) if $\gamma$_{1}( $\lambda$, u)>0 (respect. <0), where $\gamma$_{1}( $\lambda$, u) is the smallest eigenvalue
of the linearized eigenvalue problem at u , namely,

\left\{\begin{array}{ll}
-\triangle $\phi$=(p-1)a(x)u^{p-2} $\phi$+ $\gamma \phi$ & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial $\phi$}{\partial \mathrm{n}}= $\lambda$(q-1)u^{q-2} $\phi$+ $\gamma \phi$ & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right. (1.7)

In addition, u is said weakly stable if $\gamma$_{1}( $\lambda$, u)\geq 0.
We state now our main result:

Theorem 1.1.

(1) (P_{ $\lambda$}) has a positive solution for  $\lambda$>0 sufficiently small if

\displaystyle \int_{ $\Omega$}a<0 . (1.8)

Conversely, if (P_{ $\lambda$}) has a positive solution for some  $\lambda$>0 then (1.8) is satisfied.

(2) Assume (1.8). Then the following assertions hold:

(a)  0<\overline{ $\lambda$}\leq\infty and (P_{ $\lambda$}) has a minimal positive solution \underline{u}_{ $\lambda$} for  $\lambda$\in(0, \overline{ $\lambda$}) , i.e.

any positive solution u of (P_{ $\lambda$}) satisfies \underline{u}_{ $\lambda$}\leq u in St. Furthermore \underline{u}_{ $\lambda$} has the

following properties:
(i)  $\lambda$\mapsto\underline{u}_{ $\lambda$}(x) is strictly increasing in (0, \overline{ $\lambda$}) .

(ii) \underline{u}_{ $\lambda$} is asymptotically stable for every  $\lambda$\in(0, \overline{ $\lambda$}) .

(iii)  $\lambda$\mapsto\underline{u}_{ $\lambda$} is C^{\infty} from (0,\overline{ $\lambda$}) to C^{2+ $\alpha$}(\overline{ $\Omega$}) .

(iv) \underline{u}_{ $\lambda$}\rightarrow 0 and $\lambda$^{-\frac{1}{p-q}}\underline{u}_{ $\lambda$}\rightarrow c^{*} in C^{2+ $\alpha$}(\overline{ $\Omega$}) as  $\lambda$\rightarrow 0^{+}.

(b) Assume (1.1). If \overline{ $\lambda$}<\infty then (P_{ $\lambda$}) has a minimal positive solution \underline{u}_{\overline{ $\lambda$}} for  $\lambda$= A.

Moreover the solution set around (\overline{ $\lambda$},\underline{u}_{\overline{ $\lambda$}}) consists of a C^{\infty} ‐curve ( $\lambda$(s), u(s))\in
\mathbb{R}\times C^{2+ $\alpha$}(\overline{ $\Omega$}) of positive solutions, which is parametrized by s\in(- $\epsilon$,  $\epsilon$) , for
some  $\epsilon$>0 , and satisfies ( $\lambda$(0), u(0))=(\overline{ $\lambda$}, \underline{u}_{\overline{ $\lambda$}}) , $\lambda$'(0)=0, $\lambda$''(0)<0 , and

u(s)=\underline{u}_{\overline{ $\lambda$}}+s$\phi$_{1}+z(s) , where $\phi$_{1} is a positive eigenfunction associated to the

smallest eigenvalue $\gamma$_{1}(\overline{ $\lambda$}, \underline{u}_{\overline{ $\lambda$}}) of (1.7), and z(0)=z'(0)=0 . Finally, the lower

branch ( $\lambda$(s), u(s)) , s\in(- $\epsilon$, 0) , is asymptotically stable, whereas the upper

branch ( $\lambda$(s), u(s)) , s\in(0,  $\epsilon$) , is unstable.
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(c) Assume p<2^{*} if N>2 . Then the set of positive solutions of (P_{ $\lambda$}) for  $\lambda$>0

around ( $\lambda$, u)=(0,0) in \mathbb{R}\times X consists of \{( $\lambda$, \underline{u}_{ $\lambda$})\}.

(d) Bifurcation from zero of (P_{ $\lambda$}) never occurs at any  $\lambda$>0 , i.e. there is no

sequence ($\lambda$_{n}, u_{n}) of positive solutions of (P_{ $\lambda$}) such that u_{n}\rightarrow 0 in C(\overline{ $\Omega$}) and

$\lambda$_{n}\rightarrow$\lambda$^{*}>0.

(e) (P_{ $\lambda$}) has at most one weakly stable positive solution.

Remark 1.2.

(1) Under conditions (1.8) and (1.1), by the left‐continuity of \underline{u}_{ $\lambda$} [ 1
, Theorem 20.3], we

infer that ( $\lambda$(s), u(s)) , s\in(- $\epsilon$, 0) , in Theorem 1.1(2)(b) represents minimal positive
solutions. In particular, the mapping  $\lambda$\mapsto\underline{u}_{ $\lambda$} is continuous from (0, \overline{ $\lambda$}] into C(\overline{ $\Omega$}) .

(2) Under (1.1) the minimal positive solution \underline{u}_{\overline{ $\lambda$}} obtained for  $\lambda$= A satisfies in addition

$\gamma$_{1}(\overline{ $\lambda$},\underline{u}_{\overline{ $\lambda$}})=0.

(3) In accordance with Theorem 1.1, if \overline{ $\lambda$}<\infty then the set of bifurcating positive
solutions at (0,0) is represented in Figure 1.

\Vert u\Vert_{C^{2+ $\alpha$}}(\overline{ $\Omega$})

FIGURE 1. A smooth positive solution curve when \overline{ $\lambda$}<\infty.

Theorem 1.3. Assume that a changes sign and (1.8) is satisfied. Then the following
assertions hold:

(1) If a>0 on \partial $\Omega$ then \overline{ $\lambda$}<\infty.

(2) Assume in addition p<\displaystyle \frac{2N}{N-2} if N>2 . Then (P_{ $\lambda$}) has a second positive solution

u_{2, $\lambda$} satisfying \underline{u}_{ $\lambda$}<u_{2, $\lambda$} in \overline{ $\Omega$} for every  $\lambda$\in(0, \overline{ $\lambda$}) . Moreover, u_{2, $\lambda$} is unstable for
every  $\lambda$\in(0, \overline{ $\lambda$}) and there exists $\lambda$_{n}\rightarrow 0^{+} such that u_{2,$\lambda$_{n}}\rightarrow u_{2,0} in C^{2+ $\theta$}(\overline{ $\Omega$}) for
any  $\theta$\in(0,  $\alpha$) as  n\rightarrow\infty , where  u_{2,0} is a positive solution of

\left\{\begin{array}{ll}
-\triangle u=a(x)u^{p-1} & in  $\Omega$,\\
\frac{\partial u}{\partial \mathrm{n}}=0 & on\partial $\Omega$.
\end{array}\right. (1.9)

Remark 1.4. In accordance with Theorems 1.1 and 1.3, a possible positive solutions set of

(P_{ $\lambda$}) is depicted in Figure 2.
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\Vert u\Vert_{C^{2+ $\theta$}}(\overline{ $\Omega$})

 $\lambda$

FIGURE 2. A possible bifurcation diagram for (P_{ $\lambda$}) when \displaystyle \int_{ $\Omega$}a<0 and a

changes sign.

The outline of this article is the following: in Section 2 we show that nontrivial non‐

negative solutions of (P_{ $\lambda$}) are positive on St and that (1.8) is a necessary condition for the

existence of positive solutions of (P_{ $\lambda$}) . In Section 3 we carry out a bifurcation analysis to

discuss existence of bifurcating positive solutions to the region  $\lambda$>0 at (0,0) . In Section 4 we

use variational techniques to discuss multiplicity of positive solutions and their asymptotic
profiles as  $\lambda$\rightarrow 0^{+} . Finally, in Section 5 we discuss existence of a unbounded subcontinuum

of positive solutions of (P_{ $\lambda$}) in  $\lambda$\in \mathbb{R} . The details of the proofs of Theorems 1.1 and 1.3

appear in [18].

2. POSITIVITY AND A NECESSARY CONDITION

We begin this section showing the positivity on \partial $\Omega$ of nontrivial non‐negative weak

solutions of (P_{ $\lambda$}) . As mentioned in the Introduction, the boundary point lemma is difficult

to apply directly to (P_{ $\lambda$}) since 0<q-1<1 . However, by making good use of a comparison
principle for a class of nonlinear boundary value problems of concave type, we are able to

show that nontrivial non‐negative weak solutions of (P_{ $\lambda$}) with  $\lambda$>0 are positive on the

whole of St:

Proposition 2.1. Assume (1.1). Then any nontrivial non‐negative weak solution of (P_{ $\lambda$})
is strictly positive on \overline{ $\Omega$}.

Proof. First of all, we note that under (1.1) any nontrivial non‐negative weak solution

belongs to X\cap C^{ $\theta$}(\overline{ $\Omega$}) for some  $\theta$\in(0,1) , cf. Rossi [20, Theorem 2.2]. We consider the

following boundary value problem of concave type

\left\{\begin{array}{ll}
-\triangle u=-a_{0}u^{p-1} & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial u}{\partial \mathrm{n}}= $\lambda$ u^{q-1} & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right.
where a^{-}=a^{+}-a

,
and a_{0}=\displaystyle \sup_{ $\Omega$}a^{-} A nontrivial non‐negative weak solution u_{ $\lambda$} of (P_{ $\lambda$})

for  $\lambda$>0 satisfies

\displaystyle \int_{ $\Omega$}\nabla u_{ $\lambda$}\nabla w+a_{0}\int_{ $\Omega$}u_{ $\lambda$}^{p-1}w- $\lambda$\int_{\partial $\Omega$}u_{ $\lambda$}^{q-1}w\geq 0,
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for every w\in X such that w\geq 0 . On the other hand, we consider the following eigenvalue
problem:

\left\{\begin{array}{ll}
-\triangle $\phi$= $\sigma \phi$ & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial $\phi$}{\partial \mathrm{n}}= $\lambda \phi$ & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right. (2.1)

It is easy to see that for any  $\lambda$>0 this problem has a smallest eigenvalue $\sigma$_{1} , which is

negative. So, using a positive eigenfunction $\phi$_{1} associated to $\sigma$_{1} , we deduce that if  $\epsilon$ is

sufficiently small then  $\epsilon \phi$_{1} satisfies

\displaystyle \int_{ $\Omega$}\nabla( $\epsilon \phi$_{1})\nabla w+a_{0}\int_{ $\Omega$}( $\epsilon \phi$_{1})^{p-1}w- $\lambda$\int_{\partial $\Omega$}( $\epsilon \phi$_{1})^{q-1}w\leq 0,
for every w\in X such that  w\geq O. By the comparison principle [16, Proposition A.1], we

infer that  $\epsilon \phi$_{1}\leq u_{ $\lambda$} on \overline{ $\Omega$} . In particular, we have 0< $\epsilon \phi$_{1}\leq u_{ $\lambda$} on \partial $\Omega$. \square 

Remark 2.2. Thanks to the positivity property, the assumption a\in C^{ $\alpha$}(\overline{ $\Omega$}) , 0< $\alpha$<1,
allows us to prove that under (1.1), any nontrivial non‐negative weak solution u of (P_{ $\lambda$})
belongs to C^{2+ $\theta$}(\overline{ $\Omega$}) for some  $\theta$\in(0,1) , by elliptic regularity. Proposition 2.1 will be needed

in a combination argument of bifurcation and variational techniques, since our purpose in

this paper is to discuss the existence of a classical solution of (P_{ $\lambda$}) which is positive in the

closure 9.

We prove now that (1.8) is a necessary condition for (P_{ $\lambda$}) to have a positive solution

for some  $\lambda$>0.

Proposition 2.3. If (P_{ $\lambda$}) has a positive solution for some  $\lambda$>0 then (1.8) is satisfied.

Proof. Let u be a positive solution of (P_{ $\lambda$}) . Then we have

\displaystyle \int_{ $\Omega$}\nabla u\nabla w-\int_{ $\Omega$}au^{p-1}w- $\lambda$\int_{\partial $\Omega$}u^{q-1}w=0, \forall w\in X.
Since u^{1-p}\in X , we deduce that

\displaystyle \int_{ $\Omega$}a=\int_{ $\Omega$}\nabla u\nabla(u^{1-p})- $\lambda$\int_{\partial $\Omega$}u^{q-1}\frac{1}{u^{p-1}}=(1-p)\int_{ $\Omega$}u^{-p}|\nabla u|^{2}- $\lambda$\int_{\partial $\Omega$}u^{-(p-q)}<0,
as desired. \square 

Remark 2.4. By virtue of Proposition 2.1, under (1.1) we can prove that Proposition 2.3

holds for nontrivial non‐negative weak solutions of (P_{ $\lambda$})

3. A BIFURCATION ANALYSIS

Throughout this section, we assume (1.8). As we shall discuss bifurcation from the

zero solution, the following result will be useful (see [17] for a similar proof):

Lemma 3.1. Assume (1.1). If ($\lambda$_{n}, u_{n}) are weak solutions of (P_{ $\lambda$}) with ($\lambda$_{n}) bounded then

\Vert u_{n}\Vert\rightarrow 0 if and only if \Vert u_{n}\Vert_{C(\overline{ $\Omega$})}\rightarrow 0.
We use now a bifurcation technique to show the existence of at least one positive

solution of (P_{ $\lambda$}) for  $\lambda$>0 close to O. To this end, we consider positive solutions of the

following problem, which corresponds to (P_{ $\lambda$}) after the change of variable w=$\lambda$^{-\frac{1}{p-q}}u :

\left\{\begin{array}{ll}
-\triangle w= $\lambda$\frac{p-2}{p-\mathrm{q}}aw^{p-1} & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial w}{\partial n}= $\lambda$\frac{p-2}{p-q}w^{q-1} & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right. (3.1)

Proposition 3.2.
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(1) If (3.1) has a sequence of positive solutions ($\lambda$_{n}, w_{n}) such that $\lambda$_{n}\rightarrow 0^{+}, w_{n}\rightarrow c in

C(\overline{ $\Omega$}) and c is a positive constant then c=c^{*} , where c^{*} is given by (1.6).

(2) Conversely, (3.1) has for| $\lambda$| sufficiently small a secondary bifurcation branch ( $\lambda$, w( $\lambda$))
of positive solutions (parametrized by  $\lambda$) emanating from the trivial line \{(0, c) : c

is a positive constant} at (0, c^{*}) and such that, for  0< $\theta$\leq $\alpha$ , the mapping
 $\lambda$\mapsto w( $\lambda$)\in C^{2+ $\theta$}(\overline{ $\Omega$}) is continuous. Moreover, the set \{( $\lambda$, w)\} of positive solu‐

tions of (3.1) around ( $\lambda$, w)=(0, c^{*}) consists of the union

{ (0, c) : c is a positive constant, |c-c^{*}|\leq$\delta$_{1} } \cup\{( $\lambda$, w( $\lambda$)): | $\lambda$|\leq$\delta$_{1}\}

for some $\delta$_{1}>0.

Proof. The proof is similar to the one of [16, Proposition 5.3]:

(1) Let w_{n} be positive solutions of (3.1) with  $\lambda$=\mathrm{A}_{n} , where $\lambda$_{n}\rightarrow 0^{+} . By the Green

formula we have

\displaystyle \int_{ $\Omega$}aw_{n}^{p-1}+\int_{\partial $\Omega$}w_{n}^{q-1}=0.
Passing to the limit as  n\rightarrow\infty

,
we deduce the desired conclusion.

(2) We reduce (3.1) to a bifurcation equation in \mathbb{R}^{2} by the Lyapunov‐Schmidt proce‐
dure: we use the usual orthogonal decomposition

L^{2}( $\Omega$)=\mathbb{R}\oplus V,
where V=\displaystyle \{v\in L^{2}( $\Omega$) : \int_{ $\Omega$}v=0\} and the projection Q:L^{2}( $\Omega$)\rightarrow V , given by

v=Qu=u-\displaystyle \frac{1}{| $\Omega$|}\int_{ $\Omega$}u.
The problem of finding a positive solution of (3.1) reduces then to the following
problems:

\left\{\begin{array}{ll}
-\triangle v+\frac{ $\mu$}{| $\Omega$|}\int_{\partial $\Omega$}(t+v)^{q-1}= $\mu$ Q[a(t+v)^{p-1}] & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial v}{\partial \mathrm{n}}= $\mu$(t+v)^{q-1} & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (3.2)

 $\mu$(\displaystyle \int_{ $\Omega$}a(t+v)^{p-1}+\int_{\partial $\Omega$}(t+v)^{q-1})=0 , (3.3)

where  $\mu$= $\lambda$\displaystyle \frac{p-2}{p-q}, t=\displaystyle \frac{1}{| $\Omega$|}\int_{ $\Omega$}w ,
and v=w-t . To solve (3.2) in the framework of

Hölder spaces, we set

Y=\displaystyle \{v\in C^{2+ $\theta$}(\overline{ $\Omega$}):\int_{ $\Omega$}v=0\},
Z=\displaystyle \{( $\phi$,  $\psi$)\in C^{ $\theta$}(\overline{ $\Omega$})\times C^{1+ $\theta$}(\partial $\Omega$):\int_{ $\Omega$} $\phi$+\int_{\partial $\Omega$} $\psi$=0\}.

Let c>0 be a constant and U\subset \mathbb{R}\times \mathbb{R}\mathrm{x}Y be a small neighborhood of (0, c, 0) .

We consider the nonlinear mapping F:U\rightarrow Z given by

F( $\mu$, t, v)=(-\displaystyle \triangle v- $\mu$ Q[a(t+v)^{p-1}]+\frac{ $\mu$}{| $\Omega$|}\int_{\partial $\Omega$}(t+v)^{q-1}, \displaystyle \frac{\partial v}{\partial \mathrm{n}}- $\mu$(t+v)^{q-1}) .

The Fréchet derivative F_{v} of F with respect to v at (0, c, 0) is given by the formula

F_{v}(0, c, 0)v=(-\displaystyle \triangle v, \frac{\partial v}{\partial \mathrm{n}}) .
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Since F_{v}(0, c, 0) is a homeomorphism, the implicit function theorem implies that the

set F( $\mu$, t, v)=0 around (0, c, 0) consists of a unique C^{\infty} function v=v( $\mu$, t) in a

neighborhood of ( $\mu$, t)=(0, c) and satisfying v(0, c)=0 . Now, plugging v( $\mu$, t) in

(3.3), we obtain the bifurcation equation

 $\Phi$( $\mu$, t)=\displaystyle \int_{ $\Omega$}a(t+v( $\mu$, t))^{p-1}+\int_{\partial $\Omega$}(t+v( $\mu$, t))^{q-1}=0 , for ( $\mu$, t)\simeq(0, c) .

It is clear that  $\Phi$(0, c^{*})=0 . Differentiating  $\Phi$ with respect to  t at (0, c^{*}) we get

$\Phi$_{t}(0, c^{*})=\displaystyle \int_{ $\Omega$}a(p-1)(c^{*}+v(0, c^{*}))^{p-2}(1+v_{t}(0, c^{*}))
+\displaystyle \int_{\partial $\Omega$}(q-1)(c^{*}+v(0, c^{*}))^{q-2}(1+v_{t}(0, c^{*}))

=(p-1)(c^{*})^{p-2}\displaystyle \int_{ $\Omega$}a(1+v_{t}(0, c^{*}))+(q-1)(c^{*})^{q-2}\int_{\partial $\Omega$}(1+v_{t}(0, c^{*}
Differentiating now (3.2) with respect to t , and plugging ( $\mu$, t)=(0, c^{*}) therein, we

have v_{t}(0, c^{*})=0 . Hence

$\Phi$_{t}(0, c^{*})=(p-1)(c^{*})^{p-2}(\displaystyle \int_{ $\Omega$}a)+(q-1)(c^{*})^{q-2}|\partial $\Omega$|=|\partial $\Omega$|^{\frac{p-2}{p-q}}(-\int_{ $\Omega$}a)^{\frac{2-\mathrm{q}}{p-q}}(q-p)<0.
By the implicit function theorem, the function w( $\lambda$)=t( $\mu$)+v( $\mu$, t( $\mu$)) with  $\mu$=

 $\lambda$\displaystyle \frac{p-2}{p-q} satisfies the desired assertion.

\square 

By considering the transform u( $\lambda$)= $\lambda$\displaystyle \frac{1}{p-q}w( $\lambda$) , we get the following result:

Proposition 3.3. Let  0< $\theta$\leq $\alpha$ and  w( $\lambda$) be given by Proposition 3.2. If  $\lambda$>0

is suficiently small then u( $\lambda$)= $\lambda$\displaystyle \frac{1}{p-q}w( $\lambda$) is a positive solution of (P_{ $\lambda$}) which satisfies

$\lambda$^{-\frac{1}{p-\mathrm{q}}}u( $\lambda$)\rightarrow c^{*} in C^{2+ $\theta$}(\overline{ $\Omega$}) as  $\lambda$\rightarrow 0^{+} . In particular, u( $\lambda$)\rightarrow 0 in C^{2+ $\theta$}(\overline{ $\Omega$}) as  $\lambda$\rightarrow 0^{+}.

4. VARIATIONAL APPROACH

We associate to (P_{ $\lambda$}) the C^{1} functional

I_{ $\lambda$}(u) :=\displaystyle \frac{1}{2}E(u)-\frac{1}{p}A(u)-\frac{ $\lambda$}{q}B(u) , u\in X,
where

E(u)=\displaystyle \int_{ $\Omega$}|\nabla u|^{2}, A(u)=\displaystyle \int_{ $\Omega$}a(x)|u|^{p} , and B(u)=\displaystyle \int_{\partial $\Omega$}|u|^{q}.
Let us recall that X=H^{1}( $\Omega$) is equipped with the usual norm \displaystyle \Vert u\Vert=[\int_{ $\Omega$}(|\nabla u|^{2}+u^{2})]^{\frac{1}{2}}
We denote \mathrm{b}\mathrm{y}\rightarrow \mathrm{t}\mathrm{h}\mathrm{e} weak convergence in X.

The following result will be used repeatedly in this section.

Lemma 4.1.

(1) If (u_{n}) is a sequence such that u_{n}\rightarrow u_{0} in X and limsupn E(u_{n})\leq 0 then u_{0}\dot{u}a
constant and u_{n}\rightarrow u_{0} in X.

(2) Assume (1.8). If v\neq 0 and A(v)\geq 0 , then v is not a constant.

Proof.
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(1) Since u_{n}\rightarrow u_{0} in X and E is weakly lower semicontinuous, we have  E(u_{0})\leq
\displaystyle \lim\inf_{n}E (un), so that

 0\leq E(u_{0})\leq limninf  E(u_{n})\leq limnsup  E(u_{n})\leq 0.

Hence, E(u_{0})=0 , which implies that u_{0} is a constant. Assume u_{n}\star u_{0} in X.

Then E(u_{0})<\displaystyle \lim\sup_{n}E(u_{n})\leq 0 ,
which is a contradiction. Therefore u_{n}\rightarrow u_{0} in

X.

(2) If v_{0}\neq 0 is a constant then 0\displaystyle \leq A(v_{0})=|v_{0}|^{p}\int_{ $\Omega$}a<0 , a contradiction.

\square 

Now, in addition to (1.1) and (1.8), we assume that a changes sign. Moreover, we

assume p<\displaystyle \frac{2N}{N-2} if N>2 . We shall prove the existence of two positive solutions of (P_{ $\lambda$})
for 0< $\lambda$< A and characterize their asymptotic profiles as  $\lambda$\rightarrow 0^{+} . To this end, we use

the Nehari manifold and the fibering maps associated to I_{ $\lambda$} . Let us introduce some useful

subsets of X :

E^{+}=\{u\in X : E(u)>0\},

A^{\pm}=\{u\in X:A(u)\gtrless 0\}, A_{0}=\{u\in X:A(u)=0\}, A_{0}^{\pm}=A^{\pm}\cup A_{0},
B^{+}=\{u\in X : B(u)>0\}.

The Nehari manifold associated to I_{ $\lambda$} is given by

N_{ $\lambda$} :=\{u\in X\backslash \{0\} : \langle I_{ $\lambda$}'(u), u\}=0\}=\{u\in X\backslash \{0\} : E(u)= $\Lambda$(u)+ $\lambda$ B(u)\}.
We shall use the splitting

N_{ $\lambda$}=N_{ $\lambda$}^{+}\cup N_{ $\lambda$}^{-}\cup N_{ $\lambda$}^{0},
where

N_{ $\lambda$}^{\pm} :=\{u\in N_{ $\lambda$} : \{J_{ $\lambda$}'(u), u\}\gtrless 0\}=\{u\in N_{ $\lambda$} : E(u)\displaystyle \lessgtr $\lambda$\frac{p-q}{p-2}B(u)\}
=\{u\in N_{ $\lambda$} : E(u)\displaystyle \gtrless\frac{p-q}{2-q}A(u)\},

and

N_{ $\lambda$}^{0}=\{u\in N_{ $\lambda$} : \{J_{ $\lambda$}'(u), u\}=0\}.
Note that any nontrivial weak solution of (P_{ $\lambda$}) belongs to N_{ $\lambda$} . Furthermore, it follows from

the implicit function theorem that N_{ $\lambda$}\backslash N_{ $\lambda$}^{0} is a C^{1} manifold and every critical point of the

restriction of I_{ $\lambda$} to this manifold is a critical point of I_{ $\lambda$} (see for instance [6, Theorem 2.3]).
To analyse the structure of N_{ $\lambda$}^{\pm} , we consider the fibering maps corresponding to I_{ $\lambda$}

for u\neq 0 in the following way:

j_{u}(t):=I_{ $\lambda$}(tu)=\displaystyle \frac{t^{2}}{2}E(u)-\frac{t^{p}}{p}A(u)- $\lambda$\frac{t^{q}}{q}B(u) , t>0.
It is easy to see that

j_{u}'(1)=0\lessgtr j_{u}''(1)\Leftrightarrow u\in N_{ $\lambda$}^{\pm},
and more generally,

j_{u}'(t)=0\lessgtr j_{u}''(t)\Leftrightarrow tu\in N_{ $\lambda$}^{\pm}.
Having this characterisation in mind, we look for conditions under which j_{u} has a critical

point. Set

i_{u}(t) :=t^{-q}j_{u}(t)=\displaystyle \frac{t^{2-q}}{2}E(u)-\frac{t^{p-q}}{p}A(u)- $\lambda$ B(u) , t>0.
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Let u\in E^{+}\cap A^{+}\cap B^{+} . Then i_{u} has a global maximum i_{u}(t^{*}) at some t^{*}>0 , and

moreover, t^{*} is unique. If i_{u}(t^{*})>0 , then j_{u} has a global maximum which is positive and

a local minimum which is negative. Moreover, these are the only critical points of j_{u} . We

i_{u}(t)

FIGURE 3. The case i_{u}(t^{*})>0.

FIGURE 4. A case of j_{u} having a global maximum and a local minimum.

shall require a condition on  $\lambda$ that provides  i_{u}(t^{*})>0 . Note that

i_{u}'(t)=\displaystyle \frac{2-q}{2}t^{1-q}E(u)-\frac{p-q}{p}t^{p-q-1}A(u)=0
if and only if

t=t^{*}:=(\displaystyle \frac{p(2-q)E(u)}{2(p-q)A(u)})^{\frac{1}{p-2}}
Moreover

i_{u}(t^{*})=\displaystyle \frac{p-2}{2(p-q)}(\frac{p(2-q)}{2(p-q)})^{\frac{2-q}{p-2}}\frac{E(u)^{\frac{p-q}{\mathrm{p}-2}}}{A(u)^{\frac{2-q}{p-2}}}-\frac{ $\lambda$}{q}B(u)>0
if and only if

0< $\lambda$\displaystyle \frac{p-2}{p-q}<C_{pq}\frac{E(u)}{B(u)^{\frac{p-2}{p-q}A(u)^{\frac{2-q}{p-q}}}} , (4.1)

where C_{pq}=(\displaystyle \frac{q(p-2)}{2(p-q)})^{\frac{p-2}{p-q}}(\frac{p(2-q)}{2(p-q)})^{\frac{2-q}{p-\mathrm{q}}} Note that F(u)=\displaystyle \frac{E(u)}{B(u)^{\mathrm{L}-}p-\frac{2}{q}A(u)^{\frac{2-}{p-}A}q} satisfies F(tu)=

F(u) for t>0 , i.e. F is homogeneous of order O.
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We deduce then the following result, which provides sufficient conditions for the

existence of critical points of j_{u} :

Proposition 4.2. The following assertions hold:

(1) If either u\in E^{+}\cap A_{0}^{-}\cap B^{+} or u\in A^{-}\cap B^{+} then j_{u}(t) has a negative global minimum

at some t_{1}>0, i.e. j_{u}'(t_{1})=0<j_{u}''(t_{1}) , and j_{u}(t)>j_{u}(t_{1}) for t\neq t_{1} . Moreover, t_{1}
is the unique critical point of j_{u} and  j_{u}(t)\rightarrow\infty as  t\rightarrow\infty.

(2) If u\in E^{+}\cap A^{+}\cap B_{0} then j_{u}(t) has a positive global maximum at some t_{2}>0, i.e.

j_{u}'(t_{2})=0>j_{u}''(t_{2}) and j_{u}(t)<j_{u}(t_{2}) for t\neq t_{1} . Moreover, t_{2} is the unique critical

point of j_{u} and  j_{u}(t)\rightarrow-\infty as  t\rightarrow\infty.

(3) Assume (1.8). If we set

$\lambda$^{\frac{p-2}{0^{\mathrm{p}-q}}}=\displaystyle \inf\{E(u):u\in E^{+}\cap A^{+}\cap B^{+}, C_{pq}^{-1}B(u)^{\frac{p-2}{p-q}A(u)^{\frac{2-\mathrm{q}}{p-q}}}=1\} , (4.2)

then $\lambda$_{0}> O. Moreover, for any 0< $\lambda$<$\lambda$_{0} and u\in E^{+}\cap A^{+}\cap B^{+} the map j_{u}
has a negative local minimum at t_{1}>0 and a positive global maximum at t_{2}>t_{1}.

Furthermore, t_{1}, t_{2} are the only critical points of j_{u} and  j_{u}(t)\rightarrow-\infty as  t\rightarrow\infty (see
Figure 4).

Proof. Assertions (1) and (2) are straightforward from the definition of  j_{u} . We prove now

assertion (3). First, we show that $\lambda$_{0}> O. Assume $\lambda$_{0}=0 , so that we can choose  u_{n}\in
 E^{+}\cap A^{+}\cap B^{+} satisfying

E(u_{n})\rightarrow 0 , and C_{pq}^{-1}B(u_{n})^{4\mathrm{i}_{\frac{-2}{-q}}}\mathrm{p}A(u_{n})^{\frac{2-q}{p-q}}=1.
If (u_{n}) is bounded in X then we may assume that u_{n}\rightarrow u_{0} for some u_{0}\in X and u_{n}\rightarrow u_{0}
in L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) . It follows from Lemma 4.1(1) that u_{0} is a constant and u_{n}\rightarrow u_{0} in

X. From u_{n}\in A^{+} we deduce that u_{0}\in A_{0}^{+} . In addition, we have

C_{pq}^{-1}B(u_{0})^{\frac{p-2}{p-q}A(u_{0})^{\frac{2-\mathrm{q}}{p-q}}}=1,
so that u_{0}\not\equiv 0 . From Lemma 4.1(2) we get a contradiction.

Let us assume now that \Vert u_{n}\Vert\rightarrow\infty . Set  v_{n}=\displaystyle \frac{u}{\Vert u_{n}\Vert} , so that \Vert v_{n}\Vert=1 . We may

assume that v_{n}\rightarrow v_{0} and v_{n}\rightarrow v_{0} in L^{p}( $\Omega$) . Since E(v_{n})\rightarrow 0 and v_{n}\in A^{+} , we have

v_{n}\rightarrow v_{0} in X, v_{0} is a constant, and v_{0}\in A_{0}^{+} . In particular, \Vert v_{0}\Vert=1 , i.e. v_{0}\not\equiv 0 . Lemma

4.1 provides again a contradiction.

Finally, for any u\in E^{+}\cap A^{+}\cap B^{+} we have

$\lambda$^{\frac{p-2}{0^{p-q}}}\displaystyle \leq C_{pq}\frac{E(u)}{B(u)^{\frac{p-2}{\mathrm{p}-q}A(u)^{\frac{2-q}{p-q}}}}.
Thus, if 0< $\lambda$<$\lambda$_{0} then i_{u}(t^{*})>0 from (4.1). This completes the proof of assertion

(3). \square 

Proposition 4.3. We have, for 0< $\lambda$<$\lambda$_{0} :

(1) N_{ $\lambda$}^{0} is empty.

(2) N_{ $\lambda$}^{\pm} are non‐empty.

Proof.

(1) From Proposition 4.2 it follows that there is no t>0 such that j_{u}'(t)=j_{\mathrm{u}}''(t)=0,
i.e. N_{ $\lambda$}^{0} is empty.
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(2) Consider the following eigenvalue problem

\left\{\begin{array}{ll}
-\triangle $\varphi$= $\lambda$ a(x) $\varphi$ & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial $\varphi$}{\partial \mathrm{n}}=0 & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right.
Under (1.8) it is known that this problem has a unique positive principal eigenvalue
$\lambda$_{N} with a positive principal eigenfunction $\varphi$_{N} . From $\varphi$_{N}>0 on \partial $\Omega$ and the fact

that  $\varphi$_{N} is not a constant, we deduce that $\varphi$_{N}\in E^{+}\cap A^{+}\cap B^{+} . Since 0< $\lambda$<$\lambda$_{0},
Proposition 4.2(3) provides the desired conclusion.

\square 

The following result provides some properties of N_{ $\lambda$}^{+} :

Lemma 4.4. Let 0< $\lambda$<$\lambda$_{0} . Then, we have the following two assertions:

(1) N_{ $\lambda$}^{+} is bounded in X.

(2) I_{ $\lambda$}(u)<0 for any u\in N_{ $\lambda$}^{+} and moreover t>1 if j_{u}'(t)>0.

Proof.

(1) Assume (\mathrm{u}_{n})\subset N_{ $\lambda$}^{+} and \Vert u_{n}\Vert\rightarrow\infty . Set  v_{n}=\displaystyle \frac{u_{n}}{\Vert u_{n}\Vert} . It follows that \Vert v_{n}\Vert=1 , so

we may assume that v_{n}\rightarrow v_{0}, B(v_{n}) is bounded, and v_{n}\rightarrow v_{0} in L^{p}( $\Omega$) (implying
A(v)\rightarrow A(v_{0})) . Since u_{n}\in N_{ $\lambda$}^{+} , we see that

E(v_{n})< $\lambda$\displaystyle \frac{p-q}{p-2}B(v_{n})\Vert u_{n}\Vert^{q-2},
and thus \displaystyle \lim\sup_{n}E(v_{n})\leq 0 . Lemma 4.1(1) yields that v_{0} is a constant and v_{n}\rightarrow v_{0}
in X . Consequently, \Vert v_{0}\Vert=1 , and v_{0} is a non‐zero constant. However, since

u_{n}\in N_{ $\lambda$} , we see that

0\leq E(u_{n})=A(u_{n})+ $\lambda$ B(u_{n}) ,

and it follows that

0\leq A(v_{n})+ $\lambda$ B(v_{n})\Vert u_{n}\Vert^{q-p}.

Passing to the limit as  n\rightarrow\infty , we deduce  0\leq A(v_{0}) . Lemma 4.1(2) leads us to a

contradiction. Therefore N_{ $\lambda$}^{+} is bounded in X.

(2) Let u\in N_{ $\lambda$}^{+} . Then

0\displaystyle \leq E(u)< $\lambda$\frac{p-q}{p-2}B(u) ,

so that B(u)>0 . First we assume that u is not a constant. In this case E(u)>0 . If

A(u)>0 then Proposition 4.2(3) tells us that I_{ $\lambda$}(u)<0 and t>1 if j_{u}'(t)>0 . On

the other hand, if A(u)\leq 0 then u\in E^{+}\cap A_{0}^{-}\cap B^{+} . So Proposition 4.2(1) gives the

same conclusion. Assume now that u is a constant. In this case A(u)=|u|^{p}\displaystyle \int_{ $\Omega$}a<0,
so that u\in A^{-}\cap B^{+} . Proposition 4.2(1) again yields the desired conclusion.

\square 

Next we prove that \displaystyle \inf_{N_{ $\lambda$}^{+}}I_{ $\lambda$} is achieved by some u_{1, $\lambda$}>0 for  $\lambda$\in(0, $\lambda$_{0}) , which

implies the estimate \overline{ $\lambda$}\geq$\lambda$_{0} . Furthermore, we can show that u_{1, $\lambda$} is in fact the minimal

positive solution of (P_{ $\lambda$}) for  $\lambda$>0 suffciently small.

Proposition 4.5. For any 0< $\lambda$<$\lambda$_{0} , there exists u_{1, $\lambda$} such that I_{ $\lambda$}(u_{1, $\lambda$})=\displaystyle \min_{N_{ $\lambda$}^{+}}I_{ $\lambda$} . In

particular, u_{1, $\lambda$} is a positive solution of (P_{ $\lambda$}) .
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Proof. Let 0< $\lambda$<$\lambda$_{0} . We consider a minimizing sequence (u_{n})\subset N_{ $\lambda$}^{+} , i.e.

I_{ $\lambda$}(u_{n})\displaystyle \rightarrow\inf_{N_{ $\lambda$}^{+}}I_{ $\lambda$}<0.
Since (u_{n}) is bounded in X

,
we may assume that u_{n}\rightarrow u_{0}, u_{n}\rightarrow u_{0} in L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) .

It follows that

I_{ $\lambda$}(u_{0})\displaystyle \leq\lim_{n}\inf I_{ $\lambda$}(u_{n})=\inf_{N_{ $\lambda$}^{+}}I_{ $\lambda$}(u)<0,
so that u_{0}\not\equiv 0 . We claim that u_{n}\rightarrow u_{0} in X . We have two possibilities:

\bullet If  u_{0} is a constant, then 0=E(u_{0})\displaystyle \leq $\lambda$\frac{p-q}{p-2}B(u_{0}) . If B(u_{0})=0 then u_{0}=0 on \partial $\Omega$,
so that u_{0}=0 in  $\Omega$

,
which yields a contradiction. Hence  B(u_{0})>0 . In this case,

we have A(u_{0})=|u_{0}|^{p}\displaystyle \int_{ $\Omega$}a<0 , so that u_{0}\in A^{-}\cap B^{+} . Proposition 4.2(1) implies
that t_{1}u_{0}\in N_{ $\lambda$}^{+} and j_{u_{0}} has a global minimum at t_{1} . If \mathrm{n}_{0} then

I_{ $\lambda$}(t_{1}u_{0})=j_{u_{0}}(t_{1})\displaystyle \leq j_{u_{\mathrm{O}}}(1)<\lim_{n}\dot{\mathrm{m}}\mathrm{f}j_{u_{n}}(1)= limninf I_{ $\lambda$}(u_{n})=\displaystyle \inf_{N_{ $\lambda$}^{+}}I_{ $\lambda$)} (4.3)

which is a contradiction since t_{1}u_{0}\in N_{ $\lambda$}^{+} . Therefore u_{n}\rightarrow u_{0}.

If u_{0} is not a constant then E(u_{0})>0 and B(u_{0})>0 . So either u_{0}\in E^{+}\cap A_{0}^{-}\cap B^{+}
or u_{0}\in E^{+}\cap A^{+}\cap B^{+} . In the first case, j_{u_{\mathrm{O}}} has a global minimum point t_{1} and we

can argue as in the previous case. In the second case, since 0< $\lambda$<$\lambda$_{0} , Proposition
4.2 yields that t_{1}u_{0}\in N_{ $\lambda$}^{+} for some t_{1}> O. Assume u_{n}\neq\neq u_{0} . If 1<t_{1} then we

have again

I_{ $\lambda$}(t_{1}u_{0})=j_{u_{0}}(t_{1})\leq j_{u_{0}}(1)< limninf j_{u_{n}}(1)= limninf I_{ $\lambda$}(u_{n})=\displaystyle \inf_{N_{ $\lambda$}^{+}}I_{ $\lambda$} , (4.4)

If t_{1}<1 then j_{u_{n}}'(t_{1})<0 for every n , so that j_{u_{0}}'(t_{1})<\displaystyle \lim\inf j_{u_{n}}'(t_{1})\leq 0 , which is

a contradiction. Therefore u_{n}\rightarrow u_{0}.

Now, since u_{n}\rightarrow u_{0} we have j_{u_{0}}'(1)=0\leq j_{u_{0}}''(1) . But j_{u_{0}}''(1)=0 is impossible by
Proposition 4.3(1). Thus u_{0}\in N_{ $\lambda$}^{+} and I_{ $\lambda$}(u_{0})=\displaystyle \inf_{N_{ $\lambda$}^{+}}I_{ $\lambda$}. \square 

Remark 4.6. From Proposition 4.5 we derive \overline{ $\lambda$}\geq$\lambda$_{0}.

Next we obtain a second nontrivial non‐negative weak solution of (P_{ $\lambda$}) ,
which achieves

\displaystyle \inf_{N_{ $\lambda$}^{-}}I_{ $\lambda$} for  $\lambda$\in(0, $\lambda$_{0}) . The following result provides some properties of N_{ $\lambda$}^{-} :

Lemma 4.7. Let 0< $\lambda$<$\lambda$_{0} . Then we have I_{ $\lambda$}(u)>0 for any u\in N_{ $\lambda$}^{-} . Moreover t<1 if
j_{u}'(t)>0.

Proof If u\in N_{ $\lambda$}^{-} then A(u)>0 and u is not a constant from Lemma 4.1(2). It follows

immediately that E(u)>0 . If B(u)>0 , then, by Proposition 4.2(3), we have that I_{ $\lambda$}(u)>0
and t<1 if j_{u}'(t)>0 . If B(u)=0 , then Proposition 4.2(2) provides the same conclusion. \square 

Proposition 4.8. For any  $\lambda$\in(0, $\lambda$_{0}) , there exists u_{2, $\lambda$} such that I_{ $\lambda$}(u_{2, $\lambda$})=\displaystyle \min_{N_{ $\lambda$}^{-}}I_{ $\lambda$} . In

particular, u_{2, $\lambda$} is a positive solution of (P_{ $\lambda$}) .

Proof. Since I_{ $\lambda$}(u)>0 for u\in N_{ $\lambda$}^{-} , we can choose u_{n}\in N_{ $\lambda$}^{-} such that

I_{ $\lambda$}(u_{n})\rightarrow N^{\frac{\mathrm{f}}{ $\lambda$}}\mathrm{i}\mathrm{n}I_{ $\lambda$}(u)\geq 0.
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We claim that (u_{n}) is bounded in X . Indeed, there exists C>0 such that I_{ $\lambda$}(u_{n})\leq C.
Since u_{n}\in N_{ $\lambda$} , we deduce

(\displaystyle \frac{1}{2}-\frac{1}{p})E(u_{n})- $\lambda$(\frac{1}{q}-\frac{1}{p})B(u_{n})=I_{ $\lambda$}(u_{n})\leq C.
Assume \Vert u_{n}\Vert\rightarrow\infty and set  v_{n}=\displaystyle \frac{u_{n}}{\Vert u_{n}||} , so that \Vert v_{n}\Vert=1 . We may assume that v_{n}\rightarrow v_{0},

and v_{n}\rightarrow v_{0} in L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) . Then, from

(\displaystyle \frac{1}{2}-\frac{1}{p})E(v_{n})\leq $\lambda$(\frac{1}{q}-\frac{1}{p})B(v_{n})\Vert u_{n}\Vert^{q-2}+\frac{C}{\Vert u_{n}\Vert^{2}},
we infer that \displaystyle \lim\sup_{n}E(v_{n})\leq 0 . Lemma 4.1(1) yields that v_{0} is a constant, and v_{n}\rightarrow v_{0}

in X
,

which implies \Vert v_{0}\Vert=1 . However, since u_{n}\in N_{ $\lambda$}^{-} , we observe that

E(v_{n})\displaystyle \Vert u_{n}\Vert^{2-p}<\frac{p-q}{2-q}A(v_{n}) .

Passing to the limit  n\rightarrow\infty , we get  0\leq A(v_{0}) , which is contradictory by Lemma 4.1(2).
Hence (u_{n}) is bounded. We may then assume that u_{n}\rightarrow u_{0} , and u_{n}\rightarrow u_{0} in L^{p}( $\Omega$) and

L^{q}(\partial $\Omega$) . We claim that u_{n}\rightarrow u_{0} in X . Assume u_{n}\neq u_{0} . Then, since u_{n}\in N_{ $\lambda$}^{-} , we deduce

 0\displaystyle \leq E(u_{0})<\lim\inf E(u_{n})\leq limninf \displaystyle \frac{p-q}{2-q}A(u_{n})=\frac{p-q}{2-q}A(u_{0}) .

This implies that u_{0} is not a constant by Lemma 4.1(2), so that E(u_{0})> O. Since  u_{0}\in

 E^{+}\cap A^{+} , Proposition 4.2 tells us that there exists t_{2}>0 such that t_{2}u_{0}\in N_{ $\lambda$}^{-} . Moreover,

0=j_{u_{\mathrm{O}}}'(t_{2})<\displaystyle \lim\inf_{n}j_{u}'..(t2), since u_{n}\neq\neq u_{0} . We deduce that j_{ $\tau \iota$_{n}}'(t_{2})>0 for n large
enough. Since u_{n}\in N_{ $\lambda$}^{-} , we have t_{2}<1 from Lemma 4.7. Then, we observe that

I_{ $\lambda$}(t_{2}u_{0})=j_{u_{0}}(t_{2})<\displaystyle \lim_{\mathrm{n}}\inf j_{u_{n}}(t_{2})\leq\lim\inf j_{u_{n}}(1)=\lim\inf I_{ $\lambda$}(u_{n})=N^{\frac{\mathrm{f}}{ $\lambda$}}\mathrm{i}\mathrm{n}I_{ $\lambda$}.
This is a contradiction, which implies that u_{n}\rightarrow u_{0} and I_{ $\lambda$}(u_{n})\rightarrow I_{ $\lambda$}(u_{0})= $\gamma$.

Now we verify that u_{0}\neq 0 . Assume u_{0}=0 . Then, since u_{n}\in N_{ $\lambda$} , we have

E(v_{n})\Vert u_{n}\Vert^{2-q}=A(v_{n})\Vert u_{n}\Vert^{p-q}+ $\lambda$ B(v_{n}) ,

where v_{n}=\displaystyle \frac{u_{n}}{\Vert \mathrm{u}_{n}\Vert} . We may assume again that v_{n}\rightarrow v_{0} and v_{n}\rightarrow v_{0} in L^{q}(\partial $\Omega$) and L^{p}( $\Omega$) .

Passing to the limit as  n\rightarrow\infty , we obtain  0= $\lambda$ B(v_{0}) ,
so that v_{0}=0 on \partial $\Omega$ . On the other

hand, we observe that

 0<I_{ $\lambda$}(u_{n})=\displaystyle \frac{1}{2}E(u_{n})-\frac{1}{p}A(u_{n})-\frac{ $\lambda$}{q}B(u_{n}) .

Since u_{n}\in N_{ $\lambda$} , we deduce

(\displaystyle \frac{1}{q}-\frac{1}{2})E(v_{n})\leq(\frac{1}{q}-\frac{1}{p})A(v_{n})\Vert u_{n}\Vert^{p-2}.
From the assumption u_{n}\rightarrow 0 in X

, it follows that \displaystyle \lim\sup E(v_{n})\leq 0 . By Lemma 4.1(1) we

get that v_{0} is a constant, and v_{n}\rightarrow v_{0} in X
,

so that 1 v_{0}\Vert=1 . Since v_{0} is a constant and

v_{0}=0 on \partial $\Omega$
,

we have  v_{0}=0 in  $\Omega$ . This is a contradiction, as desired.

Finally, since  u_{n}\rightarrow u_{0} in X we have j_{u_{0}}'(1)=0\geq j_{u_{0}}''(1) . But j_{u0}''(1)=0 is impossible
by Proposition 4.3(1). Thus u_{0}\in N_{ $\lambda$}^{-} and I_{ $\lambda$}(u_{0})=N^{\frac{\mathrm{f}}{ $\lambda$}}\mathrm{i}\mathrm{n}I_{ $\lambda$}.

\square 

We discuss now the asymptotic profiles of u_{1, $\lambda$}, u_{2, $\lambda$} as  $\lambda$\rightarrow 0^{+} . The following lemma

is concerned with the behavior of positive solutions in N_{ $\lambda$}^{+} as  $\lambda$\rightarrow 0^{+} :
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Proposition 4.9. If u_{ $\lambda$} is a positive solution of (P_{ $\lambda$}) such that u_{ $\lambda$}\in N_{ $\lambda$}^{+} for  $\lambda$>0 sufi‐

ciently small then u_{ $\lambda$}\rightarrow 0 in X as  $\lambda$\rightarrow 0^{+} . Moreover there holds $\lambda$^{-\frac{1}{p-q}}u_{ $\lambda$}\rightarrow c^{*} in C^{2+ $\theta$}(\overline{ $\Omega$})
for any  $\theta$\in(0,  $\alpha$) as  $\lambda$\rightarrow 0^{+}.

Proof. First we show that u_{ $\lambda$} remains bounded in X as  $\lambda$\rightarrow 0^{+} . Indeed, assume that

\Vert u_{ $\lambda$}\Vert\rightarrow\infty and set  v_{ $\lambda$}=\displaystyle \frac{u_{ $\lambda$}}{\Vert u_{ $\lambda$}\Vert} . We may then assume that for some v_{0}\in X we have v_{ $\lambda$}\rightarrow v_{0}

in X
, and v_{ $\lambda$}\rightarrow v_{0} in L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) . Since u_{ $\lambda$}\in N_{ $\lambda$} , we have

E(v_{ $\lambda$})\Vert u_{ $\lambda$}\Vert^{2-p}=A(v_{ $\lambda$})+ $\lambda$ B(v_{ $\lambda$})\Vert u_{ $\lambda$}\Vert^{q-p}.

Passing to the limit as  $\lambda$\rightarrow 0^{+} , we obtain A(v_{0})=0 . From u_{ $\lambda$}\in N_{ $\lambda$}^{+} we have

E(v_{ $\lambda$})< $\lambda$\displaystyle \frac{p-q}{p-2}B(v_{ $\lambda$})\Vert u_{ $\lambda$}\Vert^{q-2},
so that \displaystyle \lim\sup_{ $\lambda$}E(v_{ $\lambda$})\leq 0 . By Lemma 4.1(1) we infer that v_{0} is a constant and v_{ $\lambda$}\rightarrow v_{0} in

X
, so that \Vert v_{0}\Vert=1 , i.e. v_{0}\neq 0 . This is contradictory with Lemma 4.1(2), and therefore

u_{ $\lambda$} stays bounded in X as  $\lambda$\rightarrow 0^{+}.

Hence we may assume that u_{ $\lambda$}\rightarrow u_{0} in X and u_{ $\lambda$}\rightarrow u_{0} in L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) as

 $\lambda$\rightarrow 0^{+} . Since u_{ $\lambda$}\in N_{ $\lambda$}^{+} , we observe that

E(u_{ $\lambda$})< $\lambda$\displaystyle \frac{p-q}{p-2}B(u_{ $\lambda$}) .

Passing to the limit as  $\lambda$\rightarrow 0^{+} ,
we get \displaystyle \lim\sup_{ $\lambda$}E(u_{ $\lambda$})\leq 0 . Lemma 4.1(2) provides that u_{0}

is a constant and u_{ $\lambda$}\rightarrow u_{0} in X . Since u_{ $\lambda$}\in N_{ $\lambda$} , we have

E(u_{ $\lambda$})=A(u_{ $\lambda$})+ $\lambda$ B(u_{ $\lambda$}) .

which implies A(u_{0})=0 , so that u_{0}=0 from Lemma 4.1(2). Therefore u_{ $\lambda$}\rightarrow 0 in X as

 $\lambda$\rightarrow 0^{+}.

Now we obtain the asymptotic profile of u_{ $\lambda$} as  $\lambda$\rightarrow 0^{+} . Let w_{ $\lambda$}=$\lambda$^{-\frac{1}{p-q}}u_{ $\lambda$} . We

claim that w_{ $\lambda$} remains bounded in X as  $\lambda$\rightarrow 0^{+} . Indeed, since u_{ $\lambda$}\in N_{ $\lambda$}^{+} , we have

E(w_{ $\lambda$})<\displaystyle \frac{p-q}{p-2} $\lambda$\frac{p-2}{p-q}B(w_{ $\lambda$}) .

Let us assume that \Vert w_{ $\lambda$}\Vert\rightarrow\infty and set $\psi$_{ $\lambda$}=\displaystyle \frac{w_{ $\lambda$}}{\Vert w_{ $\lambda$}\Vert} . We may assume that $\psi$_{ $\lambda$}\rightarrow$\psi$_{0} and

$\psi$_{ $\lambda$}\rightarrow$\psi$_{0} in L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) . It follows that

E($\psi$_{ $\lambda$})<\displaystyle \frac{p-q}{p-2} $\lambda$\frac{p-2}{p-q}B($\psi$_{ $\lambda$})\Vert w_{ $\lambda$}\Vert^{q-2},
so that \displaystyle \lim\sup_{ $\lambda$}E($\psi$_{ $\lambda$})\leq 0 . By Lemma 4.1(1) we infer that $\psi$_{0} is a constant and $\psi$_{ $\lambda$}\rightarrow$\psi$_{0}
in X . On the other hand, from u_{ $\lambda$}\in N_{ $\lambda$} it follows that

0\leq A(u_{ $\lambda$})+ $\lambda$ B(u_{ $\lambda$}) ,

so that

-B($\psi$_{ $\lambda$})\Vert w_{ $\lambda$}\Vert^{q-p}\leq A($\psi$_{ $\lambda$}) .

Taking the limit as  $\lambda$\rightarrow 0^{+} we get 0\leq A($\psi$_{0}) , which contradicts Lemma 4.1(2). Hence w_{ $\lambda$}

stays bounded in X as  $\lambda$\rightarrow 0^{+} and we may assume that w_{ $\lambda$}\rightarrow w_{0} in X and w_{ $\lambda$}\rightarrow w_{0} in

L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) . It follows that \displaystyle \lim\sup_{ $\lambda$}E(w_{ $\lambda$})\leq 0 , and by Lemma 4.1(1) we get that

w_{0} is a constant and w_{ $\lambda$}\rightarrow w_{0} in X.

It remains to show that w_{0}=c^{*} . We note that w_{ $\lambda$} satisfies

\displaystyle \int_{ $\Omega$}\nabla w_{ $\lambda$}\nabla w- $\lambda$\frac{p-2}{p-q}\int_{ $\Omega$}aw_{ $\lambda$}^{p-1}w- $\lambda$\frac{p-2}{p-q}\int_{\partial $\Omega$}w_{ $\lambda$}^{q-1}w=0, \forall w\in X , (4.5)
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since u_{ $\lambda$} is a weak solution of (P_{ $\lambda$}) . Taking w=1 , we see that

\displaystyle \int_{ $\Omega$}aw_{ $\lambda$}^{p-1}+\int_{\partial $\Omega$}w_{ $\lambda$}^{q-1}=0.
Passing to the limit as  $\lambda$\rightarrow 0^{+} ,

we see that either w_{0}=0 or w_{0}=c^{*} . However, taking

w=\displaystyle \frac{1}{w_{ $\lambda$}^{q-1}} in (4.5) we obtain

0>-(q-1)\displaystyle \int_{ $\Omega$}w_{ $\lambda$}^{-q}|\nabla w_{ $\lambda$}|^{2}= $\lambda$\frac{p-2}{\mathrm{p}-q}(\int_{ $\Omega$}aw_{ $\lambda$}^{p-q}+|\partial $\Omega$|) ,

so that

|\displaystyle \partial $\Omega$|<-\int_{ $\Omega$}aw_{ $\lambda$}^{p-q}.
It is clear then that w_{0}\neq 0 , i.e. w_{0}=c^{*} , and consequently we obtain $\lambda$^{-\frac{1}{p-q}}u_{ $\lambda$}\rightarrow c^{*} in X.

By a standard bootstrap argument, we get the desired conclusion. \square 

We turn now to the asymptotic behavior of u_{2, $\lambda$} as  $\lambda$\rightarrow 0^{+} . We shall prove initially
that solutions in N_{ $\lambda$}^{-} are bounded away from zero as  $\lambda$\rightarrow 0^{+} :

Lemma 4.10. If u_{ $\lambda$} is a positive solution of (P_{ $\lambda$}) such that u_{ $\lambda$}\in N_{ $\lambda$}^{-} for  $\lambda$>0 suficiently
small then \Vert u_{ $\lambda$}\Vert\geq C for some constant C>0 as  $\lambda$\rightarrow 0^{+}.

Proof. Assume by contradiction that (u_{n}) is a sequence of positive solutions of (P_{$\lambda$_{n}}) with

$\lambda$_{n}\rightarrow 0^{+}, u_{n}\in N_{$\lambda$_{n}}^{-} and \Vert u_{n}\Vert\rightarrow 0 . Then, since u_{n}\in N_{$\lambda$_{n}}^{-} , we deduce

E(v_{n})<\displaystyle \frac{p-q}{2-q}A(v_{n})\Vert u_{n}\Vert^{p-2},
where v_{n}=\displaystyle \frac{u_{n}}{\Vert u_{n}\Vert} . We may assume that v_{n}\rightarrow v_{0} in X and v_{n}\rightarrow v_{0} in L^{p}( $\Omega$) . It follows

that \displaystyle \lim\sup E(v_{n})\leq 0 . By Lemma 4.1(1) we get that v_{0} is a constant and v_{n}\rightarrow v_{0} in X,
so that \Vert v_{0}\Vert=1 . On the other hand, we see that A(v_{n})>0 , since u_{n}\in N_{$\lambda$_{n}}^{-} . We obtain

then 0\leq A(v_{0}) , which is a contradiction with Lemma 4.1(2). \square 

We prove now that u_{2, $\lambda$} is bounded in X as  $\lambda$\rightarrow 0^{+} :

Lemma 4.11. There exists a constant C>0 such that C^{-1}\leq\Vert u_{2, $\lambda$}\Vert\leq C as  $\lambda$\rightarrow 0^{+}.

Proof. By Lemma 4.10 we know that \Vert u_{2, $\lambda$}\Vert\geq C^{-1} for some C>0 as  $\lambda$\rightarrow 0^{+} . We show

now that u_{2, $\lambda$} is bounded in X as  $\lambda$\rightarrow 0^{+} . First, we show that there exists a constant

C_{1}>0 such that I_{ $\lambda$}(u_{2, $\lambda$})\leq C_{1} for every  $\lambda$\in(0, $\lambda$_{0}) . To this end, we consider the following
eigenvalue problem with the Dirichlet boundary condition.

\left\{\begin{array}{ll}
-\triangle $\varphi$= $\lambda$ a(x) $\varphi$ & \mathrm{i}\mathrm{n}  $\Omega$,\\
 $\varphi$=0 & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right. (4.6)

We denote by $\varphi$_{D} a positive eigenfunction associated with the positive principal eigenvalue
$\lambda$_{D} . Multiplying (4.6) by $\varphi$_{D}^{\mathrm{p}-1} we see that $\varphi$_{D}\in A^{+} . Thus $\varphi$_{D}\in E^{+}\cap A^{+}\cap B_{0} and

j_{$\varphi$_{D}}(t)=\displaystyle \frac{t^{2}}{2}E($\varphi$_{D})-\frac{t^{p}}{p}A($\varphi$_{D}) ,

so that j_{$\varphi$_{D}} has a global maximum at some t_{2}>0 , which implies t_{2}$\varphi$_{D}\in N_{ $\lambda$}^{-} . Moreover,
neither j_{$\varphi$_{D}} nor t_{2}$\varphi$_{D} depend on  $\lambda$\in(0, $\lambda$_{0}) . Let C_{1}=j_{$\varphi$_{D}}(t_{2})=I_{ $\lambda$}(t_{2}$\varphi$_{D})> O. Since

t_{2}$\varphi$_{D}\in N_{ $\lambda$}^{-} , we deduce that I_{ $\lambda$}(u_{2, $\lambda$})\leq C_{1}.
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Assume now that \Vert u_{2, $\lambda$}\Vert\rightarrow\infty as  $\lambda$\rightarrow 0^{+} and set v_{ $\lambda$}=\displaystyle \frac{u_{2, $\lambda$}}{\Vert u_{2 $\lambda$}\Vert} . We may assume that

v_{ $\lambda$}\rightarrow v_{0} and v_{ $\lambda$}\rightarrow v_{0} in L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) . Since

0\displaystyle \leq E(u_{2, $\lambda$})<\frac{p-q}{2-q}A(u_{2, $\lambda$}) ,

it follows that A(v_{ $\lambda$})> O. Passing to the limit as  $\lambda$\rightarrow 0^{+} , we get  A(v_{0})\geq O. However,
we will see that the condition  I_{ $\lambda$}(u_{2, $\lambda$})\leq C_{1} leads us to a contradiction. Indeed, since

u_{2, $\lambda$}\in N_{ $\lambda$} , we deduce

(\displaystyle \frac{1}{2}-\frac{1}{p})E(u_{2, $\lambda$})-(\frac{1}{q}-\frac{1}{p}) $\lambda$ B(u_{2, $\lambda$})=I_{ $\lambda$}(u_{2, $\lambda$})\leq C_{1}.
Hence

(\displaystyle \frac{1}{2}-\frac{1}{p})E(v_{ $\lambda$})\leq(\frac{1}{q}-\frac{1}{p}) $\lambda$ B(v_{ $\lambda$})\Vert u_{2, $\lambda$}\Vert^{q-2}+C_{1}\Vert u_{2, $\lambda$}\Vert^{-2}.
Letting  $\lambda$\rightarrow 0^{+} we obtain \displaystyle \lim\sup_{ $\lambda$}E(v_{ $\lambda$})\leq 0 , and by Lemma 4.1 we infer that v_{0} is a

constant and v_{ $\lambda$}\rightarrow v_{0} in X . In particular, \Vert v_{0}\Vert=1 , which contradicts Lemma 4.1(2). The

proof is now complete. \square 

We establish now (up to a subsequence) the precise limiting behavior of u_{2, $\lambda$} :

Proposition 4.12. There exists a sequence $\lambda$_{n}\rightarrow 0^{+} such that u_{2,$\lambda$_{n}}\rightarrow u_{2,0} in C^{2+ $\theta$}(\overline{ $\Omega$})
for any  $\theta$\in(0,  $\alpha$) , where u_{2,0} is a positive solution of (1.9).

Proof. Since u_{2, $\lambda$} stays bounded in X as  $\lambda$\rightarrow 0^{+} , up to a subsequence, we have u_{2, $\lambda$}\rightarrow u_{2,0},
and u_{2, $\lambda$}\rightarrow u_{2,0} in L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) as  $\lambda$\rightarrow 0^{+} . Since u_{2, $\lambda$} is a weak solution of (P_{ $\lambda$}) , we

have

\displaystyle \int_{ $\Omega$}\nabla u_{2, $\lambda$}\nabla w-\int_{ $\Omega$}au_{2, $\lambda$}^{p-1}w- $\lambda$\int_{\partial $\Omega$}u_{2, $\lambda$}^{q-1}w=0, \forall w\in X.
Letting  $\lambda$\rightarrow 0^{+} , we get

\displaystyle \int_{ $\Omega$}\nabla u_{2,0}\nabla w-\int_{ $\Omega$}au_{2,0}^{p-1}w=0, \forall w\in X,
i.e. u_{2,0} is a non‐negative weak solution of (1.9). If u_{2,0}\equiv 0 then, from

E(u_{2, $\lambda$})<\displaystyle \frac{p-q}{2-q}A(u_{2, $\lambda$}) and A(u_{2,0})=0,

we deduce that \displaystyle \lim\sup_{ $\lambda$}E(u_{2, $\lambda$})\leq 0 . By Lemma 4.1(1) we infer that u_{0} is a constant and

u_{2, $\lambda$}\rightarrow u_{2,0}=0 in X , which contradicts Lemma 4.11.

Finally, since u_{2,0}\in C^{2+ $\alpha$}(\overline{ $\Omega$}) , and u_{2,0}>0 in 9 by the weak maximum principle and

the boundary point lemma, we infer that u_{2,0} is a positive solution of (1.9). By a standard

bootstrap argument, we obtain the desired conclusion. \square 

We shall consider now the Palais‐Smale condition for I_{ $\lambda$} . Let us recall that I_{ $\lambda$} satisfies

the Palais‐Smale condition if any sequence such that (I_{ $\lambda$}(u_{n})) is bounded and I_{ $\lambda$}'(u_{n})\rightarrow 0
in X' has a convergent subsequence.

Proposition 4.13. I_{ $\lambda$} satisfies the Palais‐Smale condition for any  $\lambda$>0..

Proof. Let (u_{n}) be a Palais‐Smale sequence for I_{ $\lambda$} . Then

(I_{ $\lambda$}(u_{n})) is bounded and  I_{ $\lambda$}'(u_{n}) $\phi$=o(1)\Vert $\phi$\Vert \forall $\phi$\in X.

In particular, we have

(\displaystyle \frac{1}{2}-\frac{1}{p})E(u_{n})- $\lambda$(\frac{1}{q}-\frac{1}{p})B(u_{n})=I_{ $\lambda$}(u_{n})-\frac{1}{p}I_{ $\lambda$}'(u_{n})u_{n}\leq c+o(1)\Vert u_{n}\Vert (4.7)
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for some constant  c . Assume that \Vert u_{n}\Vert\rightarrow\infty and set  v_{n}=\displaystyle \frac{u_{n}}{\Vert u_{n}\Vert} . Then we may assume that

v_{n}\rightarrow v in X and v_{n}\rightarrow v in L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) . From

\displaystyle \int_{ $\Omega$}\nabla u_{n}\nabla $\phi$-a(x)|u_{n}|^{p-2}u_{n} $\phi$- $\lambda$\int_{\partial $\Omega$}|u_{n}|^{q-2}u_{n} $\phi$=o(1)\Vert $\phi$\Vert, \forall $\phi$\in X (4.8)

we get, dividing it by \Vert u_{n}\Vert^{p-1},

\displaystyle \int_{ $\Omega$}a(x)|v_{n}|^{p-2}v_{n} $\phi$\rightarrow 0 \forall $\phi$\in X
so that

\displaystyle \int_{ $\Omega$}a(x)|v|^{p-2}v $\phi$=0 \forall $\phi$\in X.
This equality implies that a|v|^{p-2}v=0 a.e. in  $\Omega$ . Hence  av\equiv 0 . Taking now  $\phi$=v in (4.8),
we obtain

\displaystyle \int_{ $\Omega$}\nabla v_{n}\nabla v- $\lambda$\Vert u_{n}\Vert^{q-2}\int_{\partial $\Omega$}|v_{n}|^{q-2}v_{n}v\rightarrow 0.
Thus

\displaystyle \int_{ $\Omega$}\nabla v_{n}\nabla v\rightarrow 0
and since v_{n}\rightarrow v in X , we get \displaystyle \int_{ $\Omega$}|\nabla v|^{2}= O. So v must be a constant. From av\equiv 0,
we deduce that  v\equiv O. Finally, from (4.7), dividing it by \Vert u_{n}\Vert^{2} we obtain E(v_{n})\rightarrow 0.
Therefore, by Lemma 4.1, we have v_{n}\rightarrow 0 in X

, which contradicts \Vert v_{n}\Vert=1.
So (u_{n}) must be bounded, and up to a subsequence, u_{n}\rightarrow u in X and u_{n}\rightarrow u in

L^{p}( $\Omega$) and L^{q}(\partial $\Omega$) . Taking  $\phi$=u_{n}-u in (4.8) we get

\displaystyle \int_{ $\Omega$}|\nabla u_{n}|^{2}\rightarrow\int_{ $\Omega$}|\nabla u|^{2}
and consequently \Vert u_{n}\Vert^{2}\rightarrow\Vert u\Vert^{2} . By the uniform convexity of X

, we infer that u_{n}\rightarrow u in

X. \square 

We prove now a multiplicity result for positive solutions of (P_{ $\lambda$}) for  $\lambda$\in(0, \overline{ $\lambda$}) . First

of all, by Proposition 4.5 or Proposition 4.8, we know that \overline{ $\lambda$}\geq$\lambda$_{0}> O. We proceed now

as in [9] to obtain a solution by the variational form of the sub‐supersolution method. \mathrm{A}

version of this method for a problem with Neumann boundary conditions has been proved
in [11 , Theorem 3]. We shall use a slightly different version of this result, namely:

Theorem 4.14. Let f :  $\Omega$\times \mathbb{R}\rightarrow \mathbb{R} and g:\partial $\Omega$\times \mathbb{R}\rightarrow \mathbb{R} be Carathéodory functions
such that for every R>0 there exists M=M(R)>0 satisfying |f(x, s)|\leq M if (x, s)\in
 $\Omega$\times[-R, R] and |g(x, s)|\leq M if (x, s)\in\partial $\Omega$ \mathrm{x}[-R, R] . If \underline{u}, \overline{u}\in H^{1}( $\Omega$)\cap L^{\infty}( $\Omega$)\cap L^{\infty}(\partial $\Omega$)
are a weak subsolution and supersolution of (P_{ $\lambda$}) , respectively, and \underline{u}\leq\overline{u}a.e . in  $\Omega$ then

(P_{ $\lambda$}) has a solution u satisfying

I_{ $\lambda$}(u)=\displaystyle \min\{I_{ $\lambda$}(v):v\in H^{1}( $\Omega$), \underline{u}\leq v\leq\overline{u} a.e. in $\Omega$\}.

The proof of this result can be carried out following the proof of [11, Theorem 3]. As

a matter of fact, the functional I_{ $\lambda$} is not coercive but still bounded from below on the set

M:= { u\in H^{1}( $\Omega$):\underline{u}\leq u\leq\overline{u} a.e. in  $\Omega$ }.

Let us pick  0< $\mu$< A and prove that (P_{ $\mu$}) has two positive solutions. From the

definition of A we can take $\mu$'\in( $\mu$, \overline{ $\lambda$}] such that (P_{$\mu$'}) has a positive solution u_{$\mu$'} . Now, we

make good use of the positive eigenfunction $\phi$_{1} associated to the smallest eigenvalue $\sigma$_{1} of

(2.1) to build up a suitable positive weak subsolution. We consider the smallest eigenvalue
\hat{ $\sigma$}_{1} :=$\sigma$_{1}( $\mu$)<0 of (2.1) and the corresponding positive eigenfunction \hat{ $\phi$}_{1}=$\phi$_{1}( $\mu$) . Then

 $\epsilon$\hat{ $\phi$}_{1} is a strict weak subsolution of (P_{ $\mu$}) if  $\epsilon$>0 is sufficiently small. Moreover, we can
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choose  $\epsilon$>0 such that  $\epsilon$\hat{ $\phi$}_{1}\leq u_{$\mu$'} . By Theorem 4.14 with \underline{u}= $\epsilon$\hat{ $\phi$}_{1} and \mathrm{u}=u_{$\mu$'} , we obtain

a solution u_{0} of (P_{ $\mu$}) such that

 I_{ $\mu$}(u_{0})=\displaystyle \min{  I_{ $\mu$}(v):v\in H^{1}( $\Omega$) ,  $\epsilon$\hat{ $\phi$}_{1}\leq v\leq u_{$\mu$'} a.e. in  $\Omega$ }.
In particular,  u_{0}>0 in \overline{ $\Omega$} . Moreover, by the strong maximum principle and the boundary
point lemma we have  $\epsilon$\hat{ $\phi$}_{1}<u_{0}<u_{$\mu$'} on 9. It follows that u_{0} is a local minimizer of I_{ $\mu$} with

respect to the C^{1}(\overline{ $\Omega$}) topology. We may then argue as in [10, Lemma 6.4] to deduce that

u_{0} is a local minimizer of I_{ $\mu$} with respect to the H^{1}( $\Omega$) topology. Now we use an argument
from [9]: let  $\delta$>0 such that u_{0} minimizes I_{ $\mu$} in B(u_{0},  $\delta$) and 0\not\in B(u_{0},  $\delta$) . If u_{0} is not a

strict minimizer then there exists v_{0}\in B(u_{0},  $\delta$) , v_{0}\not\equiv 0 such that I_{ $\mu$}(v_{0})=I_{ $\mu$}(u_{0}) , in which

case v_{0} is also a local minimizer of I_{ $\mu$} , and consequently a solution of (P_{ $\mu$}) . Now, if u_{0} is

a strict minimizer then, by [8, Theorem 5.10], we infer that for r>0 sufficiently small we

have

I_{ $\mu$}(u_{0})<\displaystyle \inf\{I_{ $\mu$}(u):u\in H^{1}( $\Omega$), \Vert u-u_{0}\Vert=r\},
so that I_{ $\mu$} has the mountain‐pass geometry (note that if w\in A^{+} then  I_{ $\mu$}(tw)\rightarrow-\infty as

 t\rightarrow\infty) . Finally, by Proposition 4.13, I_{ $\mu$} satisfies the Palais‐Smale condition, and since I_{ $\mu$}
is even the mountain‐pass theorem provides a second positive solution of (P_{ $\mu$}) .

5. UNBOUNDED SUBCONTINUUM

In this section we assume (1.8) and that a changes sign. Moreover, we assume p<

\displaystyle \frac{2N}{N-2} if N>2 . According to a bifurcation argument developed in [17, 19] we discuss

the existence of a global subcontinuum of positive solutions bifurcating from the trivial line

\{( $\lambda$, 0 Note that in view of the condition q<2 the nonlinearity in (P_{ $\lambda$}) is not differentiable

at u=0 , so that we can not apply the standard local bifurcation theory [7] directly. To

overcome this difficulty we investigate the existence of a global subcontinuum of positive
solutions for a regularized version of (P_{ $\lambda$}) . The regularized problem is formulated as

\left\{\begin{array}{ll}
-\triangle u=a(x)u^{p-1} & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial u}{\partial \mathrm{n}}= $\lambda$|u+ $\epsilon$|^{q-2}u & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (Q_{ $\lambda,\ \epsilon$})

where  $\epsilon$> O. Indeed, the mapping t\mapsto|t+ $\epsilon$|^{q-2}t is smooth at t= O. We remark that

(Q_{ $\lambda$,0})=(P_{ $\lambda$}) , which means that (P_{ $\lambda$}) is the limiting case of (Q_{ $\lambda,\ \epsilon$}) as  $\epsilon$\rightarrow 0^{+} . To study
the existence of bifurcation points on the trivial line \{( $\lambda$, 0)\} for (Q_{ $\lambda,\ \epsilon$}) , we consider the

linearized eigenvalue problem at u=0

\left\{\begin{array}{ll}
-\triangle $\phi$= $\sigma \phi$ & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial $\phi$}{\partial \mathrm{n}}= $\lambda \epsilon$^{q-2} $\phi$ & \mathrm{o}\mathrm{n} \partial $\Omega$.
\end{array}\right. (5.1)

This problem has a unique principal eigenvalue $\sigma$_{1} , which is simple. Moreover we see that

$\sigma$_{1}>0 for  $\lambda$<0, $\sigma$_{1}=0 for  $\lambda$=0 , and $\sigma$_{1}<0 for  $\lambda$>0 . If we denote by $\phi$_{1} a corresponding
positive eigenfunction to $\sigma$_{1} then $\phi$_{1} is a positive constant when  $\lambda$=0.

Now we can prove the following result for (Q_{ $\lambda,\ \epsilon$}) :

Proposition 5.1. Let p<\displaystyle \frac{2N}{N-2} if N>2 , and  $\epsilon$> O. Assume (1.8) and that a changes
sign. Then the following assertions hold:

(1) If u_{n} is a positive solution of (Q_{ $\lambda,\ \epsilon$}) for  $\lambda$=$\lambda$_{n} such that $\lambda$_{n}\rightarrow$\lambda$^{*}for some $\lambda$^{*}\in \mathbb{R}

and u_{n}\rightarrow 0 in C(\overline{ $\Omega$}) then $\lambda$^{*}=0.

(2) There exists $\Lambda$_{ $\epsilon$}>0 such that (Q_{ $\lambda,\ \epsilon$}) has no positive solutions for  $\lambda$\geq$\Lambda$_{ $\epsilon$}.
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(3) The set of positive solutions of (Q_{ $\lambda,\ \epsilon$}) around ( $\lambda$, u)=(0,0) consists of a curve

( $\lambda$, u)=( $\lambda$(s), s(1+w(s))) parametrized by s\in(0, $\delta$_{0}) , for some $\delta$_{0}>0 . In addition,
 $\lambda$ : [0, $\delta$_{0})\rightarrow \mathbb{R} and w : [0, $\delta$_{0} ) \displaystyle \rightarrow Z=\{u\in C^{2+ $\alpha$}(\overline{ $\Omega$}) : \int_{ $\Omega$}u=0\} are continuous

and satisfy  $\lambda$(0)=0,  $\lambda$(s)>0 for s>0 , and w(0)=0 . Thus bifurcation of positive
solutions of (Q_{ $\lambda,\ \epsilon$}) at (0,0) to the region  $\lambda$>0 does occur.

(4) (Q_{ $\lambda,\ \epsilon$}) has no positive solutions for  $\lambda$=0 within a neighborhood of u=0 in C(\overline{ $\Omega$}) .

(5) The curve ( $\lambda$(s), s(1+w(s))) , s\in[0, $\delta$_{0} ), can be extended as a positive solution

subcontinuum of (Q_{ $\lambda,\ \epsilon$}) , denoted by C_{ $\epsilon$} , so that it is unbounded in (-\infty, $\Lambda$_{ $\epsilon$})\times C(\overline{ $\Omega$}) .

Remarks on further results with (Q_{ $\lambda,\ \epsilon$}) for  $\epsilon$\geq 0 are given as follows.

Remark 5.2.

(1) Assume that an a priori upper bound for positive solutions for (Q_{ $\lambda,\ \epsilon$}) exists for

every  $\epsilon$>0 , i.e. for any  $\mu$>0 there exists a constant C_{ $\epsilon$}>0 such that for any

positive solution u of (Q_{ $\lambda,\ \epsilon$}) with | $\lambda$|\leq $\mu$ we have

\Vert u\Vert_{C(\overline{ $\Omega$})}\leq C_{ $\epsilon$)} (5.2)

Then assertions (1), (2) and (4) of Proposition 5.1 ensure that \{ $\lambda$\in \mathbb{R} : ( $\lambda$, u)\in
 C_{ $\epsilon$}\}=(-\infty, \overline{ $\lambda$}_{ $\epsilon$}] for some \overline{ $\lambda$}_{ $\epsilon$}\in(0, $\Lambda$_{ $\epsilon$} ]. The inequality (5.2) is still an open question.
We refer to [10] for a priori upper bounds for positive solutions of (1.4).

(2) Assertions (1), (2) and (4) in Proposition 5.1 are valid for (P_{ $\lambda$}) . Assume that (5.2)
holds for  $\epsilon$=0 , and moreover, C_{ $\epsilon$} is provided uniformly for  $\epsilon$\geq O. Then, by the

topological analysis proposed by Whyburn [22, Theorem 9.1], we can deduce from

Proposition 5.1 that (P_{ $\lambda$}) has a unbounded subcontinuum C_{0} of positive solutions,
bifurcating to the region  $\lambda$>0 at (0,0) and satisfying \{ $\lambda$\in \mathbb{R} : ( $\lambda$, u)\in C_{0}\}=
(-\infty, \overline{ $\lambda$}] as described in Figure 5. This is achieved by considering the limiting
behavior of C_{ $\epsilon$} as  $\epsilon$\rightarrow 0^{+}.

u

FIGURE 5. A unbounded subcontinuum of positive solutions of (P_{ $\lambda$}) when

the uniform a priori upper bound (5.2) with respect to  $\epsilon$\geq 0 is assumed.

The proofs for the results mentioned in this section are to appear somewhere else.
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