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AN INDEFINITE SUPERLINEAR ELLIPTIC EQUATION WITH A
NONLINEAR BOUNDARY CONDITION OF SUBLINEAR TYPE

HUMBERTO RAMOS QUOIRIN AND KENICHIRO UMEZU

ABSTRACT. We investigate an indefinite superlinear elliptic equation coupled with a sub-
linear Neumann boundary condition depending on a positive parameter A\. We establish
a global multiplicity result for positive solutions of this concave-convex problem in the
spirit of Ambrosetti-Brezis-Cerami and obtain their asymptotic profiles as A — 0%.
Furthermore, we discuss the existence of a global subcontinuum of positive solutions bi-
furcating from the trivial solutions. Our arguments are based on a bifurcation analysis,
a comparison principle, variational techniques, and a topological method.

1. INTRODUCTION AND STATEMENTS OF MAIN RESULTS

Let © be a bounded domain of RN (N > 2) with smooth boundary 8Q. In this paper
we consider the following nonlinear elliptic problem

{—Au =a(z)|ulP~2u in Q,

g = Au|?™2u on 99,

(Py)

where
_ N 5% . . . N
e A=37", Ba7 18 the usual Laplacian in IRY,

e )\>0,

e 1< g<2<p<ox,

e a € C¥Q) with « € (0,1),

e n is the unit outer normal to the boundary 969.

A function u € X := H'(Q) is said to be a weak solution of (Py) if it satisfies

/ VuVw —/ alulP~2uw — )\/ lu|?"2uw = 0, Vw € X.
Q o) 80

A weak solution u of (Py) is said to be nontrivial and non-negative if it satisfies v > 0 and
u Z 0. Under the condition

. 2N

p<2t = N3
we shall prove that such solutions are strictly positive on Q (Proposition 2.1) and belong to
C?*+9(0)) for some A € (0,1) (Remark 2.2). To this end, we use the weak maximum principle
[12] to deduce that any nontrivial non-negative weak solution u of (P,) is strictly positive
in Q. In addition, by making good use of a comparison principle [16, Proposition A.1], we
shall prove that u is positive on the whole of Q. Finally, a bootstrap argument will provide
u € C*9(Q) for some 6 € (0,1), so that u is a (classical) positive solution. Note that

if N > 2, (1.1)
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the standard boundary point lemma (as in [14]) can not be applied directly to nontrivial
non-negative weak solutions of (Py).

The purpose of this paper is to study existence, non-existence, and multiplicity of
positive solutions of (Py), as well as their asymptotic properties as the parameter A ap-
proaches 0. It is promptly seen that (Py) has no positive solution if a > 0. More precisely,
we shall see that (Py) has a positive solution only if [, a < 0 (cf. Proposition 2.3). This
condition is known to be necessary for the existence of positive solutions of problems with
Neumann boundary conditions at least since the work of Bandle-Pozio-Tesei [3]. In this
paper we focus on the case where a changes sign.

In view of the condition 1 < ¢ < 2 < p, we note that if a changes sign then (Py)
belongs to the class of concave-convex type problems with nonlinear boundary conditions.
The main reference on concave-convex type problems is the work of Ambrosetti-Brezis-
Cerami [2], which deals with

(1.2)

—Au = ANu|?2u + |ulP~2u  in Q,
u=20 on 99,

where 1 < ¢ < 2 < p. Under the condition (1.1) the authors proved a global multiplicity
result, namely, the existence of some A > 0 such that (1.2) has at least two positive solutions
for A € (0, A), at least one positive solution for A = A, and no positive solution for A > A. In
addition, they analysed the asymptotic behavior of the solutions as A — 0F. Tarfulea [21]
considered a similar problem with an indefinite weight and a Neumann boundary condition,
namely,

{—Au = Mu|?2u+a(z)|u/P%u in Q, (1.3)

% =0 on 09,
where a € C(Q2). He proved that Joa < 0 is a necessary and sufficient condition for the
existence of a positive solution of (1.3). Making use of the sub-supersolutions technique,
he has also shown the existence of A > 0 such that problem (1.3) has at least one positive
solution for A < A which converges to 0 in L°°(f2) as A — 07, and no positive solution for
A > A. Garcia-Azorero, Peral, and Rossi [10] have considered the problem

{—Au +u=ulf2u inQ,

g—z = Mu|?%u on 9N.

(1.4)

By means of a variational approach, they proved that if 1 < g < 2 < p and p < 2* when
N > 2, then there exists Ag > 0 such that (1.4) has infinitely many nontrivial weak solutions
for 0 < A < A. Moreover, they have also proved that if 1 < ¢ < 2 and p = 2* when N > 2
then there exists A; > 0 such that (1.4) has at least two positive solutions for A < A1, at
least one positive solution for A = A;, and no positive solution for A > A;.

When o changes sign we shall prove a global multiplicity result in the style of
Ambrosetti-Brezis-Cerami result. However, in doing so we shall encounter some particu-
lar difficulties. First of all, the obtention of a first solution by the sub-supersolution method
seems difficult since the existence of a strict supersolution of (Py) for A > 0 small is not
evident at all. As a matter of fact, in [21] the author shows that this is a rather delicate
issue. Another difficulty in this case is related to the variational structure: note that unlike
in problems with Dirichlet boundary conditions, the left-hand side of (P,) lacks coercivity,
since the term [, [Vu|? does not correspond to ||u[|? in X. This sort of problems has been
considered in [15, 16] for other kinds of nonlinearities and we shall use a similar approach
here to prove existence results for (Py). This approach is based on the Nehari manifold
method, which is known to be useful when dealing with elliptic problems with powerlike



nonlinearities and sign-changing weights. Brown and Wu [5] used this method to deal with
the problem

(1.5)

—Au = dm(z)|u|?%u + a(z)|u[P2u in Q,
u=20 on 01,

where m,a are smooth functions which are positive somewhere in Q. We refer also to
Brown [4] for a combination of sublinear and linear terms and to Wu [23] for a problem with
a nonlinear boundary condition.

Whenever [, a < 0 we set

&= ( _‘é}:'a> . (1.6)

We also set
X =sup{\ > 0: (P)) has a positive solution}.
Let us recall that a positive solution u of (Py) is said to be asymptotically stable

(respect. unstable) if v1 (A, u) > 0 (respect. < 0), where 1 (A, u) is the smallest eigenvalue
of the linearized eigenvalue problem at u, namely,

A9 = (p- V@6 +99 0 .
22 = Ag - Dui2¢ +7¢ on 9. ’

In addition, u is said weakly stable if 1 (A, u) > 0.
We state now our main result:

Theorem 1.1.
(1) (P») has a positive solution for A > 0 sufficiently small if

/Qa <0. (1.8)

Conversely, if (Px) has a positive solution for some A\ > 0 then (1.8) is satisfied.
(2) Assume (1.8). Then the following assertions hold:

(a) 0 < X < oo and (Py) has a minimal positive solution u, for A\ € (0,X), i.e.
any positive solution u of (Py) satisfies uy < u in Q. Furthermore u, has the
following properties:

(i) A+ uy(x) is strictly increasing in (0, X).

(i3) uy is asymptotically stable for every A € (0, ).
(iii) A+ uy is C™ from (0,)) to C?t*(Q).
(iv) uy — 0 and A" 77wy — ¢* in C2+(8Q) as X — 0+,

(b) Assume (1.1). If X < oo then (Py) has a minimal positive solution ux for A = X.
Moreover the solution set around (X, ux) consists of a C*°-curve (A(s), u(s)) €
R x C**(Q) of positive solutions, which is parametrized by s € (—¢,¢), for
some £ > 0, and satisfies (A(0),u(0)) = (A, ux), X'(0) = 0, A”(0) < 0, and
u(s) = ux + s¢1 + 2(s), where ¢1 is a positive eigenfunction associated to the
smallest eigenvalue y1(X, ux) of (1.7), and z(0) = 2'(0) = 0. Finally, the lower
branch (A(s),u(s)), s € (—¢,0), is asymptotically stable, whereas the upper
branch (A(s),u(s)), s € (0,¢), is unstable.
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(c) Assume p < 2* if N > 2. Then the set of positive solutions of (Py) for A >0
around (A, u) = (0,0) in IR x X consists of {(\,uy)}

(d) Bifurcation from zero of (Py) never occurs at any A > 0, i.e. there is no
sequence (Ap,u,) of positive solutions of (Py) such that u, — 0 in C(Q) and
An = A > 0.

(e) (P») has at most one weakly stable positive solution.

Remark 1.2.

(1) Under conditions (1.8) and (1.1), by the left-continuity of uy [1, Theorem 20.3], we
infer that (A(s),u(s)), s € (—¢,0), in Theorem 1.1(2)(b) represents minimal positive
solutions. In particular, the mapping A — u, is continuous from (0, A] into C(£2).

(2) Under (1.1) the minimal positive solution uy obtained for A = X satisfies in addition
§s! ()‘7 HX) =0.

(3) In accordance with Theorem 1.1, if X < oo then the set of bifurcating positive
solutions at (0,0) is represented in Figure 1.

||u||cz+a(ﬁ)
\

(R uz)
(A(s),u(s)) )

(A uy) i A
O by

FIGURE 1. A smooth positive solution curve when X < oco.

Theorem 1.3. Assume that a changes sign and (1.8) is satisfied. Then the following
assertions hold:

(1) If a >0 on 9Q then X < occ.

(2) Assume in addition p < ]\?—]_Vz if N > 2. Then (Py) has a second positive solution

Uz, satisfying uy < ug ) in Q for every A € (O,X). Moreover, ug 5 is unstable for
every A € (0,)) and there exists A, — 01 such that ua, — uso in C*9(Q) for
any 6 € (0,a) as n — 00, where ugo is a positive solution of

{—Au =a(z)uP~! in Q,

g—;zo on 0f).

Remark 1.4. In accordance with Theorems 1.1 and 1.3, a possible positive solutions set of
(Py) is depicted in Figure 2.

(1.9)
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|lu”cz+0(ﬁ)

|

U2,0

o X

FIGURE 2. A possible bifurcation diagram for (Py) when [,a < 0 and a
changes sign.

The outline of this article is the following: in Section 2 we show that nontrivial non-
negative solutions of (Py) are positive on {2 and that (1.8) is a necessary condition for the
existence of positive solutions of (Py). In Section 3 we carry out a bifurcation analysis to
discuss existence of bifurcating positive solutions to the region A > 0 at (0, 0). In Section 4 we
use variational techniques to discuss multiplicity of positive solutions and their asymptotic
profiles as A — 0F. Finally, in Section 5 we discuss existence of a unbounded subcontinuum
of positive solutions of (Py) in A € IR. The details of the proofs of Theorems 1.1 and 1.3
appear in [18].

2. POSITIVITY AND A NECESSARY CONDITION

We begin this section showing the positivity on 90 of nontrivial non-negative weak
solutions of (P)). As mentioned in the Introduction, the boundary point lemma is difficult
to apply directly to (Py) since 0 < g —1 < 1. However, by making good use of a comparison
principle for a class of nonlinear boundary value problems of concave type, we are able to
show that nontrivial non-negative weak solutions of (Py) with A > 0 are positive on the
whole of Q:

Proposition 2.1. Assume (1.1). Then any nontrivial non-negative weak solution of (Py)
is strictly positive on €.

Proof. First of all, we note that under (1.1) any nontrivial non-negative weak solution
belongs to X N C%(Q) for some § € (0,1), cf. Rossi [20, Theorem 2.2]. We consider the
following boundary value problem of concave type

{—Au = —qouP~! in Q,
Ou _ y,q-1
Pa = Au on 99,

where a~ = at — a, and ag = supg a~. A nontrivial non-negative weak solution uy of (Py)
for A > 0 satisfies

/ VurVw + ao/ uf’\_lw - ui_lw >0,
Q Q a0
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for every w € X such that w > 0. On the other hand, we consider the following eigenvalue
problem:

{?—-ﬁAqﬁ =0c¢ in ), (2.1)
e = AP on 99).
It is easy to see that for any A > 0 this problem has a smallest eigenvalue oq, which is

negative. So, using a positive eigenfunction ¢; associated to o1, we deduce that if ¢ is
sufficiently small then e¢; satisfies

/ V(ed1)Vw + ao/(s¢1)P_1w - /\/ (1) 'w <0,
Q Q a0

for every w € X such that w > 0. By the comparison principle [16, Proposition A.1], we
infer that e¢; < uy on Q. In particular, we have 0 < g¢1 < uy on 0. O

Remark 2.2. Thanks to the positivity property, the assumption a € C*(Q), 0 < o < 1,
allows us to prove that under (1.1), any nontrivial non-negative weak solution u of (P))
belongs to C?2+?(Q) for some 8 € (0, 1), by elliptic regularity. Proposition 2.1 will be needed
in a combination argument of bifurcation and variational techniques, since our purpose in
this paper is to discuss the existence of a classical solution of (Py) which is positive in the
closure .

We prove now that (1.8) is a necessary condition for (Py) to have a positive solution
for some A > 0.

Proposition 2.3. If (Py) has a positive solution for some X > 0 then (1.8) is satisfied.

Proof. Let u be a positive solution of (Py). Then we have

/Vqu—/au”_lw—)\/ wlw=0 VYwelX.
Q Q o0

Since u!~? € X, we deduce that

/az/VuV (u'™P) —)\/ uq‘li_1 =(1 _p)/ uP|Vu|? _)\/ u—=9 <,
Q Q a9 up Q 80

as desired. O

Remark 2.4. By virtue of Proposition 2.1, under (1.1) we can prove that Proposition 2.3
holds for nontrivial non-negative weak solutions of (Py) .

3. A BIFURCATION ANALYSIS

Throughout this section, we assume (1.8). As we shall discuss bifurcation from the
zero solution, the following result will be useful (see [17] for a similar proof):

Lemma 3.1. Assume (1.1). If (An, u,) are weak solutions of (Py) with (\,) bounded then
lunll = 0 if and only if ||uall o) — O

We use now a bifurcation technique to show the existence of at least one positive
solution of (Py) for A > 0 close to 0. To this end, we consider positive solutions of the
1
following problem, which corresponds to (Py) after the change of variable w = A\~ 73 u:
{—Aw — A awr ! i Q,

A 3.1
9w _ NP on 99. 3.1)

Proposition 3.2.



(1) If (3.1) has a sequence of positive solutions (A, wn) such that Ay — 0%, w, — ¢ in
C(Q) and ¢ is a positive constant then ¢ = c*, where c* is given by (1.6).

(2) Conversely, (3.1) has for |A| sufficiently small a secondary bifurcation branch (A, w()\))
of positive solutions (parametrized by \) emanating from the trivial line {(0,¢) : ¢
is a positive constant} at (0,c¢*) and such that, for 0 < 6 < «, the mapping
A= w(X) € C*9(Q) is continuous. Moreover, the set {(\,w)} of positive solu-
tions of (3.1) around (A, w) = (0,c*) consists of the union

{(0,¢) : ¢ is a positive constant, |c — c*| < &1} U{(A, w(X)) : |A| < 61}

for some 61 > 0.

Proof. The proof is similar to the one of [16, Proposition 5.3]:
(1) Let wy, be positive solutions of (3.1) with A = \,, where A, — 07. By the Green

formula we have
/awﬁ_l +/ wi™!t=0.
Q e}

Passing to the limit as n — oo, we deduce the desired conclusion.

(2) We reduce (3.1) to a bifurcation equation in IR? by the Lyapunov-Schmidt proce-
dure: we use the usual orthogonal decomposition

L*Q =RaV,
where V = {v € L?(Q) : [, v =0} and the projection @ : L*(Q) — V/, given by

),
v=Qu=u—1— [ u.
9] Ja
The problem of finding a positive solution of (3.1) reduces then to the following

problems:
~Av+ gt [oo(t+0)07 = uQla(t +v)P7 in Q, 52)
28 = p(t +v)r? on 012, '
-1 -1\ _
u(/ﬂa(t—{—v)p +/m(t+v)q >_0, (3.3)

where p = )\552, L= ﬁ Jow, and v = w — t. To solve (3.2) in the framework of

Holder spaces, we set

Y:{vGCH”(ﬁ):/ﬂv:O},
Z={(¢,¢)e09(§)xcl+9(aﬂ):/n¢+/mw=o}.

Let ¢ > 0 be a constant and U C IR x IR X Y be a small neighborhood of (0, c, 0).
We consider the nonlinear mapping F' : U — Z given by

Flu,t,0) = (—Av — 1Qlatt+ o+ £ [ oy, 2 )) .
12 Joq On
The Fréchet derivative F, of F with respect to v at (0, c,0) is given by the formula

F,(0,¢,0)v = (—Av, g—:}l) )
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Since F,(0, ¢, 0) is a homeomorphism, the implicit function theorem implies that the
set F(p,t,v) = 0 around (0, ¢,0) consists of a unique C* function v = v(,t) in a
neighborhood of (u,t) = (0,¢) and satisfying v(0,c) = 0. Now, plugging v(u,t) in
(3.3), we obtain the bifurcation equation

O(pu,t) = /Qa(t +o(p, )P+ /an(t +u(p, 1))t =0, for (u,t) ~(0,c).

It is clear that ®(0,c*) = 0. Differentiating ® with respect to ¢ at (0,c*) we get
80.¢) = [ alp— D + 000,21+ 0(0,¢)
Q
[ @D+ 00,21+ (0,
a0

=(p—1)(c*)r’-2/ga(1+vt(o,c*))+(q—1)(c*)q-2/39(1+ut(o,c*)).

Differentiating now (3.2) with respect to ¢, and plugging (u,t) = (0, c*) therein, we
have v;(0,¢*) = 0. Hence

p—

2-q
2 P—q
5.0, = (p= 0y ([ a) +a=ie)2oal = o= (= [ ) (4= <o
Q
By the implicit function theorem, the function w(A) = t(u) + v(p, t(w)) with p =
p—2
Ar=a satisfies the desired assertion.
O
By considering the transform u(\) = /\ﬁw()\), we get the following result:

Proposition 3.3. Let 0 < § < a and w(X\) be given by Proposition 3.2. If X > 0
is sufficiently small then u(A) = ATl?w()\) is a positive solution of (Py) which satisfies
A" 7au(N) o ¢ in C2H0(Q) as A — 0F. In particular, u(\) — 0 in C?*9(Q) as A — 0.

4. VARIATIONAL APPROACH
We associate to (Py) the C! functional
1 1 A
Iyn(u) ;= =FE(u) — =A(u) — =B(u), ue€X,
@)= 3B - L) - 2B

where

E(u)z/ﬂqulz, A(u):/ﬂa(x)lu|p, and B(u):LQ|u|q.

Let us recall that X = H'(Q) is equipped with the usual norm |Ju|| = [[, (|Vul? + u?)]
We denote by — the weak convergence in X.
The following result will be used repeatedly in this section.

1
2

Lemma 4.1.

(1) If (uy) is a sequence such that u, — ug in X and limsup, E(u,) < 0 then ug is a
constant and u, — ug in X.
(2) Assume (1.8). If v # 0 and A(v) >0, then v is not a constant.

Proof.



76

(1) Since up, — wup in X and E is weakly lower semicontinuous, we have E(ug) <
lim inf,, E(uy), so that

0 < E(up) < liminf E(u,) < limsup E(u,) < 0.
n n

Hence, E(ug) = 0, which implies that ug is a constant. Assume u, 4 ug in X.
Then E(ug) < limsup,, F(u,) < 0, which is a contradiction. Therefore u,, — ug in
X.

(2) If vo # 0 is a constant then 0 < A(vp) = |vo|? [, a < 0, a contradiction.

O

Now, in addition to (1.1) and (1.8), we assume that a changes sign. Moreover, we
assume p < % if N > 2. We shall prove the existence of two positive solutions of (P)

for 0 < A < X and characterize their asymptotic profiles as A — 0. To this end, we use
the Nehari manifold and the fibering maps associated to I. Let us introduce some useful
subsets of X:

Et ={u€e X : E(u) >0},
A*={ue X:A() 20}, Ap={ueX:A()=0}, AF=A%UA,,
Bt ={ue€ X : B(u) > 0}.
The Nehari manifold associated to I is given by
Ny :={ue X\ {0}: (I (uv),u) =0} = {ue X\ {0}: E(u) = A(u) + AB(u)}.

We shall use the splitting
Ny =N UNJUNY,

where
Ni = {ue Ny : (J4(u),u) =0} = {u €N, :E) s )\;;—:—g-B(u)}
- {u €Ny :Eu) = 72’—:‘;/1(@4)},
and

NY{ = {u € Ny : (J}(u),u) = 0}.
Note that any nontrivial weak solution of (Py) belongs to N. Furthermore, it follows from
the implicit function theorem that N, \ N is a C! manifold and every critical point of the
restriction of I to this manifold is a critical point of Iy (see for instance [6, Theorem 2.3]).

To analyse the structure of N /\i, we consider the fibering maps corresponding to I
for u # 0 in the following way:

. 12 tP td
Gult) = Ix(tu) = 5 B(u) - ;A(u) - /\EB(U), t>0.

It is easy to see that
7u(1) =05 ji(1) = ue Ny,
and more generally,
Ju(t) =0 jl(t) <= tu e Nf.
Having this characterisation in mind, we look for conditions under which j, has a critical

point. Set
2—q

fa(8) = 9 (t) = tTE(u) _ tp]T_qA(u) _AB(u), t>0.



Let w € E* N AT n B*. Then i, has a global maximum i, (t*) at some t* > 0, and
moreover, t* is unique. If ¢, (t*) > 0, then j, has a global maximum which is positive and
a local minimum which is negative. Moreover, these are the only critical points of j,. We

iu(t)

—AB(u)

FIGURE 3. The case i,(t*) > 0.

Ju(t)

A

FIGURE 4. A case of j, having a global maximum and a local minimum.

shall require a condition on A that provides i,(t*) > 0. Note that
9 —
i(t) = —Z—qtl_qE(u) - l’p—qtp-q-lA(u) =0

if and only if
1
O
2(p - 9)A(w)
Moreover

o p=2 (p2-q)\7? BwiE 2B
“) =300 (2(p—q)) A(u)s=3 Bl >0
if and only if Bu)
Uu

-2
0 < )\5__‘1 < C T -2 . -4
" Blu) v A(u) >

(4.1)

2-9q

b2 _
— (a(p=2)\P-2 (p(2—q) \P-¢ _ E(u) : _
where Cpg = ( 2(p_q)) (2(p_q)) . Note that F(u) W satisfies F'(tu)

F(u) for t > 0, i.e. F is homogeneous of order 0.




We deduce then the following result, which provides sufficient conditions for the
existence of critical points of j,:

Proposition 4.2. The following assertions hold:

(1) If eitheru € EYNA;NBY oru € A~NB7 then j,(t) has a negative global minimum
at some t; > 0, i.e. j,(t1) =0 < j/(t1), and ju(t) > ju(t1) for t # t1. Moreover, t1
is the unique critical point of j,, and j,(t) = oo ast — oo.

(2) If ue EY N AT N By then j,(t) has a positive global mazimum at some ty > 0, i.e.
Ju(tz) = 0> j3i/(t2) and ju(t) < ju(ta2) fort #t1. Moreover, ty is the unique critical
point of j, and ju(t) - —o0 as t — oo.

(8) Assume (1.8). If we set
p=2 _ _
A® =inf{E(u):ue E* N AT N B, CplB(u)5 e A(u)ss =1}, (4.2)
then A\g > 0. Moreover, for any 0 < A < Xg and u € ET N AT N BT the map j,
has a negative local minimum at t1 > 0 and a positive global mazimum at to > t;.
Furthermore, t1,ty are the only critical points of j, and j,(t) — —oo ast — oo (see
Figure 4).

Proof. Assertions (1) and (2) are straightforward from the definition of j,,. We prove now
assertion (3). First, we show that Ao > 0. Assume Ao = 0, so that we can choose u, €
Et N At N BT satisfying

E(un) — 0, and Cp.'B(un)=t A(un)

2-q
p—q =1,

If (u,) is bounded in X then we may assume that u, — ug for some ug € X and u, — up
in LP(Q) and L7(09). It follows from Lemma 4.1(1) that up is a constant and u, — ug in
X. From u, € A" we deduce that ug € Aa'. In addition, we have

Cra' Bluo) 51 A(uo)»=4 =1,
so that ug # 0. From Lemma 4.1(2) we get a contradiction.

Let us assume now that ||u,| — oco. Set v, = TI‘Z_EW’ so that |lv,|| = 1. We may
assume that v, — vp and v, — vp in LP(Q). Since E(v,) — 0 and v, € AT, we have
vn — v in X, v is a constant, and vy € A} In particular, ||lup|| = 1, i.e. vp # 0. Lemma
4.1 provides again a contradiction.

Finally, for any v € E* N AT N BT we have

E(u)
" Bu)E A
Thus, if 0 < A < Ag then i,(¢t*) > 0 from (4.1). This completes the proof of assertion
(3). a

p=2
AT <

Proposition 4.3. We have, for 0 < A < Ag:
(1) NY is empty.

A

(2) N5 are non-empty.

Proof.

(1) From Proposition 4.2 it follows that there is no ¢ > 0 such that j. (t) = j/(t) = 0,
ie. N is empty.
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(2) Consider the following eigenvalue problem
—Ap =da(z)p in Q,
% =0 on A

Under (1.8) it is known that this problem has a unique positive principal eigenvalue
An with a positive principal eigenfunction py. From ¢x > 0 on 09 and the fact
that ¢n is not a constant, we deduce that o € EY N AT N BT, Since 0 < A < A,
Proposition 4.2(3) provides the desired conclusion.

O

The following result provides some properties of N;’:
Lemma 4.4. Let 0 < A < Ag. Then, we have the following two assertions:

(1) Ny is bounded in X.
2) In(u) <0 for any u € Ni and moreover t > 1 if j.(t) > 0.
A u

Proof.

(1) Assume (u,) C Ny and [u,| — co. Set v, = Ty~ It follows that ||va|| =1, so
we may assume that v, — vy , B(v,) is bounded, and v, — vp in L?(Q) (implying
A(v) = A(vo)). Since u, € Ny, we see that

Blon) < AT B(wn)lfun 72,

and thus limsup,, E(v,) < 0. Lemma 4.1(1) yields that vg is a constant and v,, — vg
in X. Consequently, ||vo]] = 1, and vy is a non-zero constant. However, since
U, € Ny, we see that

0 < E(up) = A(upn) + AB(uy),
and it follows that
0 < A(vn) + AB(vn)||un||977.

Passing to the limit as n — oo, we deduce 0 < A(vp). Lemma 4.1(2) leads us to a
contradiction. Therefore N} is bounded in X.

(2) Let u € Nyf. Then
pP—gq
< g4
0< E(u) < )‘p — 2B(u),
so that B(u) > 0. First we assume that u is not a constant. In this case E(u) > 0. If
A(u) > 0 then Proposition 4.2(3) tells us that I(u) < 0 and ¢ > 1 if j/,(¢) > 0. On
the other hand, if A(u) <0 then u € ETN Ay NB*. So Proposition 4.2(1) gives the

same conclusion. Assume now that u is a constant. In this case A(u) = [ul? [, a <0,
so that u € A~ N B*. Proposition 4.2(1) again yields the desired conclusion.

O

Next we prove that inf N I, is achieved by some u;, > 0 for A € (0, \g), which

implies the estimate X > Ag. Furthermore, we can show that uy,y is in fact the minimal
positive solution of (Py) for A > 0 sufficiently small.

Proposition 4.5. For any 0 < X < Ao, there exists uy,x such that Iy(ui ) = l’ni_‘I_l I,. In
N)\

particular, ui,x is a positive solution of (Py).
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Proof. Let 0 < A < X\g. We consider a minimizing sequence (u,) C Ny, ie.

I)\(U,n) —inf I, <O0.
Nt

Since (u,) is bounded in X, we may assume that u, — ug, u, — up in LP(Q) and LI(0).
It follows that
In(up) < liminf Iy (u,) = in{ I\(u) <0,
n N)\

so that ug # 0. We claim that u, — up in X. We have two possibilities:

e If up is a constant, then 0 = E(ug) < A2=1B(uo). If B(uo) = 0 then up = 0 on 0%,
so that up = 0 in 2, which yields a contradiction. Hence B(up) > 0. In this case,
we have A(ug) = |ug|” [, a <0, so that up € A~ N BT. Proposition 4.2(1) implies
that tyug € N;r and j,, has a global minimum at ¢;. If u, /4 ug then

In(t1uo) = Juo (t1) < Juo(1) < liminf jy, (1) = lim inf Iy (uy) = inf Iy, (4.3)
n n N/\

which is a contradiction since tyug € N ;\" . Therefore u, — ug.

e If ug is not a constant then E(ug) > 0 and B(ug) > 0. So either ug € EYN Ay NB*
or up € EYNA* N B*. In the first case, j,, has a global minimum point ¢; and we
can argue as in the previous case. In the second case, since 0 < A < Ao, Proposition
4.2 yields that tjug € N;\" for some t; > 0. Assume w, 4 wug. If 1 < ¢; then we
have again

Ix(t1uo) = ju(t1) < Jjup(1) <liminf j,, (1) = liminf Ix(un) = inf Iy, (4.4)
n n N)\
If t; <1 then j; (t1) <O for every n, so that j,, (t1) < liminf j;, (t1) <0, which is
a contradiction. Therefore u, — ug.

Now, since u, — ug we have j, (1) = 0 < j, (1). But j, (1) = 0 is impossible by
Proposition 4.3(1). Thus ug € N; and I (u) = inf I,. O
NA

Remark 4.6. From Proposition 4.5 we derive X > Aq.

Next we obtain a second nontrivial non-negative weak solution of (Py), which achieves
inf N© I, for A € (0,\0). The following result provides some properties of N, :

Lemma 4.7. Let 0 < A < Ag. Then we have I(u) > 0 for any u € N5 . Moreover t <1 if
ji() > 0.

Proof. If w € Ny then A(u) > 0 and u is not a constant from Lemma 4.1(2). It follows
immediately that F(u) > 0. If B(u) > 0, then, by Proposition 4.2(3), we have that I) (u) > 0
and t < 1if 5/ (¢) > 0. If B(u) = 0, then Proposition 4.2(2) provides the same conclusion. [

Proposition 4.8. For any A € (0, o), there exists ua x such that Ix(uz) = minly. In

A
particular, us » is a positive solution of (Py).

Proof. Since I\(u) > 0 for u € Ny, we can choose u, € N, such that

I(un) — inf Iy (u) > 0.
Ny
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We claim that (u,) is bounded in X. Indeed, there exists C > 0 such that I)(u,) < C.
Since u, € N, we deduce

1 1 1 1
(— - ;) E('U,n) - A (E — ;) B(un) = I,\(’U,n) S C.
Assume ||uy| = oo and set v, = ﬂ%«';TI’ so that ||v,|| = 1. We may assume that v, — vy,
and v, — vg in LP(Q) and L9(99). Then, from

(-2)oea=a(t-) st

we infer that limsup,, E(v,) < 0. Lemma 4.1(1) yields that vo is a constant, and v, — v
in X, which implies |vo| = 1. However, since u, € N, , we observe that

-» P74
E(vn)|Jun|>7? < 9 _qA(Un)'

Passing to the limit n — oo, we get 0 < A(vo), which is contradictory by Lemma 4.1(2).
Hence (un) is bounded. We may then assume that u, — up, and up — ug in LP(Q) and
L9(092). We claim that u, — up in X. Assume u, # ug. Then, since u, € N5 , we deduce

2

This implies that ug is not a constant by Lemma 4.1(2), so that E(ug) > 0. Since ug €
E* N A*, Proposition 4.2 tells us that there exists ¢ > 0 such that toug € Ny . Moreover,
0 = jo,(t2) < liminf, j; (t2), since un # uo. We deduce that j, (t2) > 0 for n large
enough. Since u, € N, , we have t; < 1 from Lemma 4.7. Then, we observe that

0 < B(uo) < liminf E(uy) < lim inf ;)T_ZA(U") - p_:g Auo).

I (taug) = fue(t2) < liminf j,  (t2) <liminf j, (1) = liminf I)(u,) = inf Ty.
This is a contradiction, which implies that u, — ug and I)(u,) — Ix(ug) = 7.
Now we verify that ug # 0. Assume ug = 0. Then, since u,, € N, we have

E(vn)[unl*~% = A(vn)[[un]P~7 + AB(vn),

where v, = IT%:T We may assume again that v, — vg and v, — vg in LI(9Q) and LP(9Q).
Passing to the limit as n — 0o, we obtain 0 = AB(vp), so that vg = 0 on 9. On the other
hand, we observe that

0 < In(un) = %E(un) - %A(un) - 23(%).

Since u, € Ny, we deduce
1 1 1 1
=== Ew,) < [ = — =) A(vn)|JualP~2
(3-3) B = (5 - 3) Al

From the assumption u, — 0 in X, it follows that limsup E(v,) < 0. By Lemma 4.1(1) we
get that vo is a constant, and v, — v in X, so that |Jvg]| = 1. Since vg is a constant and
vp = 0 on 99, we have vg = 0 in Q. This is a contradiction, as desired.

Finally, since u, — uo in X we have j;, (1) =0 > j (1). But j,, (1) = 0 is impossible
by Proposition 4.3(1). Thus ug € N5 and Ij(ug) = inf I.

A

O

We discuss now the asymptotic profiles of uj x,us,» as A = 0. The following lemma
is concerned with the behavior of positive solutions in N/{" as A — 07:
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Proposition 4.9. If uy is a positive solution of (Py) such that ux € N for A > 0 suffi-
ciently small then uy — 0 in X as A — 0F. Moreover there holds X7 auy — ¢* in C2+0(Q)
for any 6 € (0,a) as A — 0.

Proof. First we show that u) remains bounded in X as A — 0. Indeed, assume that
[lual]l = oo and set vy = "—Zh— ‘We may then assume that for some vy € X we have vy — vg

in X, and vy — vo in LP(2) and L2(99). Since uy € Ny, we have
E(va)ual>™ = A(vx) + AB(va)[|ual|7?.

Passing to the limit as A — 0%, we obtain A(vp) = 0. From uy € Ny we have
Blo) <AT—3 B(wa)llua* ™,

so that limsup, E(vy) < 0. By Lemma 4.1(1) we infer that vg is a constant and vy — v in
X, so that [lvg]| = 1, i.e. vg # 0. This is contradictory with Lemma 4.1(2), and therefore
u) stays bounded in X as A — 0t. ,

Hence we may assume that uy — wup in X and uy — up in LP(Q) and L9(09) as
A — 0%, Since uy € Ny, we observe that

E(uy) < A;%B(ux).
Passing to the limit as A — 0%, we get limsup, E(u)) < 0. Lemma 4.1(2) provides that ug
is a constant and uy — up in X. Since uy € N, we have
E(uy) = A(un) + AB(uy).
which implies A(ug) = 0, so that ug = 0 from Lemma 4.1(2). Therefore uy — 0 in X as
A =0T,

Now we obtain the asymptotic profile of uy as A — 0. Let wy = /\—P—}Eu)\. We
claim that w) remains bounded in X as A — 0. Indeed, since u) € N)'\", we have

— -2
E(wy) < ;’_ gAhB(w)‘).

Let us assume that |wy| — oo and set ¥ = Tway- We may assume that ¢y — to and
¥ — Yo in LP(Q) and LI(09). It follows that

— -2
Bx) < S AT B s
so that limsupy E(1,) < 0. By Lemma 4.1(1) we infer that 1)y is a constant and v — g
in X. On the other hand, from uy) € N, it follows that

0 < A(up) + AB(uy),

so that
—B()[lwal|*77 < A(a).
Taking the limit as A — 07 we get 0 < A(tp), which contradicts Lemma 4.1(2). Hence w
stays bounded in X as A — 0% and we may assume that wy — wp in X and wy — wq in
LP(Q) and L(0Q). It follows that limsupy E(wy) < 0, and by Lemma 4.1(1) we get that
wp is a constant and w) — wo in X.
-It remains to show that wg = ¢*. We note that w) satisfies

/ Vw\Vw — \5=a / auwd " tw — AP / wi™lw =0, Vwe X, (4.5)
Q Q o0
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since uy is a weak solution of (Py). Taking w = 1, we see that

/awi_l—k/ wi™t=0.
Q 20

Passing to the limit as A — 0%, we see that either wg = 0 or wy = ¢*. However, taking
w= in (4.5) we obtain

0> —(q-— 1)/nw;q|Vw,\|2 = \F=e (/ﬂ aw 9+ |BQI> ,

q—1
Wi

so that

|09 < —/ awy ™%
Q

It is clear then that wy # 0, i.e. wy = ¢*, and consequently we obtain /\_pl_quA —c*in X.
By a standard bootstrap argument, we get the desired conclusion. d

We turn now to the asymptotic behavior of ug » as A — 07. We shall prove initially
that solutions in N, are bounded away from zero as A — 0%:

Lemma 4.10. If uy is a positive solution of (Py) such that uy € Ny for A > 0 sufficiently
small then ||uy| > C for some constant C >0 as A — 07,

Proof. Assume by contradiction that (u,) is a sequence of positive solutions of (Py,) with
An = 0%, u, € Ny and [[uy,|| — 0. Then, since u, € Ny , we deduce

2

where v, = ﬂz—:” We may assume that v, — vg in X and v, — vp in LP(Q2). It follows
that limsup E(v,) < 0. By Lemma 4.1(1) we get that vg is a constant and v, — vg in X,
so that [|vol| = 1. On the other hand, we see that A(v,) > 0, since u, € N, . We obtain

then 0 < A(wp), which is a contradiction with Lemma 4.1(2). O

B(vn) < G2 A(va)lfun ",

We prove now that uy » is bounded in X as A — 0%:

Lemma 4.11. There ezists a constant C > 0 such that C7! < [luz || < C as A — 0F.

Proof. By Lemma 4.10 we know that |lug || > C~! for some C' > 0 as A — 0F. We show
now that ug » is bounded in X as A — 0F. First, we show that there exists a constant
C1 > 0 such that I\ (ug ) < C for every A € (0, Ag). To this end, we consider the following
eigenvalue problem with the Dirichlet boundary condition.

—Ayp = Aa(z)p in Q, (4.6)
p=0 on 99.

We denote by ¢p a positive eigenfunction associated with the positive principal eigenvalue
Ap. Multiplying (4.6) by % ' we see that ¢p € A*. Thus ¢p € E* N AT N By and

, t2 tP

Jop(t) = EE(SOD) - ;A(SDD)-,

so that j,, has a global maximum at some t; > 0, which implies typ0p € Ny . Moreover,
neither j,, nor tapp depend on A € (0,X). Let C1 = j,,(t2) = In(tap) > 0. Since
tapp € N, , we deduce that Iy (ug,) < Ci.
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Assume now that ||ug || — 0o as A — 07 and set vy, = "L‘Z—i” We may assume that
vy — vp and vy — v in LP(Q) and LI(9N). Since

0< E(usy) < é’%ZA(uu),

it follows that A(vy) > 0. Passing to the limit as A — 0%, we get A(vg) > 0. However,
we will see that the condition I ,\(uz, A) < C; leads us to a contradiction. Indeed, since
ug » € N, we deduce

1 1 1 1
—— — - — = = < .
(2 p) (u2,2) (q p) AB(ugx) = Ix(u2,2) < C1
Hence
1 1 1 1 _
(5-3) B < (5= 2) A uaal™ + Culusal

Letting A — 0% we obtain limsup, E(vy) < 0, and by Lemma 4.1 we infer that v is a
constant and vy — vg in X. In particular, [lvg|| = 1, which contradicts Lemma 4.1(2). The
proof is now complete. a

We establish now (up to a subsequence) the precise limiting behavior of ug »:

Proposition 4.12. There ezists a sequence A, — 0F such that ua , — ugo in C*9(Q)
for any 6 € (0, ), where ug o is a positive solution of (1.9).

Proof. Since us ) stays bounded in X as A — 07, up to a subsequence, we have Uz ) — U2,
and ug x — ugo in LP(2) and LI(0Q) as A — 0F. Since uz  is a weak solution of (Py), we
have

/ Vug \Vw —/ auh 3w — )\/ ul3Jlw=0, VweX.
Q Q ’ a7
Letting A — 07, we get
/ VugoVw — / augz)lw =0, VweX,
Q Q
i.e. up o is a non-negative weak solution of (1.9). If up o = 0 then, from
E(uz,») < 2)_:51114(“2’/\) and A(ugp) =0,

we deduce that limsupy E(uz,x) < 0. By Lemma 4.1(1) we infer that ug is a constant and
ug \ — U2, = 0 in X, which contradicts Lemma 4.11.

Finally, since us 9 € C?t%(Q), and uz0 > 0 in Q by the weak maximum principle and
the boundary point lemma, we infer that us is a positive solution of (1.9). By a standard
bootstrap argument, we obtain the desired conclusion. a

‘We shall consider now the Palais-Smale condition for Iy. Let us recall that I\ satisfies
the Palais-Smale condition if any sequence such that (Ix(uy)) is bounded and I} (u,) — 0
in X’ has a convergent subsequence.

Proposition 4.13. Iy satisfies the Palais-Smale condition for any X > 0..

Proof. Let (up) be a Palais-Smale sequence for I. Then
(Ix(up)) is bounded and Ij(un)¢ = o(1)||¢]| V¢ e X.

In particular, we have

11 11 1,
(53) B =3 (3 = 1) Buw) = Bwn) = SR < et ol (47
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for some constant c. Assume that ||un|| — co and set v, = "Z:". Then we may assume that
vp, = vin X and v, — v in LP(Q) and L2(852). From

/ Vu Ve — a(2)|un "> und — ’\/ unl " Punp = o(1)ll9]l, VoEX  (4.8)
o a0
we get, dividing it by |lu,|[P~!,
/ a(x)|vaP 2 - 0 Voe X
Q

so that
/ a(z)[vP2vp =0 Vo€ X.
Q

This equality implies that a|v[P~?v = 0 a.e. in Q. Hence av = 0. Taking now ¢ = v in (4.8),
we obtain

/ Vo, Vv — )\||un]|q_2/ [Un |7 2upu — 0.
Q a0

Thus
/ Vu,Vv—=0
Q

and since v, — v in X, we get [, |Vv|> = 0. So v must be a constant. From av = 0,
we deduce that v = 0. Finally, from (4.7), dividing it by |lu,|*> we obtain E(v,) — 0.
Therefore, by Lemma 4.1, we have v, — 0 in X, which contradicts |Jv,|| = 1.

So (u,) must be bounded, and up to a subsequence, u,, — u in X and u, — u in
LP(Q) and L9(09). Taking ¢ = u, — u in (4.8) we get

/|Vun|2—>/ Vu?
9] (9]

and consequently ||u,||2 — ||ul|?. By the uniform convexity of X, we infer that u, — u in
X. a

We prove now a multiplicity result for positive solutions of (Py) for A € (0, ). First
of all, by Proposition 4.5 or Proposition 4.8, we know that X > Ag > 0. We proceed now
as in [9] to obtain a solution by the variational form of the sub-supersolution method. A
version of this method for a problem with Neumann boundary conditions has been proved
in [11, Theorem 3]. We shall use a slightly different version of this result, namely:

Theorem 4.14. Let f : Q@ x IR — IR and g : 92 x R — IR be Carathéodory functions
such that for every R > 0 there exists M = M(R) > 0 satisfying |f(z,s)| < M if (z,s) €
Qx[-R,R] and |g(z,s)| < M if (z,s) € 00 x [-R, R)]. Ifu,mw € H(Q)NL>®(Q)NL>®(0N)
are a weak subsolution and supersolution of (Py), respectively, and u < U a.e. in § then
(Py) has a solution u satisfying

Iv(u) = min{Iy(v): veE HY(N), u<v <T a.e inQ}.

The proof of this result can be carried out following the proof of [11, Theorem 3]. As
a matter of fact, the functional Iy is not coercive but still bounded from below on the set

M:={uecH(Q): u<u<Tu ae. in Q}.

Let us pick 0 < u < X and prove that (P,) has two positive solutions. From the
definition of X we can take p’ € (p, A| such that (P,) has a positive solution u,. Now, we
make good use of the positive eigenfunction ¢; associated to the smallest eigenvalue oy of
(2.1) to build up a suitable positive weak subsolution. We consider the smallest eigenvalue
61 := o1(1) < 0 of (2.1) and the corresponding positive eigenfunction ¢, = ¢1 (). Then
ey is a strict weak subsolution of (P,) if € > 0 is sufficiently small. Moreover, we can
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choose £ > 0 such that e¢; < u,. By Theorem 4.14 with u = edy and w = u,, we obtain
a solution ug of (P,) such that

I,(uo) = min{I,(v) : ve H'(N), e <wv < uy a.e. in Q}.

In particular, ug > 0 in . Moreover, by the strong maximum principle and the boundary
point lemma we have 6q31 < ug < Uy on Q. It follows that ug is a local minimizer of I w With
respect to the C1(€2) topology. We may then argue as in [10, Lemma 6.4] to deduce that
ug is a local minimizer of I, with respect to the H'(Q2) topology. Now we use an argument
from [9]: let § > O such that uo minimizes I, in B(up,d) and 0 & B(ug,d). If ug is not a
strict minimizer then there exists vo € B(uo,d), vo # 0 such that I, (vo) = I, (up), in which
case vp is also a local minimizer of I,,, and consequently a solution of (P,). Now, if ug is
a strict minimizer then, by [8, Theorem 5.10], we infer that for r > 0 sufficiently small we
have
T(uo) < inf{T,(u) : we H'(Q), Ju—uol| = r},

so that I, has the mountain-pass geometry (note that if w € A" then I,(tw) — —oo as
t — o0). Finally, by Proposition 4.13, I, satisfies the Palais-Smale condition, and since I,
is even the mountain-pass theorem provides a second positive solution of (P,).

5. UNBOUNDED SUBCONTINUUM

In this section we assume (1.8) and that a changes sign. Moreover, we assume p <
% if N > 2. According to a bifurcation argument developed in [17, 19] we discuss
the existence of a global subcontinuum of positive solutions bifurcating from the trivial line
{(X,0)}. Note that in view of the condition ¢ < 2 the nonlinearity in (P ) is not differentiable
at u = 0, so that we can not apply the standard local bifurcation theory [7] directly. To
overcome this difficulty we investigate the existence of a global subcontinuum of positive

solutions for a regularized version of (Py). The regularized problem is formulated as

{—Au =a(z)uP~! in Q,

v — Au+el?2u on dQ,

where € > 0. Indeed, the mapping t ~ |t + €|972t is smooth at t = 0. We remark that
(@x,0) = (P»), which means that (Py) is the limiting case of (@) as ¢ — 0%. To study
the existence of bifurcation points on the trivial line {(A,0)} for (Qx,), we consider the
linearized eigenvalue problem at u =0

—Ap=00¢ in Q,
5.1
{gﬁ = Xe?"2¢ on 99, (1)

This problem has a unique principal eigenvalue o1, which is simple. Moreover we see that
o1 >0for A <0,01, =0for A =0, and o7 < 0 for A > 0. If we denote by ¢; a corresponding
positive eigenfunction to o, then ¢ is a positive constant when A = 0.

(Qz\,e)

Now we can prove the following result for (@, .):

Proposition 5.1. Let p < ]3—11’2 if N > 2, and € > 0. Assume (1.8) and that a changes
sign. Then the following assertions hold:

(1) If uy is a positive solution of (@Qxe) for A = A, such that A, — A* for some A* € IR
and u, — 0 in C(Q) then X\* = 0.

(2) There exists A, > 0 such that (Qx,e) has no positive solutions for A > A..



(3) The set of positive solutions of (Qx) around (M\,u) = (0,0) consists of a curve
(A u) = (A(s), s(1+w(s))) parametrized by s € (0, &), for some dg > 0. In addition,
A(-) 1 [0,00) = R and w(-) : [0,80) = Z = {u € C?**(Q) : [, u =0} are continuous
and satisfy A(0) =0, A(s) > 0 for s >0, and w(0) = 0. Thus bifurcation of positive
solutions of (Qx,c) at (0,0) to the region A > 0 does occur.

(4) (Qa.c) has no positive solutions for A = 0 within a neighborhood of u = 0 in C(Q).

(5) The curve (A(s),s(1 + w(s))), s € [0,8), can be extended as a positive solution
subcontinuum of (Qx.), denoted by C, so that it is unbounded in (—oo, A.) x C(Q).

Remarks on further results with (Q»,) for € > 0 are given as follows.

Remark 5.2.

(1) Assume that an a priori upper bound for positive solutions for (Q» ) exists for
every ¢ > 0, i.e. for any p > O there exists a constant C, > 0 such that for any

positive solution u of (Q»,) with |A| < p we have
lulle@) < Ce, (5.2)

Then assertions (1), (2) and (4) of Proposition 5.1 ensure that {A € R : (A, u) €
C.} = (—o0, A for some A, € (0, A.]. The inequality (5.2) is still an open question.
We refer to [10] for a priori upper bounds for positive solutions of (1.4).

(2) Assertions (1), (2) and (4) in Proposition 5.1 are valid for (Py). Assume that (5.2)
holds for € = 0, and moreover, C. is provided uniformly for ¢ > 0. Then, by the
topological analysis proposed by Whyburn [22, Theorem 9.1], we can deduce from
Proposition 5.1 that (Py) has a unbounded subcontinuum Cy of positive solutions,
bifurcating to the region A > 0 at (0,0) and satisfying {A € R : (\,u) € Co} =

(—oc, A] as described in Figure 5. This is achieved by considering the limiting
behavior of C. as e — 0F.

— | @

>

v

O A

FIGURE 5. A unbounded subcontinuum of positive solutions of (Py) when
the uniform a priori upper bound (5.2) with respect to € > 0 is assumed.

The proofs for the results mentioned in this section are to appear somewhere else.
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