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Let F_{m} be a free group of rank m>1 and F_{m}^{n} the subgroup of F_{m} generated

by all nth powers. The quotient group F_{m}/F_{m}^{n} is denoted by B(m, n) and called

the free m‐generator Burnside group of exponent n . According to Ivanov [4]
and Ol�shanskii [9] (see also [10]), for sufficiently large exponent n, B(m, n) is

constructed as the direct limit B(m, n, \infty) of certain quotient groups B(m, n, i)
(i\geq 0) of F_{m} . It is known that B(m, n, 0) and B(m, n, i) are resudually finite

(that is, each nontrivial element of those groups can be mapped to a non‐identity

element in some homomorphism onto a finite group) and also that group rings

KB(m, n, 0) and KB(m, n, 1) over a field K are primitive (that is, it has a faithful

irreducible (right) R‐module). In this note, we shall show that KB(2, n, 1) is

residually finite and also that KB(2, n, 1) is primitive for any K.

1 Introduction

Let F_{m} be a free group of rank m>1 and F_{m}^{n} the subgroup
of F_{m} generated by all nth powers. The quotient group F_{m}/F_{m}^{n} is

denoted by B(mn) and called the free m‐generator Burnside group

of exponent n . Due to Novikov‐Adian [5] in 1968 and Ivanov [4] in

1994B(mn) is not finite for sufficiently large exponent n
,

which

is known as the negative solution for the famous Burnside problem
on periodic groups. Moreover, in 1991, Zelmanov [12] and [13] gave

the complete solution for the restricted Burnside problem; thus the

orders of all finite m‐generator groups of exponent n are bounded
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above by a function m and n . These two remarkable results says

that B(m, n) is not residually finite for sufficiently large exponent
n , where a group G is residually finite provided that the intersection

of all normal subgroups having finite index in G is trivial.

On the other hand, the present author has studied primitivity
of group rings of non‐noetherian groups ([6] [7],[8]) ,

where a ring
is (right) primitive provided it has a faithful irreducible (right) R‐

module. If a group G is non‐noetherian with a non‐abelian free sub‐

group, then the group algebra KG over a field K is often primitive

[8]. B(m, n) is also non‐noetherian for sufficiently large exponent n,

but it has no non‐aUelian free subgroups. We wish to know whether

KB(m, n) is primitive or not if n is sufficiently large.
Now, according to Ivanov [4] and Ol�shanskii [9] (see also [10]), for

sufficiently large exponent n, B(m, n) is constructed as the direct

limit B(m, n, \infty) of certain quotient groups B(m, n, i)(i\geq 0) of

F_{m} . It can be easily verified that B(m, n) is itself residually finite

if B(m, n, i) is residually finite for each  i\geq O. Therefore, if  n is a

sufficiently large integer, then there exists i\geq 0 such that B(m, n, i)
is not residually finite. On the other hand, if i=0, B(m, n, 0) is a

free group, and if i=1, B(m, n, 1) is a free product of cyclic groups

of order n . As is well known, these types of groups are residually
finite and their group algebras are primitive. For the time being,
we would like to know whether B(m, n, 2) is residually finite or not,
and also whether KB(m, n, 2) is primitive or not.

In the present note, for the sake of simplicity, we cansider the case

m=2 . If m=2 and F_{2}=\langle x,  y\rangle , then

 B(2, n, 2)=\langle x, y|x^{n}, y^{n}, (xy)^{n}, (xy^{-1})^{n}) .

In connection with the form of B(2, n, 2) ,
the residual finiteness has

been established for \langle x, y|(xy)^{n} ) and for \langle x, y|x^{n}, y^{n}, (xy)^{n}\rangle as

a special case of the results given in [2] (see also [1]) and in [3]
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respectively. We can show the next theorem which follows both

residual finiteness of  B(2, n, 2) and primitivity of its group algebra:

Theorem 1.1. Let n be a positive integer and G_{n} the group with

two generators x, y and defining relations x^{n}=1, y^{n}=1, (xy)^{n}=1
and (xy^{-1})^{n}=1.
(1) If n\leq 3 ,

then G_{n} is isomorphic to the 2‐generator free Burnside

group B(2, n) .

(2) If n\geq 4 ,
then there exist normal subgroups N_{n} and N_{n}^{*} of the

derived subgroup G_{n}' of G_{n} such that

(i) N_{n} and N_{n}^{*} are free groups with N_{n}^{*}\subseteq N_{n} , and in particular,
N_{4} is finitely generated,

(ii) G_{n}'/N_{n} is isomorphic to the cyclic group of infinite order,

(iii) G_{n}'/N_{n}^{*} is isomorphic to the group

\langle a, b, c|aba^{-1}=c, aca^{-1}=b, [b, c]=1\rangle.

2 Preliminaries

Throughout this note, if X is a set, \mathcal{F}(X) denotes the free group

with the basis X . Let H be a subgroup of \mathcal{F}(X) . If S is a subset of

H, \mathcal{N}_{H}(S) denotes the normal closure of S in H.

Let Y be a non‐empty subset of X and U a reduced word in

X. Then we define the Y‐image U^{$\nu$_{X}^{Y}} of U on X as follws; if U in

\mathcal{F}(X\backslash Y) , U^{$\nu$_{X}^{Y}}=1 and if U=u_{1}y_{2}u_{2}y_{3}u_{3}\cdots y_{m}u_{m} for some y_{i} in

Y^{\pm 1} and u_{i} in \mathcal{F}(X\backslash Y) , u^{$\nu$_{X}^{Y}}=y_{1}\cdots y_{m} . Note that u^{$\nu$_{X}^{Y}} need not be

reduced in \mathcal{F}(Y) even if u is reduced in X
, and also that u^{$\nu$_{X}^{Y}}=u if

u is a word in \mathcal{F}(Y) .

Definition 2.1. Let X be a nonempty subset, and let U=x_{1}^{$\epsilon$_{1}}\cdots x_{m}^{$\epsilon$_{1}}
is a reduced word in \mathcal{F}(X) , where x_{i}\in X and  $\epsilon$=\pm 1 . Then (U, x_{i})
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is a BT‐pair on X provided that x_{i}\neq x_{j} for i\neq j . Let  $\Lambda$ be a well

ordered set and \mathrm{u}=\{(U_{ $\lambda$}, x_{ $\lambda$})| $\lambda$\in $\Lambda$\} a set of BT‐pairs on X. We

say that 11 is a BT‐set on X if U_{ $\lambda$} does not contain x_{$\lambda$^{l}} for  $\lambda$<$\lambda$'.

Obviously, if (U, x) is a BT‐pair on X
,

then \{U\}\cup X\backslash \{x\} is an

another basis of \mathcal{F}(X) . More generally, we can easily have

Lemma 2.2. Let \mathcal{F}(X) be a free group with the basis X. If 5\mathrm{J}=

\{(U_{ $\lambda$}, x_{ $\lambda$})| $\lambda$\in $\Lambda$\} is a BT‐set on X_{f} then U\cup Y is a basis of

\mathcal{F}(X)_{f} where U=\{U_{ $\lambda$}| $\lambda$\in $\Lambda$\} and Y=X\backslash \{u_{ $\lambda$}| $\lambda$\in $\Lambda$\}.

3 Outline of the proof of Theorem 1.1

In what follows, \mathbb{Z} denotes the rational integers. Let F=\mathcal{F}(\{x, y\})
be the free group generated by \{x, y\}, n a positive integer, and  $\rho$

the map on \mathbb{Z} to \{0, 1, 2, \cdots, n-1\} such that  $\rho$(i)\equiv i (mod n). We

shall first consider the subgroup L_{n}=\mathcal{N}_{F}(x^{n}, y^{n}, [x, y]) of F
,

where

[x, y]=xyx^{-1}y^{-1} . Let n\geq 3 and i, j integers with 0\leq i\leq n-1

and 1\leq j\leq n-1 . We set $\epsilon$_{i_{\dot{j}}} as follows;

$\epsilon$_{i0} =x^{i}y^{n}x^{-i},
(3.1) $\epsilon$_{ij} =x^{i}y^{j}xy^{-j}x^{-(i+1)} for 0\leq i\leq n-2,

$\epsilon$_{n-1j}=x^{n-1}y^{j}xy^{-j}.

Furthermore, if n=2m+1 with m>0 ,
then we set f_{i0}^{n}, f_{i1}^{n}, f_{i2}^{n} as

follows;

f_{i0}^{n}=y^{ $\rho$(2i)}(xy^{-1})^{n}y^{- $\rho$(2i)},
f_{01}^{n}=(xy)^{n},

(3.2) f_{i1}^{n} =x^{n-i-1}y^{i-1}(xy)^{n-1}xy^{-(i-2)_{X}-(n-i-1)} for 1\leq i\leq n-1,

f_{02}^{n}=x^{n},
f_{i2}^{n} =x^{ $\rho$(n-i-2)}y^{i}x^{n}y^{-i}x^{- $\rho$(n-i-2)} for 1\leq i\leq n-1,

and if n=2m with m>1 ,
then we set f_{i0}^{n}, f_{im-1}^{n}, f_{im}^{n} as follows;
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f_{m-10}^{n}=x^{m+1}y^{m-1}x^{n}y^{-(m-1)_{X}-(m+1)},
f_{m0}^{n} =x^{m+2}y^{m}x^{n}y^{-m_{X}-(m+2)},

(3.3) f_{i0}^{n} =y^{i}x^{n}y^{-i} for i\in\{0, 1, \cdots, n-1\}\backslash \{m-1, m\},
f_{im-1}^{n} =x^{i}y^{m-1}(xy^{-1})^{n}y^{-(m-1)_{X}-i},
f_{im}^{n} =x^{i}y^{m}(xy)^{n-1}xy^{-(m-1)_{X}-i}.

In addition, we set X_{n}=\{$\epsilon$_{ij}, x^{n}|0\leq i_{\dot{j}}\leq n-1\} . Then we can

get the following lemma:

Lemma 3.1. (1) X_{n} is a basis of L_{n} for each n\geq 3.

(2) Let n=2m+1 with m>0 (resp. n=2m with m>1 ) If
0\leq i\leq n-1 and 1\leq j\leq n-1 ,

then each of f_{i0}^{n}, f_{i1}^{n}, f_{j2}^{n} (resp.
f_{j0}^{n}, f_{im-1}^{n}, f_{im}^{n}) is expressed as a reduced word in X_{n} as follows;

f_{00}^{n}=\displaystyle \prod_{t=0}^{n-1}f_{00}^{n^{t}}, f_{00}^{n^{f}}=\left\{\begin{array}{ll}
$\epsilon$_{10}^{-1} \mathrm{f}\mathrm{o}\mathrm{r} & t=0,\\
$\epsilon$_{t(n-t)} \mathrm{f}\mathrm{o}\mathrm{r} & t>0,
\end{array}\right.
f_{j0}^{n}=\displaystyle \prod_{t=0}^{n-1}f_{j0}^{n^{t}}, f_{j0}^{n^{t}}=\left\{\begin{array}{ll}
x^{n}$\epsilon$_{00}^{-1} \mathrm{f}\mathrm{o}\mathrm{r} &  $\rho$(2_{\dot{j}}-t)=0, j=m,\\
$\epsilon$_{ $\rho$(2j+1)0}^{-1} \mathrm{f}\mathrm{o}\mathrm{r} & p(2_{\dot{j}}-t)=0,j\neq m,\\
$\epsilon$_{t $\rho$(2j-t)} \mathrm{f}\mathrm{o}\mathrm{r} &  $\rho$(2j-t)\neq 0,
\end{array}\right.
f_{01}^{n}=\displaystyle \prod_{t=0}^{n-1}f_{01}^{n^{t}},  f_{01}^{n^{t}}= $\epsilon$  $\rho$(t+1) $\rho$(t+1)

f_{j1}^{n}=\displaystyle \prod_{t=0}^{n-1}f_{j1}^{n^{t}}, f_{j1}^{n^{t}}=\left\{\begin{array}{l}
$\epsilon$_{ $\rho$(n-1+t) $\rho$(t+1)} (\dot{j}=1) ,\\
$\epsilon$_{(n-1)0^{X^{n}}} (j=m+1, t=m+1) ,\\
$\epsilon$_{ $\rho$(n-j-1+t) $\rho$(j-1+t)} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{s},
\end{array}\right.
f_{j2}^{n}=\displaystyle \prod_{t=0}^{n-1}f_{j2}^{n^{t}},  f_{j2}^{n^{f}}= $\epsilon$ $\rho$(n-j-2+t)j,

(resp.

f_{j0}^{n} =\displaystyle \prod_{t=0}^{n-1}f_{j0}^{n^{\mathrm{t}}}, f_{j0}^{n^{t}} =\left\{\begin{array}{l}
$\epsilon$_{ $\rho$(m+1+t)(m-1)}, (j=m-1) ,\\
$\epsilon$_{ $\rho$(m+2+t)m}, (\dot{j}=m) ,\\
$\epsilon$_{tj}, (j\neq m-1, m) ,
\end{array}\right.
f_{i(m-1)}^{n}=\displaystyle \prod_{t=0}^{n-1}f_{i(m-1)}^{n^{\mathrm{t}}}, f_{i(m-1)}^{n^{t}}=\left\{\begin{array}{l}
x^{n}$\epsilon$_{00}^{-1} (t=m-1, i=m, )\\
$\epsilon$_{ $\rho$(i+m)0}^{-1} (t=m-1, i\neq m) ,\\
$\epsilon$_{ $\rho$(i+t)p(m-1-t)} (t\neq m-1) ,
\end{array}\right.
f_{im}^{n} =\displaystyle \prod_{t=0}^{n-1}f_{im}^{n^{t}}, f_{im}^{n^{t}} =\left\{\begin{array}{l}
$\epsilon$_{(n-1)0}x^{n} (i=m-1, t=m) ,\\
$\epsilon$_{ $\rho$(i+t) $\rho$(m+t)} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{s}. ).
\end{array}\right.
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(3) Let H_{n}=\mathcal{N}_{F}(x^{n}, y^{n}, (xy)^{n}, (xy^{-1})^{n}) . If n=2m+1 with m>0

(resp. n=2m with m>1 ), then

\mathcal{N}_{L_{n}}(f_{i0}^{n}, f_{i1}^{n}, f_{i2}^{n}, $\epsilon$_{i0}|0\leq i\leq n-1)=H_{n}
( resp. \mathcal{N}_{L_{n}}(f_{i0}^{n}, f_{i(m-1)}^{n}, f_{im}^{n}, $\epsilon$_{i0}|0\leq i\leq n-1)=H_{n}) .

We express X_{n} as a union of pairwise disjoint subsets:

X_{n}=X_{n}^{(1)}\cup X_{n}^{(2)}\cup X_{n}^{(3)},
where if n=2m+1 with m\geq 2,

X_{n}^{(1)}=\{$\epsilon$_{01}, $\epsilon$_{(m-1)(m+1)}, $\epsilon$_{(m-2)(m+2)}, $\epsilon$_{(m+1)(m-1)}\},
X_{n}^{(2)}=\{$\epsilon$_{ii}, $\epsilon$_{j(n-j)}, $\epsilon$_{ $\rho$(n-2-j)j}|1\leq i\leq n-2, 1\leq j\leq n-1\},
X_{n}^{(3)}=X_{n}\backslash (X_{n}^{(1)}\cup X_{n}^{(2)}) ,

if n=2m with m\geq 2,

X_{n}^{(1)}=\{$\epsilon$_{(n-3)(n-1)}, $\epsilon$_{(n-1)(n-2)}, $\epsilon$_{(n-2)(n-1)}, $\epsilon$_{(n-2)(n-2)}, $\epsilon$_{(n-1)(n-1)}\},
X_{n}^{(2)}=\{$\epsilon$_{(n-3)(n-2)}, $\epsilon$_{0i}, $\epsilon$_{j(m-1)}, $\epsilon$_{tm}|i\in I_{n}^{m-1}, j\in I_{n}, t\in, I_{n}^{m}\},
X_{n}^{(3)}=X_{n}\backslash (X_{n}^{(1)}\cup X_{n}^{(2)}) ,

where I_{n}=\{0, 1, 2, \cdots, n-1\}, I_{n}^{m-1}=I_{n}\backslash \{m-1, m, 0, n-2\} and

I_{n}^{m}=I_{n}\backslash \{m, m+1\}.
If we set

X_{n}^{(2)*}=\left\{\begin{array}{l}
\{f_{i0}^{n}, f_{jt}^{n}|1\leq i\leq n-2, 1\leq j\leq n-1, t=1, 2\}\\
\mathrm{f}\mathrm{o}\mathrm{r} n=2m+1\\
\{f_{i0}^{n}, f_{j(m-1)}^{n}, f_{tm}^{n}, |i\in I_{n}^{m-1}\backslash \{0\cdot\}, j\in I_{n}, t\in I_{n}^{m}\}\\
\mathrm{f}\mathrm{o}\mathrm{r} n=2m,
\end{array}\right.
then X_{n}^{*}=X_{n}^{(1)}\cup X_{n}^{(2)*}\cup X_{n}^{(3)} is a basis of L_{n}.

We set Y_{n}=\{$\epsilon$^{(i)}| $\epsilon$\in X_{n}^{*}, i\in \mathbb{Z}\}\backslash \{1\} . Since \mathfrak{T}_{2}=\{$\alpha$_{n}^{i}|i\in \mathbb{Z}\} is

a Schreier transversal to M_{n} in L_{n}, Y_{n} is a basis of M_{n} . We express

Y_{n} as a union of disjoint subsets:

Y_{n}=Y_{n}^{(1)}\cup Y_{n}^{(2)}\cup Y_{n}^{(3)},
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where Y_{n}^{(1)}=\{$\epsilon$^{(i)}| $\epsilon$\in X_{n}^{(1)}, i\in \mathbb{Z}\}\backslash \{1\},  Y_{n}^{(2)}=\{f^{n^{(i)}}|f^{n}\in
 X_{n}^{(2)*}, i\in \mathbb{Z}\}\cup\{$\epsilon$_{j0}^{(i)}|0\leq j\leq n-1, i\in \mathbb{Z}\} ,

and  Y_{n}^{(3)}=Y_{n}\backslash (Y_{n}^{(1)}\cup
 Y_{n}^{(2)}) . Then note that  Y_{4}^{(3)}=\emptyset and  Y_{n}^{(3)}\neq\emptyset for  n\geq 5.

Outline of the proof of Theorem 1.1 (1): If n=1
,

then we

have nothing to prove.

Since relations x^{2}=1, y^{2}=1 and (xy)2 =1 implies the relation

[x, y]=xyx^{-1}y^{-1}=1 ,
it is trivial that G_{2} is isomorphic to B(2,2) .

Now, as is well known, B(2,3) is finite and has order 3^{3} . In

addition, B(2,3) is isomorphic to a homomorphic image of G_{3}.
Hence to get the conclusion, it suffices to show that G3 is finite

and has order 3^{3} . Let F be free group generated by \{x, y\} ,
and

L_{3}=\mathcal{N}_{F}(x^{3}, y^{3}, [x, y By Lemma 3.1 (1), X_{3}=\{$\epsilon$_{ij},  x^{3}|0\leq i_{\dot{j}}\leq
 2\} is a basis of L_{3} ,

and

f_{00}^{3}=$\epsilon$_{10}^{-1}$\epsilon$_{12}$\epsilon$_{21}, f_{01}^{3}=$\epsilon$_{11}$\epsilon$_{22}$\epsilon$_{00}, f_{12}^{3}=$\epsilon$_{01}$\epsilon$_{11}$\epsilon$_{21},
f_{10}^{3}=$\epsilon$_{02}$\epsilon$_{11}x^{3}$\epsilon$_{00}^{-1}, f_{11}^{3}=$\epsilon$_{21}$\epsilon$_{02}$\epsilon$_{10}, f_{22}^{3}=$\epsilon$_{22}$\epsilon$_{02}$\epsilon$_{12},
f_{20}^{3}=$\epsilon$_{01}$\epsilon$_{20}^{-1}$\epsilon$_{22}, f_{21}^{3}=$\epsilon$_{01}$\epsilon$_{12}$\epsilon$_{20}x^{3},

where f_{ij}^{3} is as described in (3.2). We set

(V_{1}, v_{1})=(f_{10}^{3}, $\epsilon$_{11}) , (V_{2}, v_{2})=(f_{11}^{3}, $\epsilon$_{21}) , (V_{3}, v_{3})=(f_{12}^{3}, $\epsilon$_{01}) ,

(V_{4}, v_{4})=(f_{21}^{3}, $\epsilon$_{12}) , (V_{5}, v_{5})=(f_{22}^{3}, $\epsilon$_{22}) .

Then it is easily verified that (V_{i}, v_{i}) is a BT‐pair on X3 for each

i\in\{1 , 2, 3, 4, 5 \} , and also that the expression of V_{i} on X3 does

not contain v_{j} for each i,j\in\{1 , 2, 3, 4, 5 \} with i<j . Hence

\{(V_{i}, v_{i})|1\leq i\leq 5\} is a BT‐set on X_{3} . By virtue of Lemma

2.2, X_{3}^{*}=\{f_{10}^{3}, f_{11}^{3}, f_{12}^{3}, f_{21}^{3}, f_{22}^{3}\}\cup\{$\epsilon$_{02}, x^{3}, $\epsilon$_{i0}|0\leq i\leq 2\} is a ba‐

sis of L_{3} . Let X_{3}^{*$\epsilon$_{02}}=X_{3}^{*}\backslash \{$\epsilon$_{02}\} ,
an\mathrm{d}^{\sim}:L_{3}\rightarrow L_{3}/\mathcal{N}_{L_{3}}(X_{3}^{*$\epsilon$_{02}})

the natural epimorphism. Clearly, \hat{L_{3}}=\wedge\{\hat{$\epsilon$_{02}}\rangle is cyclic of infinite

order. Moreover, it is easily verified that  f_{01}^{3}= î, f_{00}^{3}=\hat{$\epsilon$_{02^{-3}}} and

\hat{f_{20}^{3}}=\hat{$\epsilon$_{02^{3}}} , and so \mathcal{N}_{L_{3}}(X_{3}^{*$\epsilon$_{02}}, \{f_{01}^{3}, f_{00}^{3}, f_{20}^{3}\})=\mathcal{N}_{L_{3}}(X_{3}^{*$\epsilon$_{02}}, \{$\epsilon$_{02}^{3}\}) .
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Hence L_{3}/\mathcal{N}_{L_{3}}(X_{3}^{*$\epsilon$_{02}}, \{f_{01}^{3}, f_{00}^{3}, f_{20}^{3}\}) is isomorphic to the cyclic group

of order 3. On the other hand, by Lemma 3.1 (3),

\mathcal{N}_{L_{3}}(X_{3}^{* $\epsilon$:_{02}}, \{f_{01}^{3}, f_{00}^{3}, f_{20}^{3}\})=H_{3}=\mathcal{N}_{F}(x^{3}, y^{3}, (xy)3, (xy^{-1})^{3}) ,

and so L_{3}/H_{3} is cyclic of order 3. Since the derived subgroup G_{3}'
of G3 is isomorphic to L_{3}/H_{3} and G_{3}/G_{3}' is abelian of order 3^{2} , it

follows that G3 is finite and has order 3^{3}.

(2): For n=2m+1 (resp. n=2m ) with m\geq 2 ,
then we set

$\alpha$_{n}=$\epsilon$_{01}, $\beta$_{n1}=$\epsilon$_{(m-1)(m+1)}, $\beta$_{n2}=$\epsilon$_{(m-2)(m+2)}, $\beta$_{n3}=$\epsilon$_{(m+1)(m-1)}

( resp.

$\beta$_{n0}$\alpha$_{n}=$\epsilon$_{(n-3)(n-1)}=$\epsilon$_{(n-1)(n-2)}', $\beta$_{n1}=$\epsilon$_{(n-2)(n-1)}$\beta$_{n3}=$\epsilon$_{(n-1)(n-1)} $\beta$_{n2}=$\epsilon$_{(n-2)(n-2)}, ) .

Let Z_{n1}=X_{n}^{*}\backslash \{$\alpha$_{n}\}, Z_{n2}=X_{n}^{*}\backslash \{$\alpha$_{n}, $\beta$_{n0}, $\beta$_{n1}, $\beta$_{n2}, $\beta$_{n3}\} and

M_{n}=\left\{\begin{array}{l}
\mathcal{N}_{L_{n}}( $\epsilon$| $\epsilon$\in Z_{n1}) \mathrm{f}\mathrm{o}\mathrm{r} n=2m+1,\\
\mathcal{N}_{L_{n}}( $\epsilon,\ \alpha$_{n}$\beta$_{n0}, $\alpha$_{n}$\beta$_{n1}^{-1}, $\alpha$_{n}$\beta$_{n2}^{-1}, $\alpha$_{n}$\beta$_{n3}^{-1}| $\epsilon$\in Z_{n2}) \mathrm{f}\mathrm{o}\mathrm{r} n=2m
\end{array}\right.
of L_{n} , where m\geq 2 . and H_{n}=\mathcal{N}_{F}(x^{n}, y^{n}, (xy)^{n}, (xy^{-1})^{n}) . We can

see that H_{n} is a normal subgroup of M_{n}.
Let n be a positive integer with n\geq 4 and M_{n} as above. If we set

Y_{n}^{(1)**}= \left\{\{f_{mm}^{n^{(i)}},f_{(m+1)m}^{n^{(i)}},f_{(m-1)0}^{n^{(i)}},f_{m0}^{n^{(i)}}\{f_{00}^{n^{(i)}},f_{01}^{n^{(i)}},f_{(n-\mathrm{l})0}^{n^{(i)}}|i\in \mathbb{Z}\}|i\in \mathbb{Z}\}\mathrm{f}\mathrm{o}\mathrm{r}n=2m\mathrm{f}\mathrm{o}\mathrm{r}n=2m+1\right.

Y_{n}^{(0)*}=\left\{\begin{array}{l}
\{$\beta$_{n2}^{(i)}, $\beta$_{n3}^{(-1)}, $\delta$_{n}^{(i)}|0\leq i\leq m-1\} \mathrm{f}\mathrm{o}\mathrm{r} n=2m+1\\
\{$\beta$_{n0}^{(0)}, $\beta$_{n0}^{(1)}, $\beta$_{n0}^{(2)}, $\beta$_{n1}^{(0)}, $\beta$_{n2}^{(-1)}, $\beta$_{n2}^{(0)}, $\beta$_{n3}^{(-2)}, $\beta$_{n3}^{(-1)}, $\beta$_{n3}^{(0)}, $\delta$_{n}^{(-2)}\}\\
\mathrm{f}\mathrm{o}\mathrm{r} n=2m \mathrm{a}\mathrm{n}\mathrm{d} m>2\\
\{$\beta$_{41}^{(-1)}, $\beta$_{41}^{(-2)}, $\beta$_{42}^{(-1)}, $\beta$_{42}^{(0)}, $\beta$_{43}^{(-2)}, $\beta$_{43}^{(-1)}, $\beta$_{43}^{(0)}, $\delta$_{4}^{(-1)}, $\delta$_{4}^{(0)}\}\\
\mathrm{f}\mathrm{o}\mathrm{r} n=4,
\end{array}\right.
and Y_{n}^{**}=Y_{n}^{(0)*}\cup Y_{n}^{(1)**}\cup Y_{n}^{(2)}\cup Y_{n}^{(3)} , then we can see that Y_{n}^{**} is a

basis of M_{n}.
We set N_{n}=M_{n}/H_{n} . It follows from the above that H_{n}=

\mathcal{N}_{M_{n}}(Y_{n}^{(1)**}\cup Y_{n}^{(2)}) . Since Y_{n}^{**}=Y_{n}^{(0)*}\cup Y_{n}^{(1)**}\cup Y_{n}^{(2)}\cup Y_{n}^{(3)} is a
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basis of M_{n} , we have that N_{n} is isomorphic to the free group gen‐

erated by Y_{n}^{(0)*}\cup Y_{n}^{(3)} . Let G_{n}' be the derived subgroup of G_{n} and

L_{n}=\mathcal{N}_{F}(x^{n}, y^{n}, [x, y It obvious that G_{n}' coincides with L_{n}/H_{n}.
Hence, by definition of M_{n}, N_{n}=M_{n}/H_{n} is a normal subgroup of

G_{n}' , and G_{n}'/N_{n} is isomorphic to L_{n}/M_{n} which is isomorphic to \langle$\alpha$_{n} },
the cyclic group of infinite order.

Now, if n=4 then  Y_{4}^{(3)}=\emptyset , and so  N_{4} is isomorphic to the free

group generated by the finite basis

Y_{n}^{(0)*}=\{$\beta$_{41}^{(-2)}, $\beta$_{41}^{(-1)}, $\beta$_{42}^{(-1)}, $\beta$_{42}^{(0)}, $\beta$_{43}^{(-2)}, $\beta$_{43}^{(-1)}, $\beta$_{43}^{(0)}, $\delta$_{4}^{(-1)}, $\delta$_{4}^{(0)}\}
We set N_{4}'=[N_{4}, N_{4}] and

N_{4}^{*}=\langle$\beta$_{41}^{(-2)}, $\beta$_{41}^{(-1)}, $\beta$_{43}^{(-2)}, $\beta$_{43}^{(-1)}, $\beta$_{43}^{(0)}, $\delta$_{4}^{(-1)}, $\delta$_{4}^{(0)}\rangle N_{4}'.
We have then that

f_{22}^{4^{(i-1) $\sigma$}4}=$\beta$_{42}^{(i-1)}$\beta$_{43}^{(i)}$\beta$_{43}^{(i+1)^{-1}}$\beta$_{43}^{(i-1)^{-1}}
Since \{(f_{22}^{4^{(i-1)}}, $\beta$_{42}^{(i+1)}), (f_{22}^{4^{(j-1)}}, $\beta$_{42}^{(j-1)})|i\geq 0, j<0\} is a subset of a

BT‐set on Y_{4}^{*} , we have that

(3.4) \left\{\begin{array}{ll}
$\beta$_{42}^{(i+1)}=v$\beta$_{42}^{(i-1)}$\beta$_{43}^{(i-1)^{-1}}$\beta$_{43}^{(i)} & (mod N_{4}') \mathrm{f}\mathrm{o}\mathrm{r} i\geq 0,\\
$\beta$_{42}^{(i-1)}=$\beta$_{42}^{(i+1)}$\beta$_{43}^{(i-1)}$\beta$_{43}^{(i)^{-1}} & (mod N_{4}) \mathrm{f}\mathrm{o}\mathrm{r} i<0.
\end{array}\right.
Similarly if i\geq 0 ,

under mod N_{4}' , we have

$\beta$_{41}^{(i)} =$\beta$_{41}^{(i-1)}$\delta$_{4}^{(i-1)^{-1}}$\delta$_{4}^{(i)^{-1}},
(3.5) $\beta$_{43}^{(i+1)}=$\beta$_{41}^{(i-2)^{-1}}$\beta$_{41}^{(i-1)}$\beta$_{42}^{(i-1)^{-1}}$\beta$_{42}^{(i+1)}$\beta$_{43}^{(i-2)}$\delta$_{4}^{(i-1)}$\delta$_{4}^{(i)},

$\delta$_{4}^{(i+1)} =$\beta$_{41}^{(i-2)^{-1}}$\beta$_{41}^{(i-1)^{2}}$\beta$_{41}^{(i)}$\beta$_{42}^{(i-1)^{-1}}$\beta$_{42}^{(i+1)}$\beta$_{43}^{(i)}$\beta$_{43}^{(i+1)^{-1}}$\delta$_{4}^{(i-1)}.
Then the first equation in (3.5) implies $\beta$_{41}^{(0)}\in N_{4}^{*} . Since $\beta$_{42}^{(1)}$\beta$_{42}^{(-1)^{-1}} \in

 N_{4}^{*} by (3.4), the second equation in (3.5) implies $\beta$_{43}^{(1)}\in N_{4}^{*} , and so

the last equation in (3.5) implies $\delta$_{4}^{(1)}\in N_{4}^{*} . That is \{$\beta$_{41}^{(0)}, $\beta$_{43}^{(1)}, $\delta$_{4}^{(1)}\}\subseteq
 N_{4}^{*} . By induction on i

,
we have that

\{$\beta$_{41}^{(i)}, $\beta$_{43}^{(i+1)}, $\delta$_{4}^{(i+1)}|i\geq 0\}\subseteq N_{4}^{*}.
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Similarly, if i<0 ,
it is verified that all of $\delta$_{4}^{(i-1)}, $\beta$_{41}^{(i-2)} and $\beta$_{43}^{(i-2)} are

in N_{4}^{*} . We have thus seen that \{$\beta$_{41}^{(i)}, $\beta$_{43}^{(i)}, $\delta$_{4}^{(i)}|i\in \mathbb{Z}\}\subseteq N_{4}^{*} . Since

G_{4}'=\langle$\alpha$_{4}\rangle N_{4} and $\alpha$_{4}^{j}$\beta$_{4t}^{(i)}$\alpha$_{4}^{-j}=$\beta$_{4t}^{(i+j)} for each i,j\in \mathbb{Z} , it follows that

N_{4}^{*} is a normal subgroup of G_{4}' , and also that $\beta$_{42}^{(i)}N_{4}^{*}=$\beta$_{42}^{(i+2)}N_{4}^{*} for

each i\in \mathbb{Z} by (3.4). Hence, if we set a=$\alpha$_{4}N_{4}^{*}, b=$\beta$_{42}^{(-1)}N_{4}^{*} and

c=$\beta$_{42}^{(0)}N_{4}^{*} ,
then G_{4}'/N_{4}^{*} is isomorphic to the group \langle a, b, c|aba^{-1}=

c, aca^{-1}=b, [b, c]=1\rangle.
Finally, let n\geq 5 . Recall that Y_{n}^{(3)}=\{$\epsilon$^{(i)}| $\epsilon$\in X_{n}^{(3)\prime}, i\in \mathbb{Z}\} and

 Y_{n}^{(3)}\neq\emptyset , where  X_{n}^{(3)\prime}=X_{n}^{(3)}\backslash \{$\epsilon$_{i0}|0\leq i\leq n-1\} . Let $\epsilon$_{0}\in X_{n}^{(3)\prime},
and set Y_{n}^{(3) $\xi$ j}0=Y_{n}^{(3)}\backslash \{$\epsilon$_{0}^{(i)}|i\in \mathbb{Z}\}, N_{n1}^{*}=\{$\epsilon$_{0}^{(i)}$\epsilon$_{0}^{(i+2)}|i\in \mathbb{Z}\rangle[N_{n}, N_{n}]
and N_{n2}^{*}=\{$\epsilon$^{(i)}|$\epsilon$^{(i)}\in Y_{n}^{(3)$\epsilon$_{0}}\rangle[N_{n}, N_{n}] . Since G_{n}'=\langle$\alpha$_{n}\rangle N_{n} and

$\alpha$_{n}^{j}$\epsilon$^{(i)}$\alpha$_{n}^{-j}=$\epsilon$^{(i+j)} for each $\epsilon$^{(i)}\in Y_{n}^{(3)} and each j\in \mathbb{Z} ,
it is verified

that both of N_{n1}^{*} and N_{n2}^{*} are normal subgroup of G_{n}' and so is

N_{n}^{*}=N_{n1}^{*}N_{n2}^{*} . Moreover, if we set a=$\alpha$_{n}N_{n}^{*}, b=$\epsilon$_{0}^{(0)}N_{n}^{*} and

c=$\epsilon$_{0}^{(1)}\mathrm{N}_{n}^{*} ,
then G_{n}'/N_{n}^{*} is isomorphic to the group \langle a, b, c|aba^{-1}=

c, aca^{-1}=b, [b, c]=1\rangle. \square 

4 Residually finiteness and primitivity

Theorem 1.1 says that the derived subgroup G_{n}' of G_{n} is a cyclic
extension of a free group. Since we can see \triangle(G)=1 , by [11,
Theorem 1], we have the following result:

Theorem 4.1. For a positive integer n
,

let G_{n} be as described in

Theorem 1.1. If n>3 then the group algebra KG_{n} of G_{n} over a

field K is primitive.

Finally, by making use of Theorem 1.1, we shall prove residual

finiteness of G_{n}.

Theorem 4.2. If n is a positive integer and G_{n} is as described in

Theorem 1.1, then G_{n} is residually finite.
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Proof. If n\leq 3 , then G_{n} is finite by Theorem 1.1 (1), and so we

may assume n\geq 4 . Let G_{n}' be the derived subgroup of G_{n} and let

$\gamma$_{i}G_{n}' is the ith term of the lower central series of G_{n}'; thus $\gamma$_{1}G_{n}'=G_{n}'
and $\gamma$_{i+1}G_{n}'=[$\gamma$_{i}G_{n}', G_{n}'].

First we shall show that G_{n}' is residually nilpotent, that is

\displaystyle \bigcap_{i=1}^{\infty}$\gamma$_{i}G_{n}'=1 . By virtue of Theorem 1.1 (2), there exists a normal

subgroup N_{n}^{*} of G_{n}' such that G_{n}'/N_{n}^{*} is isomorphic to the group

\langle a, b, c|aba^{-1}=c, aca^{-1}=b, [b, c]=1\rangle . Since [aba-1, b]=[[a, b], b],
G_{n}'/N_{n}^{*} is isomorphic to the group \overline{G_{n}'}=\langle a, b|a^{2}ba^{-2}=b, [[a, b], b]=
1\} . Since the relation a^{2}ba^{-2}=b implies a[b, a]a^{-1}=[b, a]^{-1} and

this implies [[b, a], a]=[b, a]^{2} ,
it is inductively verified that that

[b, a]_{i}=[b, a]^{2^{i-1}} for each i>0 where [b, a]_{1}=[b, a] and [b, a]_{i+1}=
[[b, a]_{i}, a] . Moreover, since b[b, a]b^{-1}=[b, a] ,

it follows that for each

i\geq 2 , the ith term $\gamma$_{i}\overline{G_{n}'} of the lower central series of \overline{G_{n}'} coincides

with \langle[b, a]^{2^{i-2}}\rangle ,
the cyclic group generated by the element [b, a]^{2^{i-2}}

In particular, for each i\geq 1, $\gamma$_{i}\overline{G_{n}'}\supset$\gamma$_{i+1}\overline{G_{n}'} , a proper subgroup,
and so $\gamma$_{i+1}G_{n}' is a proper subgroup of $\gamma$_{i}G_{n}' for each i\geq 1 . Since

$\gamma$_{2}G_{n}' is a subgroup of the free group N_{n} by Theorem 1.1 (2), $\gamma$_{2}G_{n}'
is itself free. As is well known, any proper infinite descending chain

of characteristic subgroups of a free group has trivial intersection,
and so \displaystyle \bigcap_{i=1}^{\infty}$\gamma$_{i}G_{n}'=1 , as desired.

Now, let g be an arbitrary element in G_{n} with g\neq 1 . To complete
the proof, we require to find a normal subgroup, not containing g,

and of finite index in G_{n} . Since G_{n}/G_{n}' is finite abelian, we may

assume g in G_{n}' . As we sow in the above, \displaystyle \bigcap_{i=1}^{\infty}$\gamma$_{i}G_{n}'=1 ,
and so

there exists a positive integer i_{g} such that g\not\in$\gamma$_{i_{g}}G_{n}' . Moreover $\gamma$_{i_{9}}G_{n}'
is a normal subgroup of G_{n} , and therefore it sufices to show that

G_{n}/$\gamma$_{i_{g}}G_{n}' is residually finite. However, it is almost clear: In fact,

G_{n}'/$\gamma$_{i_{g}}G_{n}' is finitely generated nilpotent and so polycyclic. Hence

G_{n}/$\gamma$_{i_{g}}G_{n}' is also polycyclic, and the conclusion follows from residual

finiteness of polycyclic groups. \square 
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