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abstract We give our definition of homomorphisms(called w-homomorphisms) of
general weighted directed graphs and investigate the semigroups of surjective homomor-
phims and synthesize graphs to obtain a generator of pricipal left (or right) ideal in the
semigroup. This study is motivated by reducing the redundancy in concurrent systems,
for example, Petri nets which are represented by weighted bipartite graphs. Here we can
more simply obtain some results in weighted directed graphs that is generalizations of
Petri nets[10].

In a general weighted directed graph, weights given to edges are mesured by some
quantity, for example, usually nonnegative integers. Here slightly extending the no-
tion of weight, we adopt and fix a kind of ring R as this quantity. For weighted di-
graphs (V;, E;,W;)(: = 1,2), a usual graph homomorphism ¢ : V; — V; satisfies
Wa(é(u), $(v)) = Wi(u,v) to preserve adjacencies of the graphs. Whereas we extend
this definition slightly and our homomorphism is defined by the pair (¢, p) based on the
similarity of the edge connection. (¢, p) satisfies Wa(d(u), ¢(v)) = p(u)p(v)Wy(u,v),
where p : Vi — Q(R) and R is a p.i.d. ant Q(R) is its quatient field.

We investigate the semigroup S of all surjective w-homomorphisms and develop the
theory of principal ideals in S. As an application, we show that some ordered sets of
graphs based on surjective w-homomorphisms form lattice structures.

1 Preliminaries

Here we introduce an extension of homomorphisms of a usual weighted directed graph
and state some properties of the semigroup of these homomorphisms.

1.1 Graphs and Morphisms

In a general weighted directed graph, weights given to edges are mesured by some
quantity, for example, usually nonnegative integers. Here slightly extending the notion
of weight, we adopt a kind of ring R as this quantity. More precisely we assume that
(R, +,-) has at least two distinct elements 0, 1 € R and satisfies conditions (i) to (iii):

(i) (R, +,0) is an abelian group.
(i) (R, -, 1) is a monoid.
(iii) (R, +, -) satisfies the distributive laws.

Moreover through the manuscript we assume that R is a principal ideal domain (abbre-
viated as p.1.d)[9], that is, satisfies the following conditions (iv) to (vi).



@iv) (R, -, 1) is commutative.
(v) ab=0impliesa =0orb = 0.
(vi) Every ideal I in R is principal, that is, I = RaR for some a € R.

‘We require the conditions (iv) and (v) that R is a domain, for defining the quotient field
Q(R) = {r/s|r,s € R,s # 0} of R by Q(R), which is the smallest field containing a
domain R.

By (vi), for any nonempty S = {a1,as,...,a,} C R, there exists a € R such that
aiRUasRU---Ua, R = aR, which is called a greatest common divisor of S. The set of
all the greatest common divisors of S is denoted by ged(S).

DEFINITION 1.1 A weighted directed graph (weighted digraph, for short) is a 3-tuple
(V, E, W) where

(1) YV is a finite set of vertices,

(2) E(cV xV)isaset of edges,

(3) W : E — Risaweight function, where R is a p.i.d.. O

According to custom, (u,v) € E <= W(u,v) #0.

DEFINITION 1.2 Let G; = (‘/1, E,, Wl) and Gy = (‘/2, E,, Wg) be weighted di-
graphs. Then a pair (¢, p) is called a (weight preserving) homomorphism (for short,
w-homomorphism) from G, to G, if W; : E; — R have the same image R and the maps
¢: Vi = Vs, p: Vi > Q(R) \ {0} satisfy the condition that for any u,v € V3,

Wa(¢(u), 6(v)) = p(w)p(v) Wi(u, v), (1.1

where Q(R) is the quotient field of R. Especially if p = 1y4, i.e., p(u) = 1 for any
u € V3, then w-homomorphism is called a strictly weight preserving homomorphism (s-
homomorphism, for short). O

EXAMPLE 1.1 Let G; = (V;, E;, W;) (i = 1,2) be the weighted digraphs depicted in
Figure 1, W, : V; — Z the weight functions, where Z is the set of integers but we don’t
use its negative part. That is,

Vi = {ug, ug, 01, v2}, Va = {us, us, vs}.

Wi(w,v1) = 1, Wi(ug,v3) = 2, Wi(ug,v1) = 3, Wi(ug,v3) = 6.

Wo(us, v3) = 3, Wa(ug,v3) = 9, otherwise W (u,v) = 0.

The weights of any other weights are 0.

U Ug U Uy
3
1 6 3
v V2 Ve
(a) Weighted digraph G; (b) Weighted digraph G,

Figure 1. Weighted Digraph G, and G5 with G; 2 Ga.

The following (¢, p1) is a w-homomorphism from G, to Gs.

¢_U1 Uz V1 V2 _fu1 Uz Uy Vs
g w vy )PP\ 13 3/2)
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The w-homomorphism (@, p) is called injective (resp. surjective) if ¢ is injective (resp.
surjective). In particular, it is called a w-isomorphism from G, to G, if it is injective and
surjective. Then (3; is said to be w-isomorphic to G4 and we write G; ~,, G,. Moreover,
in case of G; = Gy = G, a w-isomorphism is called an w-automorphism of G. By
Aut(G) we denote the set of all the w-automorphisms of G. Similarily s-isomorphism
o, s-automorphism and Auts(G) are defined.

1.2 Composition of the w-homomorphisms

We define the composition of the w-homomorphisms. In this manuscript, we write ¢}
for the composition 1 o ¢ of maps.

DEFINITION 1.3 Let G; = (V;, E;,W;) (i = 1,2,3) be weighted digraphs, (¢, p) :
G; = Gy and (¢,0) : Go = G3 be w-homomorphisms. Then the composition of these
w-homomorphisms are defined by the semidirect product

(6, 0) (%, 0) & (¢,0) % (¥,0) = (¢80, p ® (¢0)),

where p ® (¢0) : V = Q(R),u — p(u)o(é(u)). The set Q(R)Y of maps from V to
Q(R) forms abelian group under the operation ®: (f ® g)(v) = f(v)g(v). O

Indeed, checking the validity of the definition.

Wi (9((u)), ¥(4(v)))

= 0(4(w))o($(v))Wa(¢(u), 8(v))

= 0(8(w))a(¢(v))p(w)p(v)Wi(u, v)

= o(¢(u))p(w)a(d(v))p(v)W1(u,v)

= ((¢0) ® p)(u)((¢0) ® p)(v)W(u,v)

hold.
EXAMPLE 1.2 LetG; = (V;, E;, W;) (i = 2, 3) be weighted digraphs depicted in Figure

2. The following (¢;, p1) is the w-homomorphism from G to G5 in Example 1.1. (¢2, p2)
is a w-homomorphism from G5 to G3.

d1= U Uz V1 V2 _ (U1 U2 V1 U
1= Uz Ug4 V3 U3 1= 1 1 3 3/2 ’

by = U3 Uy V3 _fus ug U3

> \w w v ) PT\5/3 59 1)
We have

_fur uz v U
i (5/3 5/9 1 1 )

Therefore, (¢, p) = (192,01 ®@ (¢102)) = (¢1,p)(#2, p2) is the composition of them,

where
¢_ Uy Ug Vi Uy _(wm U2 V1 Uy
“\u uw v v ) PT\5/3 59 3 3/2)°

88



v
(b) Weighted Digraph G, (c) Weighted Digraph G

U (7} u
Ve

Figure 2. Weighted digraphs GG and G3.

Immediately, we obtain the following lemma regarding to ®.

LEMMA 1.1 Let ¢ and % be arbitrary maps on V and f,g : V — Q(R). 1y means
the constant mapping defined by 1y : V. — Q(R),v — 1, f~! means the mapping
V — Q(R),v — 1/f(v). Then the following equations are true.

M) (@Y)f =¢(¥f).

@ d(f®g)=(9f)®(¢9)

(3) Y1y =1y,

@ (@) ®(@f) =1v.

6) (@f)t=¢f

Proof) We can easily verify the equations. (]

For weighted digraphs G, and G», we write G; J G if there exists a surjective w-
homomorphism from G; to G5. The relation 1 forms a pre-order (a relation satisfying
the reflexive law and the transitive law) as shown below. Of course, the pre-order 1 is
regarded as an order up to w-isomorphism.

PROPOSITION 1.1 Let Gy, G2, G3 be weighted digraphs. Then,
1) G326

) G 3d Gy and Gy Gy — G~y Gy

(3) Gl | G2 and Gg | G3 1mply Gl . G3.

Proof) We can easily verify the inequalities. O

Remark that in Example 1.2, ¢; and ¢- are sujective, ¢1¢s is also. Therefore G;
G2 ;I G3 holds.

2 Ideals in the semigroup S

In this section we define the set S of all surjective w-homomorphisms between two
weighted digraphs and a (extra) zero element 0. Introducing the multiplication by the
composition, S forms a semigroup, _

For a surjective w-homomorphim z : G; — G, G is called the domain of z, denoted
by Dom(z), and G, is called the image(or range) of z, denoted by Im(z). Especially
Dom(0) = Im(0) = 0. The multiplication of z = (¢, p) and y = (3, o) is defined by

vy { (()W, (¢p) ® ) if Im(z)= Dom(y).

otherwise.
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2.1 Green’s equivalences on the semigroup S

Regarding to a general semigroup S without an identity, for convenience of notation,
S = SU{1} is the monoid obtained from a semigroup S by adjoining an (extra) identity
1,thatis,1-s=s-1=sforalls€ Sand1-1=1.

In general, Green’s equivalences £, R, J,H,D on a semigroup S, which are well-
known and important equivalence relations in the development of semigroup theory, are
defined as follows:

Ly <= S'z =Sy,
TRy = z8' =yS,
zJy < S8 = SlyS!,
H=LNR,

D= (LUR),

where (£ U R)* means the reflexive and transitive closure of £ U R. Sz (resp. zS%)
is called the principal left (resp. right ) ideal generated by x and S*zS! the principal
(two-sided) ideal generated by x. Then, the following facts are generally true[7, 2].

FACT 1 The following relations are true.

()D=LR=RL
2)HC L (respR)ycDC T

FACT 2 An H-class is a group if and only if it contains an idempotent e, that is €* = e.

Now we consider the case of S = & in the rest of the maniscript. The following lemma
is obviously true.

LEMMA 21 Letx: Gy — Gy, y: G3 = G4 € S. Then,

(€))] zS? Cy81=>Gl = G3and G, C Gy.

) 81$C81y2>G3 C Gyrand Gy = Gy,

3) z8'=yS'= G, = Gz and Gy ~,, G4

@) S'z=8%Y= G, ~y Gzand Gy = G4 O

Remark that any reverse implications above are not necessarily true.

PROPOSITION 2.1 The following conditions are equivalent.
(1) H is an H-class and a group.
(2) H = Aut,(G) for some weighted digraph G.

Proof) (1)==(2) By Fact2, H contains an idempotent e, that is e2 = e. This implies
Dom(e) = I'm(e) = G for some weighted digraph G. By (3) and (4) of Lemma 2.1,
Dom(z) = Dom(e) = G and Im(z) = Im(e) = G for any z € H because z§' =
eS! and S'z = S'e hold. Therefore each element of H is a w-automorphism of G.
Conversely, for a w-automorphism z of G, z € H because zz7! = z7!z = e and
ex = ze = z. Hence we have H = Aut(G).

(2)=(1) For z,y € H = Auty(G), there exist z,w € H such that z = 2y and
wz = y. This implies S’z = S'y. Similarily we have 28! = yS!. Therefore zHy.
Conversely, zHy and z € H imply y € H because y is a surjective w-homomorphism
with Dom(y) = Im(y) = G. Hence H is an H-class and a group. O
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PROPOSITION 2.2 On the semigroup S, J =D
Proof) Since D C J holds, it is enough to show the reverse inclusion.

zJy <= Sa8! = SyS?
<— Ju,v,z,w € S (z = uyv,y = zzW)

implies that z = uzzwv, y = zuyvw. Setting

P = Dom(z),Q = Dom(y),R = Im(z) and S = Im(y),uz : P = P,zu: Q — Q,
wv : R - R, vw : § — S are w-automorphisms. This implies that u, v, z,w are
w-isomorphisms and u~! = 2,97 = w. Let t = zw. Then,

z = z(ww™?) = (zw)w™! = tw™!

y = 2z(zw) = 2t
t=(z12)t=2"Y(2t) = 27y

Therefore zS* = tS* and S't = Sy, that is, zRtLy. Thus D C J. O
2.2 Intersection of principal ideals

The aim here is that for given 2,y € S we find a elements 2 such that S'z NSy = Stz
(resp. zS* NyS! = 28%). zS8'NyS! = {0} (resp. S'zNS'y = {0}) is a trivial case(z =
0). We should only consider the non-trivial case. For a surjective map ¢ : V; — V3, we
denote the equivalence relation ¢p¢~' = {(u,v)|v € ¢¢p~1(u)} on V; by ker ¢.

LEMMA 2.2 Let G; = (V;, E;.W;)(i = 1,2, 3) be weighted graphs, z = (¢,p) : G1 —
G3,y = (¢,0) : G2 = G3 be elements of S. If [~ (u)| < |y~ (u)| for any u € V4, then
S'y c S'z.

Proof) By the assumption, we can choose some surjective morphism & : Vo — V; such
that £(p~!(u)) = ¢~!(u) for any u € V3.

o(u)a(v)
Wi(&(u),€(v)) = ——F——Ws(u,v).
680D = Seuaten )
So 7 : Vo = Q(R) is defined by 7 = o ® (£p)~!. Then, we can verify that (£, 7) is a
surjective morphism from G; to G, and thus z € S?, y = zz. Therefore S'y C S'z. O

Remark that enumerating all the surjective maps such as ¢ in the proof, the number N
of them is represented as

k
N = H(sz" x m;l),
i=1

where V3 = {uy,us,...,u}, m; = |67 (w;)], n; = [~ (u;)| , and s is the Stirling
number (of the second kind). s7%(n; > m;) is the number of partitions of a set of n;
objects into m; classes[1].

LEMMA 2.3 Let G; = (V;, E;.W;)(: = 0,1,2) be weighted digraphs, z = (4, p) :
Go = G1,y = (¥,0) : Go — G be elements of S. If ker ¢ C ker 1, then yS* C zS™.
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Proof) Let u, v be arbitrary elements of V3, respectively. By the assumption, @,7 € V5
are uniquely determined and let

¢_1(u) = {u1,u2, sy un} - w—l(a)7
¢ 1(v) = {v1,v2,..., v} C YD),

Then we can easily check that

Wi (u,v) = Wi(d(w), p(v;)) = p(wi) p(v;)Wo(us, v5),
Wa(@, 0) = Wa(b(wi), % (v;)) = o(u;)o(v;) Wo(us, vs),

forany i =1,2,...,nand j = 1,2,...,m. The right hand sides of the equations above
are constants not depending on i and j. So

§: Vi = Vo, urs u, where ¢~ !(u) C ¢~(@), and
v:Vi = Q(R), u— o(w;)p~(u;), where ¢(u;) = u

are well-defined. Therefore we have z = (£, v) € § and thus y = zz, that is, yS* C zS".
O

PROPOSITION 2.3 (Intersection of Principal Left Ideals) Let G; = (V;, E;,, W;)(: =
1,2,3) be weighted digraphs, z = (¢1,p1) : G1 = G3, ¥y = (¢2,p2) : G2 — G3 be
elements of S, V3 = {u1, ua,...,un}. Let

n; = max{|¢7" (w;)], |¢5*(u;)|} for eachi = 1,2,..., N.

Taking sets Uy, Us, . .., Uy with their sizes |U;| = n;(i = 1,2,...,N), we construct a
weighted digraph G = (V, E, W), where V = U, ., U; and for any u,v € V,

W (u,v) = Ws(u;,u;) if u e Us,v e Uj,

Then, z = (¢,1g,) : G = Gs,where ¢ : U; Sur— u;and 1g, : V = Q(R),v—> 1 €
Q(R), is a surjective morphism. Moreover, S'z N Sly = Sz,

Proof) By Lemma 2.2 and the construction of G, z = az = by for some a,b € S*.
Therefore z € S'z N S'y.

Conversely we show that w = (¥,0) € S'z N Sy implies w € S'z. We can write
w = a'z = by for some o/, € S'. Let u; € V3. In our construction, |¢~*(u;)| =
max{| (o)}, I63" (w)[}. Since w = o'z = By holds, we have |¢r"(u)| < | (u)
and |¢; " (u;)] < |4~ (u;)| and thus ¢~ (u;)| < [¢~!(u;)|. By Lemma 2.2, we conclude
StzNSly =8z, O

COROLLARY 2.1 (Diamond Property I) Let G, G2, G3 be weighted digraphs with
G; J G3(i = 1,2). Then there exists a unique least weighted digraph G up to w-
isomorphism such that G; 3 G (i = 1, 2). O

We consider the intersection of two principal right ideals. The case of principal right
ideals is rather difficult compared to that of principal left ideals.

(kergUker 9)* is the smallest equivalence relation on V' which includes both ker ¢ and
ker 7, that is, it is the reflexive and transitive closure of ker¢ U ker 1.
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PROPOSITION 2.4 (Intersection of Principal Right Ideals) LetG; = (V;, E,. W,)(i =
0,1,2) be weighted digraphs, z = (¢1, p1) : Go = G1, y = (¢2,p2) : Go = G5 be ele-
ments of S. Let Cy, Cs, . .., Cy be all the (ker ¢, U ker ¢9)*-classes in Vj.

p : Vo = Q(R) is defined by if u is O-isolated then p(u) = 1 and otherwise

p(u) = 1/ ged({Wo(u, v), Wo(v, u) |v € Vo})

where n = |Vp| and Vy = {v1,va,..., 0, }.

(1) The weighted graph G5 = (V3, E3.W3) can be constructed in the following way:
‘/3 = {01902)“ . ,CN},

For eachi,j € {1,2,...,N},

W3(C;, C;) = p(u)p(v)Wo(u, v)for anyu € Cj,v € Cj,

are well-defined.
(2) Let 2 = (¢, p) : Go — G3, where ¢ is the canonical surjection from V; onto V3.
Then, z is a surjective morphism and zS* NyS* = 2S.

Proof) Leti,j € {1,2,..., N}. We shall show that for any u, ' € C; and v,v’' € C;,
p(uw)p(v)Wo(u,v) = p(u)p(v)Wo(u',v"), 2.1)

Before proving the equation (2.1), under the condition that ¢y (u) = ¢ (') and ¢x(v) =
¢r(v') hold for k = 1, 2, we show the equation (2.1). First,

pk(u)pk(v)wo(uv 'U) = Wk(¢k(u)7 P (’U)) 2.2)
= Wi(dr('), 8 (v')) = pr(w) pr (V") Wo (W, ') '

holds and especially considering the case of v = v/, we have

pe(w)Wo(u,v) = pr(v" )Wy (', v), and similarly 23)
pr(w)Wo(v,u) = pr(u)Wo(v, o). ’

Next the following equation (2.4) holds.

neither u nor v is 0-isolated — 2.4)
p(u)p(v) pr(u) pr(v') = p(w')p(v") ok (w) P (v).- '

Indeed since u and ' are not O-isolated, the greatest common divisors give the follow-
ing equations.

p(u)pr(u')

= p(u)p(u)pr(u)p~ («)

= p(u)p(u)px(u') ged({Wo (v, v), Wo(v,v') | v € Vo})

= p(u')p(u) pr () ged({Wo(u, v), Wo(v,u) | v € Vo}) "+ (2.3)
= p(u') p(w) pr(u)p~" (u)

= p(u) pr(u){p(u)p~ ' (u)}

= p(u) pr(u)
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Similarily we have p(v)pr(v') = p(v")px(v). These imply that the equation (2.4) holds.
The equation (2.2)implies that Wy(u,v) = 0 <= Wy(«/,v’) = 0. Since it is trivial in
case of Wy(u,v) = 0, we may assume that Wy (u, v) # 0 and thus u is not O-isolated.

p(w)p(v)Wo(u, v)

= p(w)p(v)or(w) ™ pr(v) ~ o1 (w) i (v) Wo(u, v)

= p(w)p(v)pi(w) " pr(v) o () pr (V) Wo (v, ') - (2.2)
= p(&)p(v")pr (w) ™ i (v) ™ pr () pr (V) W (', V') - (2.4)
= p(u)p(v)Wo (v, V')

If ¢p(u) = ¢p(v') and ¢y (v) = ¢x(v’) hold for £ = 1,2, we have shown the equation
(2.1) and return to the proof of the equation (2.1) in case of u, v’ € C; and v,v’ € C;.
Since u, v’ € C; and v, v’ € Cj, there exist sequences

S0 =1U,81,...,8 =u,
with(sg—_1, sx) € ker ¢y Uker ¢po(0 < k < £),
to =v,i1,...,tm=v',

with(tx—1,%) € ker ¢, Uker (0 < k < m).

Then,
p(s0)p(to)Wo(so,t0) = p(s1)p(to) Wo(s1,t0) = . ..
= p(s¢)p(to) Wo(se, to) = p(se)p(t1)Wo(se, ta) = ..
= p(se)p(tm)Wo(se,tm)
Therefore the equation (2.1) and thus W; are well-defined.
(2) Letk € {1,2}. By the statement (1) above, the following maps are well-defined.

& Vi = Vs, v @(u) where ¢ (u) = v,
pi’ 2 Vi = Q(R),v = p(u)pr(u)™!  where ¢y (u) = v.

For any v,t € V4, there exists u, s € Vp such that ¢;(u) = v and ¢ (s) = ¢, and thus we

h
Wa(de'(v), ¢’ (£)) = W6 (), 6(5)) = p(w) p(5) Wo (u, 5)
= p(u)p(s) pr(u) L pr(8) " Wi (de(w), ¢x(s))
= pi'(v) pi' (1) Wi(v, 1).

Therefore ' = (¢1', p1’) : G1 — Gz andy' = (¢2/, p2’) : G2 — G3 are w-homomorphisms.
We can easily show that ¢'(k = 1,2) are surjective, that is, z = zz’ = yy/ (¢, € S).
Therefore 2S* C zS8' NyS!.

Conversely, we show that for any w C z8*NyS? there exists 2’ € S! such thatw = z2'.

If we can write w = za = yb, a = (¢1,01),b = (¢a,02) € S, thenw = (Y,0) =
(9191, P11 ® $r101) = (¢2t2, p2 ® P202). Let Im(w) = Gy = (Vy, B4, Wy)

Let u,u’ € C;. Since a sequence s = u,5,...,5; = u’ such thatfor 0 < j < ¢
¢1(Sj) = ¢1(8j+1) or ¢2(Sj) = ¢2(Sj+1) CXiStS, w(Sj) = ’lp(Sj_H) holds. This imp]jes
that there exists v € V such that C; C ¥~!(v). By Lemma 2.3, wS' C 2S?. Therefore,
xS NyS* C 28 0O

COROLLARY 2.2 (Diamond Property IT) Let G; (¢ = 0, 1,2) be weighted digraphs
with Gy 2 G; (¢ = 1, 2). Then, there exists a unique maximum weighted digraph G up to
isomorphism such that Go 3 G; 2 G (i = 1,2). O



‘We define the notion of irreducible forms of a weighted digraph with respect to J.

DEFINITION 2.1 (Irreducible) A weighted digraph G is called a J-irreducible if G 1

G’ implies G ~ G’ for any weighted digraph G’. Then G is called an J-irreducible form.
O

COROLLARY 2.3 Let G, G’ and G” be weighted digraphs with G 2 G’ and G 3 G”.
Then one has: If G’ and G” are J-irreducible, then G’ ~,, G".

Proof) Trivial by Corollary 2.2 and the definition of J-irreducibility. O
2.3 Lattice structures of ~,-classes of weighted digraphs

As an application of the theory of principal ideals developed in the previous section,
we deal with lattice structures of equivalence classes (~~,,-classes) of digraphs divided by
the w-isomorphism relation ~~,,. By [G] we denote the ~,,-class of a graph G. The set of
all ~,,-class is an ordered set because J is well-defined and LEMMA 1.1 holds.

Let G;, be an J-irreducible form and L(G;r) = {[G] | G 3 G-} through this
section. By COROLLALY 2.3, the class [Gj,,] is the least element of L(G},,) because
any other ~,,-class in L(G};,,) cannot contain an J-irreducible form.

PROPOSITION 2.5 (conditional LUB and GLB) The following claims hold.

(1) Let [G1)],[G2], [Gs] be ~,,-classes with [G;] O [Gs] (¢ = 1,2). There exists the
minimum [G] such that G 3 [G;] 3 [G3] (i = 1,2), denoted by lub([G4], [G2]; [G3)).

(2) Let [Go], [G1], [G2] be ~,-classes with [Go] T [G;] (¢ = 1,2). There exists the
maximum [G] such that [Gy] 2 [G;] 3 [G] (2 = 1, 2), denoted by glb([Go); [G1], [G2))-

Proof) Immediate from COROLLALY 2.1 and COROLLALY 2.2. O

PROPOSITION 2.6 The following claims hold.

(1) Let [G4], [G2], [Gs), [G'3] be ~,,~classes with [G;] O [G3] and [G;] 2 [G'3](i =
1, 2) If [Gg] ; [G’g], then IUb([Gl], [GQ], [Gg]) ; IIIb([Gl], [Gz]; [Gé])

(2) Let [Go], [G’o], [Gl], [G2] be zw»classes with [Go] 3 [Gz] and [G’o] | [Gz] (Z
1,2). If [Go] 3 [G"], then glb([Gy); [G1], [G]) 2 glb([Gy; [Gal, [Gal).

Proof) (1) Put [G] = lub([G1], [G2]; [G3]), G’ = lub([G1], [G2]; [G4]). By Proposition
2.3, there exist surjective w-homomorphisms z : G — G3, 2 : G’ = Gy andu : G3 —
G} such that Sz N S'y = S'z and S'zu N S'yu = S'2’. Since 2u € S'zu and
zu € S'yu hold, zu € S'2’ and thus zu = vz’ for some v : G — G’ and v € S*.

(2) By the left-right duality of (1). O

COROLLARY 2.4 Let [Gy], [G5] be elements in L(G},,). There exists the unique least
(resp. greatest) =, class [Gy| (resp. [Gr]) such that [Gy] O [Gi] (i = 1,2) (resp.
[G;] 3 [GL] (3 = 1,2)), denoted by lub(G, Gs) (resp. glb(Gy, Ga)).

Proof) By PROPOSITION 2.6, (G| = lub([G1], [Ga]; [Girr]) is least. Again, [G] =
glb([Gu]; [Gul, [Ga]) is greatest. O
From this proposition we get the following theorem.

THEOREM 2.1 The ordered set (L(Gj,),d) forms a lattice with the least element
[Girr]-
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3 Conclusion

In this paper we introduced our graph homomorphisms based on similarity of vertecies.
Some algebraic properties related to them were investigeted. We first considered Green’s
relations and ideals in the semigroup S of all surjecvtive w-homomorphisms between
two weighted digraphs, to which is adjoined the extra zero 0. In the semigroup S, the
intersection of principal left (resp. right) ideals is also a principal left (resp. right) ideal.
This implies two kinds of diamond properties with respect to the pre-order induced by
surjective homomorphisms. It is technically interesting to construct such two kinds of
synthesis of weighted digraphs. Moreover we apply this results to the lattice structure of
~y,-classes of digraphs.

The following problems remains open, for example, whether the intersection of two
principal (two-sided) ideals is also a principal ideal in S,

In addition to these problems, we develop the application of algebraic theories to auto-
morphim groups of weighted digraphs and apply our w-homomorphism to formal lan-
guages and codes and to fundamental and common problems related to weighted di-
graphs.
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