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1 Introduction

This article is a brief survey of the paper [3], which is a joint work with Yoshihiro Shibata,
Professor of Waseda University.
We consider the compressible Navier-Stokes equations:

pe+div((p+ps)u) =0 in Q x (0,7),
(p+p)(W+u-Vu) — pAu—vVdivu+Vp=0  in Qx (0,7), @
u=0 onI' x (0,T),

(P, w)]e=0 = (po, o) in

where {2 is an exterior domain of the 3-dimensional Euclidean space R?, that is Q@ = R3\ O
with some bounded domain O in R?® and I' the boundary of € which is assume to be a
smooth compact hyper-surface. Here, p, is a positive constant describing the mass density
of the reference body, and p and v are positive constants describing the first and second
viscosity coeflicients, respectively. Moreover, p = p(x,t) with z = (z1,%9,23) € Q, is
a unknown function, p. + p being the density field, u = (ui(x,t), ua(z,t), uz(x,t)) the
unknown velocity field, p the unknown pressure field, (po, ug) prescribed initial data, and
ur = 0 is non-slip boundary condition. We consider only the barotropic case, that is

p=Plp. +p),

where P(s) is a C* function defined for s > 0 satisfying the condition:
pr< Plp+p) <ps for|p] <p./2

with some positive constants p; and ps.

The purpose of this article is to prove the global well-posedness of (1.1). Moreover, it
is proved the optimal decay property.

When = R3 or  is a 3-dimensional exterior domain, Matsumura and Nishida 6, 7]
proved the global well-posedness of problem (1.1) under the assumption that the H® norm
of initial data py and ug are small enough. And also, Matsumura and Nishida [6, 7] and
later on Deckelnick [1, 2] proved some convergence rate of solutions to the stationary
solutions by using the energy method. The optimal decay properties were obtained by



Ponce [8] when Q = RY and by Kobayashi and Shibata [5] when (2 is a 3-dimensional
exterior domain with the help of the L,-Ly decay estimate for the linearized equations.

In 2002, Kawashita [4] proved the global well-posedness of (1.1) when Q = RY (N > 2)
under the assumption that the H* norm of initial data with s = [N/2]+1 are small enough,
in particular, s = 2 when N = 2 and 3. Later, Wang and Tan [10] proved the optimal
decay estimate of Kawashita’s solution when Q = R?® with the help of the L,-L, decay
estimate due to Ponce [8]. The purpose of this paper is to prove the same results for the
initial boundary value problem in 3-dimensional exterior domains as that for the Cauchy
problem obtained by Kawashita [4] and Wang and Tan [10].

The following theorem shows the global well-posedness of (1.1).

Theorem 1.1. Let Q be a 3-dimensional exterior domain whose boundary I' is a C?
compact hyper-surface. Then, there exists a small positive number & such that if initial
data (po,uo) € H?(Q)* satisfy the smallness assumption: ||(po, uo)||m2) < 0 and the
compatibility condition: ug|r = 0, then problem (1.1) with T = oo admits unique solutions
p and u with

p € C°([(0, 00), H*(2)) N C'([0, 00), H'(€2)),

pi € Lz((0,00), HY(Q)), Vp € Ly((0,00), H'(2)*)

u € C°([0, 00), H*(2)*) N C'([0, 0), L2(2)%),

W, € Ly((0,00), H'(Q)®), Vu € Ly((0,00), H*(R)?) (1.2)

possessing the estimate:

sup (o, w)(- $)I* + sup [V, ps, Vu)(, s)|I* + Sup 1(V?p, Vps, V2u)(-, 8)||*
- /0 (Ival, )1 + llpsC I + loC )13, @) ds
+/0 IVl )I1? + lus (5 )12+ IVo(, )P + IV ps(-, 9)|7) ds

+ /Ot(IIV3u(', )P+ IVus(, s)II* + IV2p(, 5)|I7) ds
< Cll(pos wo) Iz (1.3)
for any t > 0 with some constant C' independent of 0.
Moreover, we proved the optimal decay pr.operty.

Theorem 1.2. Let Q be a 3-dimensional exterior domain whose boundary T' is a C3
compact hyper-surface. Then, there exists a small positive number & such that if ini-
tial data (po,uo) € L1(2)* N H2(Q)* satisfy the smallness assumption: ||(po, wo)|zs () +
[[(po, wo)|l 20y < & as well as the compatibility condition, then problem (1.1) with T = oo
admits unique solutions p and u satisfying the same regularity conditions (1.2) and (1.3)
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in Theorem 1.1 and possessing the decay estimate:
sup (1+5)**|(p, w)(-,8)| + sup (1+5)*[[(Vp, Vu)(-,8)]|
0<s<t 0<s<t
+ sup (14 8)”*(V2p, V2u)(-, )|
O<s<t
< C(ll(po, wo)llz:(2) + ll(po, wo)llrr2())

for any t > 0 with some constant C independent of 6.

2 Outline of proof of Theorem 1.1

In this section we consider the following equation:

pt+u-Vp+pdiva=f, in Q x (0,7,
u; — g Au — v, Vdivu +.Vp =g, in Qx(0,7), (2.1)
ulr =0, (p,u)l=0 = (po, o) in €,
where
My = ,U/ﬂ*» Ve = V/p*, Vx = P/(p*)/ﬂ*,
frn = pdivu,
1 1 . Plp+p)  Plps)
gn = ——) pAu + vVdivu —( — Vp.
" (p+p* Px ( ) P+ ps Px ) g
For the sake of simplicity, we use the abbreviation: || - ||z, = || - Il || - llz,@ = 11 - llq
(¢ #2) and |- oy = || - e (5 = 1,2). We set

1(0) = sup 0w+ [ (ITUC I+ e )P+ o)) .

L(t) = sup [[(Vp, ps, VU)(-, 8)I”
O<s<t

t
+/0 (V2 )17 + [us( $)I* + 1VoC, )2+ [1Vas(, 9)11%) ds,
Li(t) = sup [[(V?p, Vs, Vu)(-, 8)|?
0<s<t

t
+/0 (IV%a(, )2 + Vs, )1 + 1V2(, 9)11%) ds,
I(t) = I (¢) + I(t) + Is(2).
To prove Theorem 1.1, it suffices to prove that

1(t) = Ka(ll(po, wo) 7= + 1) + 1(2)?) (2:2)

provided that ||(po, wo)||m2 < 1.
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Multiplying the first equation in (2.1) by p;'p and the second one in (2.1) by v 'u,
we have

1d _ _ .
5771 oG OI + 7 G DI} + Va1 + velldiva, )] 03)
1 1 o '
= '"(fn:p) + _(gTH u) + ((lell)p, p)
s Ve
In what follows, to estimate the non-linear term we use the following estimates:
ulls < ClIVull,  lulls < Cllulla,
lullzo@p) < CrlIVull, lullo < ClIVullm. (2.4)
Integrating (2.3) and using (2.4), we have
¢
1o, w) (-, ) +/0 [Vu(:, 9)[* ds < C(ll(po, wo) I + 1(£)*/?). (2.5)
By the first equation in (2.1) and (2.4), we have
ol < CA+ Vo)l Vull, (2.6)
so that . .
[ ltolds < o [ 19ate ol ds+ 1677 (2.1
To estimate ||p||,(0z), We use the following lemma:
Lemma 2.1. Let p and u be solutions to problem (1.1) with
p € CY[0,T), H(2)) N C°([0,T), H*(R)),
u e C'([0,T), Ly()N) N C([0, T), H*()™).
Then, we have
t ¢
[ 1069 ds <€ [ 19+ 190 [0l
0 0 (2.8)

+ gl + IVl + (Va2 V2ul| 2} ds.

By (2.8), we see that for any € > 0 there exists a constant C, > 0 depending on ¢ such
that

/0 o, e ds < & / (Vo0 9)I2 + IV, 9)[P) ds
+C. / (19, 9)[2 + s 9)[2) ds (2.9)

t
+ Cu(sup [ Vu(, s)[)? / IVu(-, )| ds.
0,s<t 0
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Next, we estimate [lu(-,¢)||2. Multiplying the second equation in (2.1) by u;, we have

e )11 + 2E{M*HVU( I + vlldivul, O} +7(Vo, ue) = (gn, ). (2:10)

By the first equation in (2.1), we have

d
~% —(p,divu) + (pt,divu),

which, combined with (2.10), furnishes that

(VP’ ut)

th{u*lqu OIP + waldiv ul, O = 20p, diva)} + 2, ) o
< 5l DI + o, DI + 19 1))

By (2.4) and (2.6), we have

3 IVl O v uC O =20 div)}+ a0,
< Vol (I9als + 1 9617) + 1V ul?).

Integrating (2.12), we have
t t
Va0 + / () [2ds < CUIV ol + ool + o HIP + / IV, 5)| ds
t
+(sup VoL 5)in)? / (IVuC, 9B + [Vp(, )P ds}. (2.13)

By (2.7), (2.9) and (2.13), we have

/0 (19 )12+ 10 )12 ) s < € / (I92u(-, )| + IV 5)[12) ds
+ (Vo po)IP + [l B + / IVu(,)|Pds +1(1)?),

which, combined with (2.5), furnishes that
L (1) < Ce(ll(po, wo)llz +1()*2 +1(t)?) + ela(2).- (2.14)

We estimate p;, u; and Vu,. Differentiating the equations in (2.1) once with respect
to t, we have

Oc(ps) +u-V(p;) + pudivuy = 0y fn — ;- Vp  in Q x (0,7),
O(uy) — pAuy — v, Vdivu, + 7.V, = 88, in Qx (0,7),
lltlr =0, (Pullt)lt:o = (Ply U—l) in ,
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where we have set

p1 = —div ((p« + po)uo),

u; = —ug- Vug + (uAug + vVdivuy — P'(p. + p)Vp).

P« T+ Po

Analogously to (2.3), we have

1d, _ - :
YA et 5 e O + pal [ Ve O + valldivug(, )1 2.15)

1 1 .
= p—(atfn —u Vp,p) + ,y—(@gmut) + ((divu)p, pe).

By (2.4),

1d

Qa{ﬂllllpt(w I + 7 e 1P + pall Ve, 17 + vlldiv (- 1)1

< CUIVul?lI Vol + IVl Vollllodll e
+ [uelllIVolll Vel + IVulllpdlZ)- - (2.16)

Integrating (2.16), we have
t
(oo u) (- B[ + / IV (-, )2 ds
t
< {llon w)? + (sup Vo, 9)ln) / (lusC B + IVos( 8)P)ds  (217)

+(sup 19069 [l 9l ds)

To prove the estimate of the higher order derivatives, we localize the problem in-the
whole space and near the boundary. Then, we consider the whole space problem:

pe+u-Vp+pdive = f in R3, (2.18)

v, — AV — 1, Vdivv + v, Vp=g inR? '
and the half space problem:

pe+u-Vop+pdivy = f in R3,

Vi — AV — 1, Vdivv+7,Vp=g  inR?, (2.19)

V|$3=0 =0

where R} = {z = (21,22, 23) € R®| 23 > 0}

In the half space problem, the points are estimations of 93p and 82p. To do this, we
use the idea due to Matsumura-Nishida [7]. From the third component in the sedond
equation in (2.19) we have

2 2
{(Us)t — e Y vy — 1y 0i03v; — gg} +— B (220)
i=1 i=1

83?’03 =

L+ Vs P+ Vs
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Differentiating the first equation in (2.19) with respact to =3 and inserting the formula
(2.20), we have

Os(pr +u-Vp)+ 0.03p
2 2
«Vx e s
=03f — L E 0;03v; + p—:t s — ( 3)t + "y 3 (2.21)

fhs + Vs = s + Vi u* o + Vs

where 8, = puy«/ (s + V). Multiplying (2.21) by 03p, we have

0y
@030, Ol gm) + 13500, Ol )

<C (”Vf||L2(R 3y ||g||L2(R S ”VV/V”%z(Ri) + ”thiz(mr) +[[Vu- VP“?:z(RE;))

Zdt

where VV'w = (;0;w | ¢ = 1,2,3, j = 1,2). Differentiating (2.21) with respacet to 3,
we have '

O2(ps +u-Vp) + 8,05
2 2
= agf - 83 (/.l,pt:*l/ Z 8,»63vi -+ Pt Zafv;; - 0 P (’03),: + Px gg) (2.22)
* *i=1

He Vs i=1
and therefore,

183(, )||%2(R1) + 5*”5:30('775)”%2(1111)
<C (H(div u) - a:%PH%Z(Ri) +|Vu- VQ:O”%Z(R@ +[|V*u- VPH%Z(R'i)

2dt|

+||V2f”iz(R3+) + IIVQV’VII%Z(M) + ||VVt||2LZ(R1) + ||Vg||2L2(R§;))

where V2V'v = (V29,v, V20,v).
Using Sobolev’s embedding theorem and (2.4), we have

/ [V2p(-, s)Vu(:, s)||* ds < / V2p(, s)IIPVu(, 5)|I5 ds
<0 [ IVt IVt )l ds
< C sup [V [ [Vt o).
In this way, we can enclose the estimation as the gradient u belongs to Ly((0, 00), H?(Q))

and p belongs to Lu((0, 00), H2(£2)).
Applying the same argument as in the above and using the cut-off technique, we have

1(Vp, Vu)(-,t)||2+/0 1V, s, Vo, Vpy) (-, 5)I|* ds
< C{ll(po, o) 7 + Lu(t) + I(2)*},



which, combined with (2.17), furnishes that
Ly(t) < C{ll(po, o) I7 + Ta(t) +1()*}- (2.23)
Therefore, choosing € > 0 small enough in (2.14), by (2.23) we have
L(t) + L() < C{ll(po, uo) 7 +L(8)* +1()*}. (2.24)
Analogously to (2.24), we have
Li(t) < C{ll(po, wo)llZ + La(#) + Lo(t) + 1(2)*} (2.25)

provided that ||(po, uo)|lgz < 1. Combining (2.24) and (2.25), we have (2.2). This com-
pletes the proof of Theorem 1.1.

3 Outline of proof of Theorem 1.2

We set
Dy(t) = sup (1+8)**(p,w)(-,5)],
0<s<t
Dl(t) = sup (1 + 8)5/4||(Vp, Vu)(" 8)”,
0<s<t
Dy(t) = sup (1 +8)”*(V?p, Vu)(-, )],
0<s<t
D(t) = Do(t) + D1(t) + Da(t).
To prove Theorem 1.2, it suffices to prove that
D(t) < Ka(ll(po, wo)ls + [|(pos wo) | = + D(#)?) (3.1)

with some constant K, with the help of Ly-L, decay estimate for the linearized problem.
First of all, we introduce Ly-Lg decay estimate. To do this, we consider the following
linearized problem:

pi+ydivy =0 in © % (0, 00),
vy — alAv — BVdivv +4Vp =0 in © x (0, 00), (3.2)
VII‘ = Oa (P» v)|t=0 = (PO»VO) in Qa

where a, 8 and +y are positive constants. Let m be a non-negative integer. We assume
that I' is a compact C™*b! hyper-surface. Let A be an operator defined by the formula:

A(p,v) = (vdivv, —aAv — gVdivv +yVp)

for any element (p, v) of the domain Wys "™ *2(Q) = {(p,v) € WL(Q)xW+2(Q) | v|p =
0}. By Shibata and Tanaka [9] wé know the generation of Cy semigroup {7'(¢)}s>0 on
Wyrtbm(Q) = WrHH(Q) x WM(Q), which is analytic. For the solution p and v of the
equation (3.2), the following L,-L, decay estimate holds.
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Theorem 3.1. Let  be a 3-dimensional exterior domain whose boundary T is a C3
compact hyper-surface. Let p and q be indices such that 1 < ¢ <2 <p < oco. Let

[(f, &)l = I(f: 8)|q() + I(f, &) llw20(0y-
Then, for any (f,g) € Wh(Q) N Ly(Q)* and t > 1 we have

DL, p<3
t_ﬂ[(fa g)]p,q p Z 37

3
||V2PVT<t)(fv g)“Lp(Q) < Ct [(fa g)]p,q
where P, is the projection acting on (p,v) defined by Py(p,v) =v.

IVT@)(f, &)l < C’{

We go back to the proof of the inequality (3.1). First, we estimate Dy(¢) and D4(t)
with the help of L,-L, decay estimate for the linearized problem. Let {T'(t)}:>0 be the
analytic semigroup associated with the linearized problem:

i+ pudiva= f, —u-Vp in 2 x (0,T),
w — pAu — v, Vdivu+1.Vp =g, in Qx (0,7), (3.3)
ulr =0, (p,u)l=0= (po, o) in Q.

Then, we have (p,u)(-,t) = T'(t)(po, wo) + U(¢) with
U(t) = [ 7= = - Vo)l 9) .

Here, we write H"® = W,°(Q) and || - ||zrs = || - || ms() for s = 1,2. By Theorem 3.1, we
have

I7(2) (60, wo)l| < C(1+1) 5[0, wo)lls + |60, W)l ze),
IVT(#)(p0, wo)l| < C(1+£)~2([|(po, wo) 1 + | (9o, o) 1 2r1)
for any t > 0. To estimate U(t), we observe that
1 =0 Vo) )l + [ — u Vo) 9l < C(1L+5)?D(s)?,
lgn(s)ll + llgn(s)ll < C(1 +5)7*D(s)*.

Thus, applying the L,-Lq decay estimate and the usual analytic semi-group estimate, we
have

(3.4)

t (1+s)72 ds}D(t)2

t—1

ol <of [ ¢ ot as s
< CtTiD(t)?,
VU < o{/of (t—s)-i +s)-2ds+/

t—1

(3.5)

t

(t=s)7H(1+ )2 ds }D(1)*

< CtiD(t)?
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for t > 1. Since ||(p,w) (-, t)||zrz < C||(p0, o) ||z as follows from (1.3), by (3.4) and (3.5)

Do(t) + D (t) < C{ll(po, wo)lli + [l (po, o) w2 + D(2)*}. (3.6)
Next, we estimate ||(p;, u;)(+,¢)]|. For this purpose, we use

Lemma 3.2. Let f(t) be a non-negative C1([0,00)) function and let g;(t) (i = 1,2,3,4)
be non-negative functions such that g; € C°((0,00)) (i = 1,2,3) and g4 € Ly((0, 00)).
Assume that

LT+ ef(0) < 0a(t) + (0) + 05(2)ou(1)

for any t > Ty with some constant ¢ > 0. Then, for any o > 0 there ezists a Ty > Ty such
that

(L+8)*f() < (1+T)*f(Th) + (2/0)(T83513<t(1 +5)%91(s))

+ ; (L+5)%ga(s)ds + \/l_/c(Tlsilit(l + s)"‘gg(s))</T ga(s)? ds) 2

In view of Theorem 1.1, we may assume that

/O (IVu(, )il + IVeC, )i + llos( )l + s, 9)ll7) ds
+ o Oz + 1, W Bl < Cli(eo, w0l < (3.7)

for any ¢ > 0 with some small € > 0 which is decided later. We choose € > 0 small enough
eventually, so that we may assume that 0 < & < 1. By (2.6) and (3.7), we have

o (-, DI < Cl[Vul, 8. (3:8)

Let x be a small positive number > ¢ determined later. By (2.11) and (2.15),

d . _ -
SVl DI + valldivaC, )17 + o o O + 72 e O
+ w{ | Vu(, )1 + vlldivu(, )17 + o oG0P + v e 117
. 1
< Cr(IVu(, )1 + o O + llae( 0)]17) = mln(§7ﬂ*)||ut('vt)||§11

+ Cllgn O + o O + IVul )12 + 1(Defns 1)
+[(ue - Vp, po)| + |(Oign, ug)| + [((divu)py, pr)]) (3.9)

Combining (3.7), (3.8), (3.9) and (2.4), choosing x > 0 in such a way that Ck <
min(1/2, u,) with some constant independent of x, and setting

F®) = {p Va1 + vlidivaC, O + o2 o (DI + 25 e 1)1}
g1(8) = Cu(IVu, OI* + V(- )11,
92(t) = C{(IVa(, Iz + IV EDIVRC DI + Va1l o, 1)1}
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we have
LI+ K1) < 1(t) + 920)

Thus, applying Lemma 3.2 and using Theorem 1.1 to estimate the term corresponding to
(L+T1)*f(T1), we have

(L0200 < Cul o, w0l + s (1-+9)721(Tp, Fu)C. )
(s (14 921900 ) [ (19t )1+ 1900 o)) s
+(ap (14520 [ 19t ) ds)
Since
Colgnp (1492 ) [ 1900, 9) [ ds < Cu( s 1+ ) 1)

as follows from (3.7), after fixing s, we choose £ < k in such a way that Cye < 1/2, we
have

(L4841 (pe w) (1)1 < C([I(po, wo) || + D (). (3.10)
Applying the elliptic estimate to the second equation in (3.3) and using (3.10), we have
(L +8)4IV?u( 1)l < C(ll(po, o) |2 + D (1)) (3.11)

Finally, we estimate ||V?p||. To do this, we consider. the whole space problem (2.18)
and the half space problem (2.19) and analogously to (3.11), we have

(1 +6*IV2o(, )]l < Cll(po, wo) 2 + D (t)). (3.12)
Thus, by (3.6), (3.10), (3.11) and (3.12), we have (3.1), which completes the proof of
Theorem 1.2.
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