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1. INTRODUCTION

In this paper we study the two types, named the 1st type and the 2nd type,
of simultaneous approximations problems (SAP) of  p\leftrightarrow‐adic numbers, constructing
multi‐dimensional  p‐adic approximation lattices. It is known that the transfer‐

ence principle gives the inequality relations between the exponents given by the

SAP of p‐‐adic numbers (cf. [1]). First we estimate the l_{\infty} norms of the solutions

of the 1st type and the 2nd type SAP theoretically. For these approximation
problems we construct basis matrices, given by mth order approximations of

the p‐‐adic numbers, and we show that the unimodular transformation of these

matrices are combined by the duality relation, given by the transpose and the

inverse operations of these matrices. Using these duality relations and the LLL

algorithm (cf. [8], [9], [10]), we construct the algorithm, which gives the solutions

of the 2nd type SAP from the solutions of the 1st type SAP.
Next we propose a new lattice based cryptosystem where we choose a n‐tuple

of p‐‐adic integers as public keys and we set the 2nd type SAP solutions of these

numbers as common private keys, the security of which depends on NP‐hardness

of SAP (see [7]).
Our plan of this paper is as follows. In section 2 we introduce the p‐‐adic

approximation lattices and we estimate the l_{\infty} norm of p‐‐adic solutions of the

1st type SAP. In section 3 we treat the 2nd type SAP and we give the duality
relation between these two types of SAP solutions. In section 4 we propose a

new lattice based cryptosystem as an application.

2. p‐ADIC LATTICE

In this section we introduce p‐‐adic approximation lattices and investigate si‐

multaneous rational approximations of p‐adic numbers. Let p be a fixed rational

prime number and |\cdot|_{p} be the corresponding p‐adic valuation, normalized so that
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|p|_{p}=p^{-1} . The completion of \mathbb{Q} w.r.t. |\cdot|_{p} is called the field of p‐‐adic numbers,
denoted by \mathbb{Q}_{p} . The strong triangle inequality

|a+b|_{p}\displaystyle \leq\max\{|a|_{p}, |b|_{p}\}, a, b\in \mathbb{Q}_{p}
is most important and essential to construct p‐‐adic approximation lattices. The

ring of p‐‐adic integers is defined by \mathbb{Z}_{p}=\{z\in \mathbb{Q}_{p} : |z|_{p}\leq 1\}.
Let n\geq 1 be an integer and let  $\Xi$=\{$\xi$_{1}, $\xi$_{2}, . . . , $\xi$_{n}\} be a n‐tuple of p‐‐adic

integers.

Definition 2.1. We denote by w_{n}( $\Xi$) the supremum of the real numbers w

such that, for some infinitely many real numbers X_{j} , which goes to infinity, the

inequalities

0<|a_{0,j}+a_{1,j}$\xi$_{1}+\cdots+a_{n,j}$\xi$_{n}|_{p}\leq X_{j}^{-w-1},
\displaystyle \max_{0\leq i\leq n}|a_{i,j}|\leq X_{j},

have a solution in integers a_{0,j}, a_{1,j} , . . . , a_{n,j}.

For a positive integer m we define the p‐‐adic approximation lattice $\Gamma$_{m} by

(2.1) $\Gamma$_{m}=\{(a_{0}, \mathrm{a}\mathrm{l}, \cdots, a_{n})\in \mathbb{Z}^{n+1} : |a_{0}+a_{1}$\xi$_{1}+\cdots+a_{n}$\xi$_{n}|_{p}\leq p^{-m}\}.
When a p‐‐adic integer $\xi$_{i} has the p‐adic expansion

$\xi$_{i}=\displaystyle \sum_{k=0}^{\infty}x_{i,k}p^{k}, 0\leq x_{i,k}\leq p-1,
let $\xi$_{i,m} be the m‐th order approximation of $\xi$_{i} defined by

(2.2) $\xi$_{i,rn}=\displaystyle \sum_{k=0}^{m-1}x_{i,k}p^{k}.
Consider the basis \{b_{0,m}, b_{1,m}, . . . , b_{n,m}\}\subset \mathbb{Z}^{n+1} of the lattice $\Gamma$_{m} given by

b_{0,m}=(p^{m}, 0, \ldots, 0)^{t}, b_{1,m}=($\xi$_{1,m}, -1,0, \ldots, 0)^{t},
b_{2,m}=($\xi$_{2,m}, 0, -1,0, \ldots, 0)^{t}, \cdots , b_{n,m}=($\xi$_{n,m}, 0, \ldots , 0, -1)^{t}.

In fact, we have b_{k,m}\in$\Gamma$_{m}, \forall k , since we can estimate

|$\xi$_{k,m}-$\xi$_{k}|_{p}\leq p^{-m}.
For B_{m}=(b_{0,m}b_{1,m}\ldots b_{n,m}) we have

B_{m}=\left(\begin{array}{lllll}
p^{m} & $\xi$_{\mathrm{l},m} & $\xi$_{2,m} & \cdots & $\xi$_{n,m}\\
0 & -1 & 0 & \cdots & 0\\
0 & 0 & -1 & \cdots & 0\\
 &  &  & \ddots & \\
0 & 0 & 0 & \cdots & -1
\end{array}\right), |\det(B_{m})|=p^{m}.
Applying the LLL algorithm for  $\delta$\in(1/4,1) , we denote \{b_{0}, b_{1}, . . . , b_{n}\} a re‐

duced basis and B= ( b_{0} bl. . . b_{n} ). It is known that the shortest vector b_{0} in B
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satisfies

(2.3) \displaystyle \Vert b_{0}\Vert_{2} \leq \sqrt{n+1}|\det(B)|^{\frac{1}{n+1}}(\frac{2}{\sqrt{4 $\delta$-1}})^{n}
= \displaystyle \sqrt{n+1}|\det(B_{m})|^{\frac{1}{n+1}}(\frac{2}{\sqrt{4 $\delta$-1}})^{n}
= \displaystyle \sqrt{n+1}p^{\frac{m}{n+1}}(\frac{2}{\sqrt{4 $\delta$-1}})^{n}

(cf. [8]).
In [4] we have given the upper bound of the minimum norm value $\lambda$_{1}^{(\infty)}($\Gamma$_{m})(=

$\lambda$_{1}^{(\infty)}(B_{m})) by using the famous Dirichlet principle.

Theorem 2.2. For a n ‐tuple of p‐adic integers =\{$\xi$_{1}, . . . , $\xi$_{n}\} , which are

irrational and linearly independent over \mathbb{Q} , and each positive integer m
, there

exists a solution in integers a_{0,m}, a_{1,m} , . . . , a_{n,m}\in \mathbb{Z}^{n+1} , which satisfies

(2.4) 0<|a_{0,m}+a_{1,m}$\xi$_{1}+\cdots+a_{n,m}$\xi$_{n}|_{p}\leq p^{-m},
(2.5) \displaystyle \max_{0\leq i\leq n}|a_{i,m}|\leq p^{\frac{m}{n+1}}.
Consequently, we have

(2.6) $\lambda$_{1}^{(\infty)}($\Gamma$_{m})\leq p^{\frac{m}{n+1}}=\det($\Gamma$_{m})^{\frac{1}{n+1}}.

3. DUAL LATTICE

Next we consider the following 2nd type of the simultaneous approximation
problems. Let n\geq 1 be an integer and let =\{$\xi$_{1}, $\xi$_{2}, . . . , $\xi$_{n}\} be a n‐tuple of

p‐‐adic integers.

Definition 3.1. We denote by \mathrm{v}_{n} the supremum of the real numbers \mathrm{y} such

that, for some infinitely many real numbers Y_{j} ,
which goes to infinity, the in‐

equalities

0<\displaystyle \max_{1\leq i\leq n}|a_{0,j}$\xi$_{i}-a_{i,j}|_{p}\leq Y_{j}^{- $\nu$-1},
\displaystyle \max_{0\leq i\leq n}|a_{i,j}|\leq Y_{j},

have a solution in integers a_{0,j}, a_{1,j}, a_{n,j}.

For a positive integer m we define the p‐‐adic approximation lattice $\Lambda$_{m} by

(3.1) $\Lambda$_{m}=\displaystyle \{(a_{0}, \mathrm{a}\mathrm{l}, . . . , a_{n})\in \mathbb{Z}^{n+1} : \max_{1\leq i\leq n}|a_{0}$\xi$_{i}-a_{i}|_{p}\leq p^{-m}\}.
For a radic integer $\xi$_{i} with its p‐‐adic expansion

$\xi$_{i}=\displaystyle \sum_{k=0}^{\infty}x_{i,k}p^{k}, 0\leq x_{i,k}\leq p-1
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and the m‐th order approximation $\xi$_{i,m} given by (2.2) we can construct the basis

\{b_{0,m}, b_{1,m}, . . . , b_{n,m}\}\subset \mathbb{Z}^{n+1} of the lattice $\Lambda$_{m} where

b_{0,m}=(1, $\xi$_{1,m}, $\xi$_{2,m}, \ldots, $\xi$_{n,m})^{t}, b_{1,m}=(0, -p^{m}, 0, \ldots, 0)^{t},
b_{2,m}=(0,0, -p^{m}, 0, \ldots, 0)^{t}, \cdots, b_{n,m}=(0,0, \ldots, 0, -p^{m})^{t}.

In fact, we have b_{k,m}\in$\Lambda$_{m}, \forall k , since we can estimate

|$\xi$_{k,m}-$\xi$_{k}|_{p}\leq p^{-m}.
For B_{m}=(b_{0,m}b_{1,m}\ldots b_{n,m}) we have

B_{m}=\left(\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0\\
$\xi$_{1,m} & -p^{m} & 0 & \cdots & 0\\
$\xi$_{2,m} & 0 & -p^{m} & \cdots & 0\\
 &  &  & \ddots & \\
$\xi$_{n,m} & 0 & 0 & \cdots & -p^{rn}
\end{array}\right), |\det(B_{m})|=p^{nm}.
Applying the LLL algorithm for  $\delta$\in(1/4,1) , we denote \{b_{0}, b_{1}, . . . , b_{n}\} a re‐

duced basis and B= (b_{0}b_{1} . . . b_{n}) . The shortest vector b_{0} in B� satisfies the

following estimates, which are similar to (2.3),

(3.2) \displaystyle \Vert b_{0}\Vert_{2} \leq \sqrt{n+1}|\det(B)|^{\frac{1}{n+1}}(\frac{2}{\sqrt{4 $\delta$-1}})^{n}
=\displaystyle \sqrt{n+1}|\det(B_{m})|^{\frac{1}{n+1}}(\frac{2}{\sqrt{4 $\delta$-1}})^{n}
=\displaystyle \sqrt{n+1}p^{\frac{mn}{n+1}}(\frac{2}{\sqrt{4 $\delta$-1}})^{n}

In [5] we have given the estimates of the minimum norm value $\lambda$_{1}^{(\infty)}($\Lambda$_{m})(=
$\lambda$_{1}^{(\infty)}(L(B_{m}
Theorem 3.2. For a n ‐tuple of p‐adic integers =\{$\xi$_{1}, . . . , $\xi$_{n}\} , which are

irrational and linearly independent over \mathbb{Q} , and each positive integer m , there

exists a solution in integers (a_{0,m}, a_{1,m}, \ldots, a_{n,m})\in \mathbb{Z}^{n+1} ,
which satisfies

(3.3) 0<\displaystyle \max_{1\leq i\leq n}|a_{0,m}$\xi$_{i}-a_{i,m}|_{p}\leq p^{-m},
(3.4) \displaystyle \max_{0\leq i\leq n}|a_{i,m}|\leq p^{\frac{nm}{n+1}}.
Consequently, we have

(3.5) $\lambda$_{1}^{(\infty)}($\Lambda$_{m})\leq p^{\frac{nm}{n+1}}=\det($\Lambda$_{m})^{\frac{1}{n+1}}
and

(3.6) \displaystyle \mathrm{v}_{n} \geq\frac{1}{n}.
For a lattice L(A) with its basis square matrix A

,
define its dual lattice L(A)^{*}

by
L(A)^{*}=L((A^{t})^{-1})
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where A^{t} is the transpose of the matrix of A.

For the 1st type lattice $\Gamma$_{\mathrm{m}}=L(B_{m}) and the 2nd type lattice $\Lambda$_{m}=L(B_{m}) we

have the following theorem.

Theorem 3.3. For a positive integer m and the 1st type lattice $\Gamma$_{m}=L(B_{m})
and the 2nd type lattice $\Lambda$_{m}=L(B_{m}) , let B=B_{m}U and B=B_{m}V for some

unimodular matrices U, V. Then the following duality relation

(3.7) L(B)=$\Lambda$_{m}=p^{m}$\Gamma$_{m}^{*}=L(p^{m}(B^{t})^{-1})
holds.

Proof. From the definitions of B_{m} and B_{m} we have

B_{m}=p^{m}(B_{m}^{t})^{-1}
Since L(AW)=L(A) for any unimodular matrix W , we can easily obtain the

following sequence of estimates.

L(B) = L(B_{m})=L(p^{m}(B_{m}^{t})^{-1})
= L(p^{m}(B^{t})^{-1})=p^{m}$\Gamma$_{m}^{*}.

\square 

Since the solutions of the 1st SAP are given by the reduced matrix B and

the solutions of the 2nd SAP are given by B
, it follows from (3.7) that we can

construct an algorithm, which gives the 2nd SAP solutions from the 1st SAP

solutions by applying the LLL algorithm. (For details, see [5].)

4. CRYPTOSYSTEM

In this section we propose a new cryptosystem, the security of which depends
on the hardness of solving the SAP in the higher dimensions. Now we assume

that Alice wants to send a message to Bob in this cryptosystem.
For a n‐tuple of public keys $\xi$_{i}\in \mathbb{Z}_{p}, i=1 , . . . , n , let B= (b_{0}, b_{1}, :. . , b_{n}) be

a reduced basis given by applying the LLL algorithm as in section 3 from the

lattice basis matrix

B_{m}=\left(\begin{array}{lllll}
1 & 0 & 0 & \cdots & 0\\
$\xi$_{\mathrm{l},m} & -p^{m} & 0 & \cdots & 0\\
$\xi$_{2,m} & 0 & -p^{m} & \cdots & 0\\
 &  &  & \ddots & \\
$\xi$_{n,m} & 0 & 0 & \cdots & -p^{m}
\end{array}\right), |\det(B_{m})|=p^{nm}.
For a constant K>0 and a vector of random integers (\mathrm{s}_{0}, s_{n})\in \mathbb{Z}^{n} : |s_{i}|\leq
 K, \forall i

,
we define the secret keys (a_{0}, \mathrm{a}_{1}, a_{n}) by

( a_{0} , al, \cdots ,  a_{n} ) =\displaystyle \sum_{i=0}^{n}s_{i}b_{i}.
Let the secret key a_{i} be the sum of $\alpha$_{i} and $\beta$_{i} , that is

a_{i}=$\alpha$_{i}+$\beta$_{i}, $\alpha$_{i}, $\beta$_{i}\in \mathbb{Z}, i=0 , 1, . . .

, n.
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Alice has the secret key \{$\alpha$_{i}\} and Bob has the secret key \{$\beta$_{i}\}.
Encryption

Alice wants to send to Bob a list of messages given by

x^{(i)}=\displaystyle \sum_{k=0}^{m-1}x_{k}^{(i)}p^{k}, 0\leq x_{k}^{(i)}\leq p-1, i=1, \cdots, n.
Alice constructs the ciphertext \mathrm{c}_{A} by

\mathrm{c}_{A}= (c_{1,A}, c_{2,A}, c_{m,A}) , c_{i,A}=$\alpha$_{0}$\xi$_{i}-$\alpha$_{i}+x^{(i)}
and she sends the ciphertext \mathrm{c}_{A} to Bob.

Decryption
Bob takes the sum of \mathrm{c}_{A} and \mathrm{c}_{B} , given by

\mathrm{c}_{B}= (c_{1,B}, c_{n,B}) , c_{i,B}=$\beta$_{0}$\xi$_{i}-$\beta$_{i},

\mathrm{c}= (c_{1}, c_{ $\eta$})=\mathrm{c}_{A}+\mathrm{c}_{B}, c_{?}\cdot=a_{0}$\xi$_{i}-a_{i}+x^{(i)}.
Then he can easily obtain the messages x^{(i)} by calculating

c_{i}\equiv x^{(i)} \mathrm{m}\mathrm{o}\mathrm{d} p^{m}.
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