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1 Introduction

Let X be a partially ordered set with a metric d and let 7" be a mapping from X into itself.
We say that T is monotone nondecreasing if for any z,y € X, x < y implies Tz < Ty. Nieto
and Lépez [3] consider the following fixed point theorem in partially ordered sets.

Theorem 1. Let X be a partially ordered set with a metric d such that (X, d) is a complete
metric space. If a nondecreasing sequence {z,} converges to x, then we have x, < x for
any n. Let T be a monotone nonincreasing mapping from X into itself such that there exists
k €[0,1) such that for any z,y € X,

z >y implies d(Tz,Ty) < kd(z,y).

Assume that there exists xo € X with xyg < Txy. Then there exists a fixed point of T.
Moreover, if for any x,y € X, there exists z € X which is comparable to x and y, then the
fixed point of T is unique.

In this paper, using Theorem 1, we show the existence and uniqueness of solutions of
fractional order boundary value problems.



2 Riemann-Liouville fractional derivative and integral

The Riemann-Liouville fractional derivative of order o > 0 of a function u of (0,00) into R
is given by
1 d* Y us)
D¢ = — 7
u(t) D(n—a)di® Jy (t—s)entl
where n = [a]+1 and o] denotes the integer part of a and I'(e) denotes the gamma function.
The Riemann-Liouville fractional integral of order @ > 0 of a function u of (0, 00) into R is
defined by

ds

I3, u(t) = ﬁ /0 (t — )% u(s)ds.

For the proof of Lemmas 2 and 3, we use the following: For p,q > 0 and a € R,

‘ -1 g-174. _ I'(p)T'(g) _ \ptg-1
L(t—s) (s—a) ds_—F(p+q)(t a1, (1)

In fact, we have (1) since
t
/(t—s)”1 a)?lds =
a

(t—a—7)P 797 1dr

(t—a— (t—a)u)’ " (t —a)? ud"(t — a)du

L
I

1
t —a)pte? /(l—u)p‘luq‘ldu
0

,’ZJ

p+q

For a, f > 0, we have
L(B+1)
I3 P = ) gatB 2
0+ T(a+p+1) (2)

In fact, by (1), we have

N 1 t a 1 F(a)F(ﬁ +1) rB+1)
B _ _ — Y184 — at+f _ a+pB
Tyt _F(a)/()(t N = Tat B D) " Ta+prD)

Moreover for 8 > a > 0, we have

D tf = F(ﬂ(f_—_:i)jtﬂ*“. 3)
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In fact, since DF, t# = P(I;%Ltﬂ‘" forn=1,2,3,...,[8], by (1), we have

D0+tﬁ=m-%/o(t-s) 1sPds

1@ (Tea)(BED)
I'n—a) di» \I'(n—a+pB+1)
= L-i_l)__ da Z_nmotp
'n—a+B8+1) dir
_ r'(g+1) Tn—a+p+1)
" T(n—a+B+1) TB+1-a)
_ LB+ 1) (o
r(f+1-a)
Lemma 2. Let a > 0. Ifu(t) =t*™ (n=1,2,...,[a] + 1), then D§,u = 0. Conversely, if
Dg, u(t) =0, then there exists Cy,Cs,...,C, € R such that

ult) = Cit* 1 4+ Cot* 2 4 ... + Cpt®™

th-a

where n = [a] + 1.
Proof. Let n=1,2,...,[a] + 1 and u(t) =t*™. By (1), we have

1 a ‘ n—a—1_a-n
=—I‘(n—a)'2i’tf”/0(t—s) s "ds
. 1 a (F(n—a)F(a—n+1))
" T(n—a) dir (1)
=0.

Dg u(t)

Conversely, assume that Dg, u(t) = 0. Then we have

1 da

t
e i _ o\n—a—1 —
Th—a) ), (t—s) u(s)ds = 0.

Since £ [1(t — s)"~*lu(s)ds = 0, we have

dn—l t
d_t"—_—l/ (t - s)"""_lu(s)ds = C].
0

Moreover we have

dn-—2 t
W / (t - s)"_"'lu(s)ds = Clt + 02.
0

Similarly we obtain that

dt" - / t—s)" " 1 u(s)ds = Cﬂf2 + Cot + Cs
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where we change %1 by C}. Hence we obtain that
¢
/ (t—s)" " tu(s)ds = Cot" " + Cot" 2 4+ Chy
0

for some C1,Cs,...,Cp. By (1), we have

o /0 (= s)"elu(s)ds / (t — syn—o-? ( / (s —T)"_"‘_lu(r)dr) ds
= Ta) /0 u(r) ( / (t - 5)2 (s - )"“"'lds) dr

1 .F(a)l“(n—a) _ et
T T 7

L(n —a) /t(t — 1) tu(r)dr

- T(n) Jo
=T(n — a)Ig, u(t).
Since
IE(Cit  + Cot™ 2 -+ Cp) = Crt™™™ 1+ Cot*™ 2 oo 4 Gt
we have

D(n — ) I3, u(t) = Cit® 1 + Oyt 2 . 4 Ct™
Hence, for some C1, Cs, ..., C,, we obtain that
I u(t) = Crt®™ 1 4 Cut™™ 2 .. Cpt™.
Since Dy, I, u(t) = u(t) and Df, (C1¢*"~1 + Cotot =2 4 - - + Cpt®) = Cyt* 1 + Cot* 2 +
-+ 4+ Cut* ™, we have
u(t) = Cit* L+ Cot* 2 .- 4 Cpt*™.

The following lemma can be found in [4].
Lemma 3. Let a > 0 and let u € L(a,b). Then we have
Dg Ig v = u.

Proof. Let n = [a] + 1. By (1), we have

Dg I, u= m & /m rym s;“ — (/t(s -7)° 1u(7')d7') ds
— 1 = dz'" / t(t yret T)“‘lu(T)ds) dr

I(e)I(
T'(e)L(n

=m-%/ou(7) (/T(t—s)" ai(s — 7)o 1ds>d7

1 da n—
_I‘—(n_)'ﬁo(t—T) u(r)dr.



Since f; (jg e (fot u(s)ds) . -~ds) ds = 2o (¢ — s)"u(s)ds, we have D, I¢,u =u. O
The following lemma can be found in [1]. See also [2].
Lemma 4. Let a > 0. Let u € C(0,1) N L(0, 1) satisfying D§, v € C(0,1) N L(0,1). Then
I8 D¢ u(t) = u(t) + Crt*t + Cot* 2 .- 4 Cpt®™
for some C1,Cs,...,Cp, €R and n =[o] + 1.
Proof. By Lemma 2, we have D§, (I$, D§, u—u) = D§ I§, D§, u— D§, u = D§, u—Dg, u=0.

By Lemma 3, there exists C1, Cs, . . . ,C, € R such that Ig, Dg, u(t)—u(t) = C1t* '+ Ct* 2+
s 4 Cpt ™, 0

3 Applied results to fractional order boundary value
problems

Using Lemma 4, we obtain the following [1]. For the sake of completeness, we show the proof.
Lemma 5. Let h € C[0,1] and 1 < a < 2. Then the unique solution of the problem

{ Diult) ) =

(0) =u(1) =

18 X

u(t) =/ Go(t, s)h(s)ds
where O

(t" 1—-s)*1—(t—35)*1) (0<s<t<1),

Galt,s) = F(l

(t1(1 — s)> 1) (0<t<s<l).
Proof. By Lemma 4, we have
1 ' 1 1 2
t) = ———o —5)*"h(s)d e o
ul(t) F(a)/o(t 5)*1h(s)ds + Cyto~1 + Cyt
for some C1,C2 € R. By u(0) = 0, we have C; = 0. Moreover, by u(1) = 0, we have

G = F—(la—)fol(l ~ 5)**h(s)ds. Thus we obtain that u(t) = —xi; it — 8)*1h(s)ds +
riy Jo (1= 8)*7 1 h(s)ds = [ Galt, s)h(s)ds. =

Using Lemma 5, we obtain the following,.
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Theorem 6. Let f be a mapping of [0, 1] x [0, 00) into [0,00) such that f is continuous and
nondecreasing with respect to second argument. Let 1 < o, < 2. Assume that there exists
A € [0,T(a)T(B)), for any u,v € [0,00) withu > v and t € [0,1],

0 < f(tu) = f(t,v) < Au—v).
Then the problem

w(0) = (1) = (D§;u)(0) = (Dg,u)(1) =0

has a unique nonnegative solution.

{D§+(D8‘+u(t)) = f(t,u(t)), ()

Proof. We first show that the unique solution of the problem (4) is

1 1
u(t) =/ Gult, s) (/ Gg(s,r)f(r, u(r))dr) ds
0 0
where G, is the function in Lemma 5. In fact, let y(t) = —Dg, u(t). Then the problem

{D{L(Dau(t)) = f(t,u(t)),
(Dg,w)(0) = (Dg,u)(1) =0

is equal to the problem
DG, y(t) + f(t,u(t) =0,
y(0) = y(1) =0.
By Lemma 5, we have the unique solution
1
() = [ Galt,5) (s, uls))ds,
that is,
1
D§,u(t) + [ Galt, ) (s,u(s))ds = 0.
0
Furthermore, by Lemma 5, the problem
1
Dg, u(t) +/ Gp(t, s)f(s,u(s))ds =0,
0
u(0)=u(1) =0

has the unique solution

u(t) = /01 Ga(t, s) (/01 Gg(s,r)f(r, u(r))dr) ds.



Let X = {u € C[0,1] | u(t) > 0}. Then (X,d) is a complete metric space where d is
defined by d(u,v) = supy<;<; [u(t) — v(t)| for u,v € X. We define a mapping T of X by

(Tu)(t) = /01 G, (t, s) (/01 Gg(s,r)f(r, u(r))dr) ds

for u € X. Using Theorem 1, we obtain the unique fixed point of 7. This is the unique
solution of (4). For more details, see [5]. O

In the case that o = 8 = 2 in Theorem 6, we have the following.

Corollary 7. Let f be a mapping of [0,1] X [0, 00) into [0,00) such that f is continuous and
nondecreasing with respect to second argument. Assume that there exists X € [0,1), for any
u,v € [0,00) withu > v and t € [0,1],

0< ft,u) — f(t,v) < A(u—-v).

Then the problem

u™ = f(t,u(t)),
u(0) = u(1) = u"(0) = w'(1) = 0

has a unique nonnegative solution.
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