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Abstract

The theory of Stirling numbers is constantly developing. In this survey we will focus on some

recent results connected to the research of the present author and we mention some interesting open

problems.

1 Introduction

The theory of Stirling numbers is dated back to James Stirling (1692‐1770). For historical details the

reader may refer to [17]. The (unsigned) Stirling numbers of the first kind s(n, k) gives the number

of permutations on n elements with k cycles. The S(n, k) Stirling numbers of the second kind count

partitions of an n element set with k blocks. Then, as it is obvious,

\displaystyle \sum_{k=1}^{n}s(n, k)=n! (n\geq 1)_{-}
and

\displaystyle \sum_{k=1}^{n}S(n, k)=B_{n} (n\geq 1) .

B_{n} is the nth Bell number, which is the total number of the possible partitions of an n element set. For

more details on these numbers see [1, 6, 11, 17, 41].
There are many generalizations of these numbers and they have many connections to other combina‐

torial number sequences. Here we study some of these generalizations.

2 The r‐Whitney numbers and Bernoulli polynomials

The r‐Whitney numbers mentioned in the section title are two parameter generalizations of the Stirling
numbers. First we describe the two particular cases belonging to the individual parameters.

2.1 The r‐Stirling numbers

There are two generalizations of Stirling numbers which can be unified easily. One generalization is the

notion of r‐Stirling numbers.

The r‐Stirling numbers S_{r}(n, k) and (the unsigned) s_{r}(n, k) count similar combinatorial configurations
as the usual Stirlings do but here there is an additional restriction: the first r elements are restricted

to be in different blocks/cycles. Note that for the r‐Stirlings S_{r}(n, k) and s_{r}(n, k) there is a shift in the

indices: S_{r}(n, k) gives the number of restricted partitions of n+r elements into k+r blocks, and the

same for s_{r}(n, k) , mutatis mutandis.

For example, if r=2 (and always when r>1 ), then
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is a tilted permutation, because 1 and 2 share the same cycle.
It is obvious that if r=0

,
we get back the classical Stirling numbers. The r‐Stirlings (under different

names) are known since a century [9], but they became more popular with the paper of Broder [7]. \mathrm{A}

number of properties of these numbers and other references can be found in a recent survey of Villamizar

[41].

2.2 The Whitney numbers

The other generalization we referred to before Section 2.1 is the class of Whitney numbers. These

originally were defined by Dowling [16] in a lattice theoretical way but it turned out that they have

simple partition theoretical interpretation, too [27].
The first kind Whitney numbers are denoted by w_{7n}(n, k) and the second kind numbers re denoted

by W_{m}(n, k) . W_{m}(n, k) is the number of partitions on n elements with k blocks such that the elements

of the blocks are coloured with m colors, but the first element in the blocks is not coloured [31]. (The
first kind Whitney numbers have a similar interpretation.)

A typical partition counted by the Whitney numbers with m=2 is like

\{1, 3, 7\}\cup\{2, 4\}\cup\{5, 9\}\cup\{6r, 8g, 10\}r.
Here and later the letters \mathrm{r}, \mathrm{g} and \mathrm{b} stand for red, green and blue, respectively.

2.3 The r‐Whitney numbers and their connections to Bernoulli polynomials
and power sums

2.3.1 Combinatorial definition of the r‐Whitney numbers

The r‐Stirling numbers (with the additional parameter r) and Whitney numbers (with parameter m)
can be unified. These four‐parameter sequences are called r‐Whitney numbers of the first‐ and second

kind. Their combinatorial interpretation was given by Mihoubi and Rahmani and before by Corcino et

al [12] as follows: W_{m,r}(n, k) is the number of partitions on n+r elements with k+r blocks such that

the first r elements (which we call distinguished) are in different blocks (as dictated by the r‐Stirling
part)

the elements of the blocks not containing distinguished elements are coloured with m colors, but

the first element in the blocks is not coloured (as dictated by the Whitney part).

A typical partition counted by thc 2‐Whitney numbers with m=2 is like

\{\underline{1}, 3, 7\}\cup\{\underline{2}, 4\}\cup\{5, 9\}r\cup\{6, 8g, 10\}r.

(The first kind r‐Whitney numbers have a similar interpretation.)

2.3.2 A formula with the Bernoulli polynomials

The present author started to study these numbers [26], because they can be connected to the famous

Bernoulli polynomials \mathcal{B}_{n}(x)[17] . This connection reads as

\displaystyle \left(\begin{array}{ll}
n & +1\\
 & l
\end{array}\right)B_{n-l+1}(\frac{r}{m})=\frac{n+1}{m^{n}}\sum_{k=0}^{n}m^{k}W_{m,r}(n, k)\frac{S^{1}(k+1,l)}{k+1}
for any rn, l\geq 0 and m>0 integers. This is the polynomial generalization of the classical formula

\displaystyle \left(\begin{array}{ll}
n & +1\\
 & l
\end{array}\right)\mathcal{B}_{n-l+1}=(n+1)\sum_{k=0}^{n}S^{2}(n, k)\frac{S^{1}(k+1l)}{k+1}
between the Bernoulli numbers B_{n}=\mathcal{B}_{n}(1) and Stirling numbers of both kinds.

A different study appeared recently [35] in which more relations are given between the Bernoulli

polynomials and r‐Whitney numbers.
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2.3.3 Relation to power sums

It is well known that the power sums

S_{n}(\ell)=1^{n}+2^{n}+\cdots+(\ell-1)^{n}

are polynomials of \ell . This is Faulhaber�s theorem [17]. In modern form

 S_{n}(\displaystyle \ell)=\frac{1}{n+1}(\mathcal{B}_{n+1}(\ell)-\mathcal{B}_{n+1}) .

These polynomials have coefficients expressible directly by the Stirling numbers:

S_{n}(\displaystyle \ell)=\sum_{i=0}^{n+1}\ell^{i}(\sum_{k=0}^{n}S_{2}(n, k)S_{1}(k+1, i)\frac{1}{k+1})
If, in place of the first natural numbers, we take the power sum of the members of an arithmetic

progression, then we have an interesting generalization of the above results. More precisely, let

S_{m,r}^{n}(\ell)=r^{n}+(m+r)^{n}+(2m+r)^{n}+\cdots+((\ell-1)m+r)^{n}

be a generalized power sum of terms of an arithmetic progression where m\neq 0, r are coprime integers.
Then S_{m,r}^{n}(\ell) is still a polynomial expressible by the Bernoulli polynomials:

S_{r\mathrm{r} $\iota$,r}^{n}(\displaystyle \ell)=\frac{m^{n}}{n+1}(\mathcal{B}_{n+1}(\ell+\frac{r}{m})-\mathcal{B}_{n+1}(\frac{r}{m}))
This is a nice result of Bazsó et al. [2]. What are the explicit coefficients of these polynomials? This

question was answered by Bazsó and Mezó
\acute{}

[3]: for all parameters \ell>1, n, m>0r\geq 0 we have that, as

a polynomial in \ell, S_{m,r}^{n}(\ell) has the following coefficients:

S_{m,r}^{n}(\displaystyle \ell)=\sum_{ $\iota$=0}^{n+1}\ell^{ $\iota$}(\sum_{k=0}^{n}\frac{m^{k}W_{m,r}(n,k)}{k+1}S_{1}(k+1i))
These examples show that the r‐Whitney numbers are useful generalizations of the classical Stirling

numbers.

We mention that the r‐Whitney numbers were known before the work of Mezó� under the name of

(r $\beta$) ‐Stirling numbers [12] and as special cases of the Stirling number pairs [20]. They also appeared in

a work of Rucinski and Voigt [37].

3 Some open problems

3.1 The maximizing indices

Having known the Stirling, r‐Stirling, Whitney and r‐Whitney numbers, we can tllrn to some interesting
open problems. These problems are related to the so‐called \log‐concavity property and the zeros of some

specific polynomials connected to these numbers.

It is a classical result that the Stirling numbers of both kind form \log‐concave (LC) sequences, that

is, there is some index  K_{n} such that

S(n1)<S(n2)<\cdots<S(nK_{n})\leq S(nK_{n}+1)>S(nK_{n}+2)>\cdots>S(nn) ,

and the same for s(n, k) with some k_{n} . It was proven by P. Erdó\acute {}\mathrm{s} in 1953 that the k_{n} maximum is

unique for the first kind Stirlings s(n, k) for any n>1 , but nobody knows whether the same is true for

S(n, k) and K_{n} . Wegner conjectured [42] that the maximizing index of K_{n} is unique (see also [8, 23] for

two recent discussions about this problem). It is also known [15, 32] that

K_{n+1}\in\{K_{n}K_{n}+1\} . (1)

There exists bounds for the maximizing indices k_{n} and K_{n} for both kind of Stirling numbers (see [28]
and [8, p. 3.] for references, and [40] for a nice estimation for K_{n} via probability theory).
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What about these problems with respect to the r‐Stirling and Whitney numbers? It is known that

r‐Whitney numbers of both kinds are SLC. In the first kind case this follows immediately from the

identity [26]

m^{n}x(x+1)(x+2)\displaystyle \cdots(x+n-1)=\sum_{k=0}^{n}w_{m,r}(n, k)(mx+r)^{k} (2)

via a classical result of Newton [6 p. 22.] (note that the w_{m,r}(nk) numbers are signed numbers, so we

are talking about the \log‐concavity of the absolute values of  w_{m,r}(n, k The second kind case is a result

of Cheon and Jung [10, Theorem 5.3] (the particular case of Whitney numbers with r=0 was proven

by Benoumhani [4] and the r‐Stirling case was proven by Mezó� [28]).
Corcino and Corcino found bounds for the maximizing index of the r‐Whitney numbers of the second

kind, namely, for the maximizing index K_{n,r,m} of W_{m, $\gamma$}.(n, k) we have that

\displaystyle \frac{n}{m\log n}-\frac{r}{m}<K_{n,m,r}<\frac{n}{\log n-\log\log n} (3)

if n is sufficiently large [13].
Up to our knowledge, similar result for the first kind case r‐Whitney numbers is not known. For the

r‐Stirlings the present author has an estimation [28] and for the Whitney numbers Benoumhani [4].
For the r‐Stirling nuinbers it is also known [28] that for the K_{n,r} maximizing index

K_{n+1,r}\in\{K_{n,r}, K_{n+1,r}\}.

It was not studied whether this property holds when we take the Whitney and r‐Whitney numbers.

Open problem. Can we generalize the property

K_{n+1}\in\{K_{n}K_{n+1}\}

to the Whitney‐ and r‐Whitney numbers?

3.2 Some related polynomials

3.2.1 The real zero property

It is very common to prove the LC property of a positive real sequence (a_{k})_{k=1}^{n} via the real zero property
of the attached polynomial

p(x)=\displaystyle \sum_{k=1}^{n}a_{k}x^{k}
If this polynomial has only real zeros, then the coefficients satisfy the inequality

a_{k}^{2}\geq a_{k-1}a_{k+1} (k\geq 2)

(and an even stronger inequality) from which it follows that for some index k^{*}

a_{1}<a_{2}<\cdots<a_{k^{*}}\leq a_{k^{*}+1}>a_{k^{*}+2}>\cdots>a_{n}.

More about this can be find in [6, p. 22.] or the standard reference [38].
As we mentioned in the previous subsection, in the most general situation of the first kind r‐Whitney

numbers the attached polynomials have only real zeros, as it is trivially comes from (2). The second

\mathrm{k}_{\overline{1}}\mathrm{n}\mathrm{d} case is harder to handle. It was known by Harper [19] that the

B_{n}(x)=\displaystyle \sum_{k=1}^{n}S(nk)x^{k}
Bell polynomials have only real zeros. Taking the r‐Stirling numbers, the

B_{n,r}(x)=\displaystyle \sum_{k=1}^{n}S_{r}(n, k)x^{k}
r‐Bell polynomials have only real zeros [28], too. (More on the r‐Bell polynomials can be found in [25].)
That the

D_{m}(n, x)=\displaystyle \sum_{k=1}^{n}W_{m}(n, k)x^{k}
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polynomials attached to the Whitney numbers have only real zeros was proven by Benoumhani [4]. The

most general theorem is due to Cheon and Jung [10]. They proved that the polynomials

D_{rn,r}(nx)=\displaystyle \sum_{k=1}^{n}W_{m,r}(n, k)x^{k}
have only real zeros, whence it follows that the W_{m,r}(n, k) numbers are LC. The D_{m,r}(nx) polynomials
are called r‐Dowling polynomials, while D_{m}(n, x) are the Dowling polynomials.

Gathering the facts we have mentioned till now: the LC property is established both for the unsigned

w_{m,r}(n, k) and W_{m,r}(n, k) . Good estimations for the maximizing index exists for the second kind r‐

Whitney numbers (see (3) above), but in the first kind case we do not have estimations with respect to

the r‐Whitneys in its generality.
Open Problem. How does the maximizmg index k_{n,m.,r} of the |w_{m,r}(n, k)| numbers behaves asymp‐

totically?

3.2.2 Asymptotic growth of the leftmost zeros

By (2) it follows easily that the attached polynomials have only real zeros, as well as that these zeros

form an arithmetic progression. But what else can we say about the zeros of the B_{n}(x) Bell polynomials
and their generalizations B_{n,r}(x) , D_{m}(nx) and D_{m,r}(n, x) ? After knowing that all of their zeros are

real and negative, we can ask that how rapidly does the leftmost zero grow? Corcino and Mezó� proved
that if z_{n,r}^{*} is the leftmost zero of the nth r‐Bell polynomial, then |z_{n,r}^{*}| asymptotically no grows faster

than

\displaystyle \frac{1}{2}\sqrt{\frac{5}{3}}n^{\frac{3}{2}}
Note that this is independent of r . The details can be found in [30]. Suggested by numerical calculations

we phrase the following.
Open problem. The leftmost zero z_{n,r}^{*} of the r‐Bell polynomials asymptotically grows linearly, that

is,

|z_{r $\iota$,r}^{*}|\sim c_{r}n (n\rightarrow\infty) .

These questions were not studied for Whitney and r‐Whitney polynomials (which also have only real

zeros), so we give another open problem.
Open problem. Let z_{n,m,r}^{*} be the leftmost zero of the D_{m,r}(n, x) polynomials. Give a bound for

|z_{n,rn,r}^{*}| and find how rapidly does |z_{n,m,r}^{*}| grow with n asymptotically.

4 The Fubini and Eulerian numbers and their generalizations

The F_{n} Fubini numbers (also known as preferential arrangement numbers or ordered Bell numbers) count

the partitions of a set where the order of the blocks counts [18, 21, 39]. By this explication it follows

that

F_{n}=\displaystyle \sum_{k=1}^{n}k!S(n, k) .

In [21] James used these numbers to calculate the factorizations of square‐free integers. Another inter‐

pretation can be found in the book of Comtet [11, p. 228.] and in the book of Wilf [43].
Another class of numbers is the (double) sequence of Eulerian numbers E(n, k) . E(n, k) is the number

of permutations on n elements with k ascents [6]. In a permutation p_{1}
. . .

p_{n} the position i is an ascent

if p_{i}<p_{i+1} . For example, in the permutation

\left(\begin{array}{lllll}
\mathrm{l} & 2 & 3 & 4 & 5\\
3 & 4 & \mathrm{l} & 2 & 5
\end{array}\right)
there are 3 ascents: 3-41-2 and 2—5.

Frobenius proved an interesting formula [39]:

F_{n}=\displaystyle \sum_{k=0}^{n}E(n, k)2^{k} (n\geq 1) .

A nice combinatorial proof was found by Remmel and Wachs [36]. Ollr goal in this section is to dcscribe

the generalizations of this formula via the r‐Stirling numbers and Whitney numbers.
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4.1 The r‐Fubini numbers and r‐Eulerian numbers and their polynomials

4.1.1 The r‐Fubini numbers and polynomials

The r‐Fubini polynomials are defined similarly as the r‐Bell polynomials:

F_{n,r}(x)=\displaystyle \sum_{k=0}^{n}(k+r) ! S_{ $\Gamma$}(nk)x^{k}

(Note that S_{r}(n, k) refers to n+r elements and k+r partitions, so in place of k! we have to write

(k+r)!.) The r‐Fubini numbers are defined as

F_{n,r}=F_{n,r}(1) .

We shortly recollect the most important properties of these polynomials, as they appeared in the

(Hungarian) \mathrm{P}\mathrm{h}\mathrm{D} thesis of the author [29]. The proofs are omitted.

The first ordered r‐Bell numbers

The first ordered r‐Bell polynomials

F_{0,r}(x) = r!
F_{1,r}(x) = r![(1+r)x+r]
F_{2,r}(x) = r![(2+3r+r^{2})x^{2}+(1+3r+2r^{2})x+r^{2}]
F_{3,r}(x) = r![(6+11r+6r^{2}+r^{3})x^{3}+(6+15r+12r^{2}+3r^{3})x^{2}+

(1+4r+6r^{2}+3r^{3})x+r^{3}]

The exponential generating function of F_{n,r}(x) is as follows.

Theorem 1 We have

\displaystyle \sum_{n=0}^{\infty}F_{n,r}(x)\frac{t^{n}}{n!}=\frac{r!e^{rt}}{(1-x(e^{t}-1))^{r+1}}=r!e^{rt}(\sum_{n=0}^{\infty}F_{n}(x)\frac{t^{n}}{n!})^{r+1}
Here F_{n}(x)=F_{n,0}(x)_{f} the nth �ordinary� ordered Bell polynomial l33_{f}39].

In particular,

\displaystyle \sum_{n=0}^{\infty}F_{n,r}\frac{t^{n}}{n!}=\frac{r!e^{rt}}{(2-e^{t})^{r+1}}.
We present a recursion.

Theorem 2 The polynomial F_{n,r+1}(x) can be determined by the following double sum:

F_{n,r+1}(x)=(r+1)\displaystyle \sum_{k=0}^{n}\left(\begin{array}{l}
n\\
k
\end{array}\right)\sum_{l=0}^{k}\left(\begin{array}{l}
k\\
l
\end{array}\right)F_{l}(x)F_{k-l,r}(x) .
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Corollary 1 The sequence F_{n,r} is log‐convex in n because it is a convolution of such ones l241 . This

means that the following inequality holds

F_{n-1},{}_{r}F_{n+1,r}\geq F_{n,r}^{2}.
Theorem 3 The following recursive formula holds for any n>0 :

F_{n, $\tau$}(x)=x[(r+1)F_{n-1,r}(x)+(1+x)F_{n-1,r}(x)]+rF_{n-1,r}(x) . (4)

with the initial value F_{0,r}(x)=r!.

Corollary 2 By the theorem, it can easily be seen that

x^{1-r}[(x^{r+1}+x^{r})F_{n-1, $\tau$}(x)]=F_{n,r}(x) .

In particular,
F_{n}(x)=x((1+x)F_{n-1}(x))

Whence we can get the structure of the zeros of the r ‐Fubini polynomials F_{n,r}(x) : these polynomials have

only real zeros and all of them are contained in the interval] -10] for all n>0.

Corollary 3 The already mentioned Newton theorem yields that the sequence ((k+r)!S_{r}(nk))_{k=0}^{n} is

LC (for a fixed n)_{f} that is,

S_{r}(n, k)^{2}\displaystyle \geq(k+r+1)S_{r}(n, k+1) \frac{1}{k+r}S_{r}(n, k-1) ,

and this implies that (S_{r}(nk))_{k=0}^{n} is also LC—a fact we knew before.

We will find useful Darroch�s theorem [14]. Let a_{0}, a_{1} ,
. . .

, a_{n} be a sequence of positive real numbers�
with attached polynomial p(x)=a_{0}+a_{1}x+\cdots+a_{n}x^{n} Then—as we know— the sequence a_{0}a_{1}a_{n}

is LC, and for the (leftmost) maximum M

|M-\displaystyle \frac{p(x)}{p(x)}|<1.
Applying this estimation for the maximizing index M_{n,r} of the sequence ((k+r)!S_{r}(n, k))_{k=0}^{n} we have

that

|M_{n,r}-\displaystyle \frac{F_{n,r}(1)}{F_{n,r}(1)}|=|M_{n,r}-\frac{F_{n+1,r}-(2r+1)F_{n,r}}{2F_{n,r}}|<1.
The derivative is calculated from the recursion formula (4).

To close this section we present an interesting summation formula for the r‐Fubini numbers, which

may be considered as an analogue of the Dobiílski‐formula for the ordinary Bell numbers (cf. [25] and

the references therein):

B_{n}=\displaystyle \frac{1}{e}\sum_{k=0}^{\infty}\frac{k^{n}}{k!}.
The analogue of this infinite sum representation formula for the r‐Fubini numbers is contained in the

below statement.

Theorem 4 For any n, r\geq 0 we have that

F_{n,r}=\displaystyle \sum_{k=0}^{\infty}\frac{(k+r)^{n}}{2^{k+r+1}}\frac{(k+r)!}{k!}.
In the case r=0[18_{f}21 , 39, 43] this takes the shape

F_{n}=\displaystyle \sum_{k=0}^{\infty}\frac{k^{n}}{2^{k+1}}.
iThat the sequence contains only positive real numbers can be weakened. What is necessary is that p(1)>0.
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Since F_{0,r}=r! ,
we get the simple but interesting fact that

\displaystyle \sum_{k=0}^{\infty}\frac{1}{2^{k}}\frac{(k+r)!}{k!}=2^{r+1}r!.
This, in fact, can be deduced in another way by using the generating function identity

\displaystyle \sum_{k=0}^{\infty}\left(\begin{array}{l}
n+k\\
n
\end{array}\right)x^{k}=\frac{1}{(1-x)^{n+1}}.
4.1.2 The r‐Eulerian numbers and polynomials

To be able to describe the formerly mentioned generalization of Frobenius� theorem we need one more

ingredient. This is the notion of r‐El lerian numbers. The classical Eulerian numbers E(nk) count

permutations on n elements with k ascents. The E_{r}(nk)r‐Eulerian numbers are defined as follows.

Definition 1 The E_{r}(n, k) numbers count the partitions on n+r elements with k so‐called r ‐ascents.

An r ‐ascent \dot{?}S a classical ascent in which not both elements belong to the set \{ 1, . . .

, r\}.

For example, in the permutation

\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5\\
3 & 4 & 1 & 2 & 5
\end{array}\right)
there are 3 ordinary ascents: 3—4, 1—2 and 2—5.

But if, for instance, r=3 then 1—2 will no longer be an ascent, because 1, 2\in\{1 , 2, 3 \} . Note that,
however, 3—4 is still an ascent, because 4\not\in\{1 , 2, 3 \}.

Now we list the results with respect to the r‐Eulerian numbers and the below defined r‐Eulerian

polynomials from our \mathrm{P}\mathrm{h}\mathrm{D} thesis, omitting the proofs. (Some of these results were deduced jointly with

Dr. Gabor Nyul. The original proofs are mainly combinatorial.)

Theorem 5 The r ‐Eulerian numbers satisfy the following recursion:

E_{r}(nm)=(m+1)E_{r}(n-1, m)+(n-m+r)E_{r}(n-1m-1) (5)

with the initial values E_{r}(00)=1 and E_{r}(n0)=r! if n>0.

Theorem 6 The r ‐Stirling numbers can be represented with the r ‐Eulerian numbers as follows:

(k+r)!S_{r}(n, k)=\displaystyle \sum_{m=0}^{n}E_{r}(n, m)\left(\begin{array}{l}
m\\
n-k
\end{array}\right) . (6)

Summing over k
,

we get the generalized Frobenius theorem we were looking for.

Theorem 7 For any n\geq 1 and r\geq 0

F_{n,r}=\displaystyle \sum_{k=0}^{n}E_{r}(n, k)2^{k}
The combinatorial proof— which is an extension of the Remmel‐Wachs proof [36] —is contained in

[29].
Theorem 7 can be extended to the r‐Fubini polynomials, too (the r=0 case appears in the paper of

Tanny [39]):

Theorem 8

F_{n,r}(x)=\displaystyle \sum_{k=0}^{n}E_{r}(n, k)(x+1)^{k}x^{n-k}
The particular case x=1 gives back the previous theorem.

By the proof of this formula it turns out that (6) can be reversed, and we can express the r‐Eulerian

numbers via the r‐Stirlings:
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Theorem 9

E_{r}(nm)=\displaystyle \sum_{k=0}^{n}(k+r)!S_{r}(nk)\left(\begin{array}{l}
n-k\\
m
\end{array}\right)(-1)^{n-k-m}
Hence

E_{r}(n, n)=r!r^{n},

E_{r}(n0)=r!

After the r‐Eulerian numbers we turn to the polynomials.

Definition 2 The r ‐Euler polinomials are defined as usual:

E_{n,r}(x) :=\displaystyle \sum_{k=0}^{n}E_{r}(n, k)x^{k}
The r‐Fubini and r‐Eulerian numbers can be transformed into each other as the following statement

shows. (The r=0 case was proven by Prodinger [33].)

Theorem 10 We have that

F_{n,r}(x) = x^{n}E_{n,r}(\displaystyle \frac{x+1}{x}) ,

E_{n,r}(x) = (x-1)^{n}F_{n,r}(\displaystyle \frac{1}{x-1}) (7)

Corollary 4 All the ze $\gamma$\cdot \mathrm{o}s of the E_{n,r}(x) polynomial are real and belong to the interval] -\infty, 0[.

Corollary 5 The (E_{r}(n, k))_{k=0}^{n+r} sequence is LC_{f} that is,

E_{r}(n, k)^{2}\geq E_{r}(n, k-1)E_{r}(nk+1) .

It is known that the classical Eulerian numbers E(n, k) are symmetric— similarly to the binomial

coefficients \left(\begin{array}{l}
n\\
k
\end{array}\right)- so the maximizing index is trivial to find. This symmetry is lost when r>1 . Hence

the following problem is interesting.
Open problem. Find the asymptotics of the maximizing index of E_{r}(n, k) .

Open problem. What is the asymptotics of the sequence E_{r}(n, k) as n runs while k and r is kept
to be fixed?

This is surely not an easy question as the case of the classical Eulerian numbers shows [22].

Theorem 11 Tf $\iota$ e exponential generating function of the r ‐Eulerian polynomials is as follows:

\displaystyle \sum_{n=0}^{\infty}E_{n,r}(x)\frac{t^{n}}{n!}=r!e^{r(x-1)t}(\frac{x-1}{x-e^{(x-1)t}})^{r+1}=r!e^{r(x-1)t}(\sum_{n=0}^{\infty}E_{n}(x)\frac{t^{n}}{n!})^{r+1}
Here E_{n}(x)=E_{n,0}(x) is the classical Eulerian polynomial. An equivalent representation can be deduced:

\displaystyle \sum_{n=0}^{\infty}E_{n,r}(x)\frac{t^{n}}{n!}=r!e^{(1-x)t}(\frac{1-x}{1-xc^{(1-x)t}})^{r+1}
Letting

f(x, t)=\displaystyle \sum_{n=0}^{\infty}E_{n, $\tau$}(x)\frac{t^{n}}{n!}
we can deduce that f(xt) satisfies the partial differential equation

(x-x^{2})\displaystyle \frac{\partial f}{\partial x}+(tx-1)\frac{\partial f}{\partial t}+(1+rx)f=0.
This is the generalization of the PDE known for the exponential generating function of the Eulerian

polynomials:

(x-x^{2})\displaystyle \frac{\partial f}{\partial x}+(tx-1)\frac{\partial f}{\partial t}+f=0.
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Corollary 6 For the r ‐Eulerian polynomials the following recursion holds:

E_{n,r}(x)=(1+(n+r-1)x)E_{n-1,r}(x)+(x-x^{2})E_{n-1,r}(x) .

Now we give an interesting application of the r‐Eulerian numbers in the theory of infinite sums.

Worpitzky�s theorem [6, 17, 44] states that

\displaystyle \sum_{k=0}^{n}E(nk)\left(\begin{array}{l}
x+k\\
n+r
\end{array}\right)=x^{n}
This can be generalized to the r>0 case.

Theorem 12 We have that

\displaystyle \sum_{k=0}^{n}E_{r}(n, k)\left(\begin{array}{l}
x+k\\
n+r
\end{array}\right)=x^{n}(x)_{r}.
Here (x)_{r}=(x)(x+1)\cdots(x+r-1) is the Pochhammer symbol.

This interesting extension of Worpitzky�s theorem can be used to find a generalization of a famous

sum formllla including the classical Eulerian numbers. This formula reads as

\displaystyle \sum_{i=0}^{\infty}i^{n}x^{ $\iota$}=\frac{1}{(1-x)^{n+1}}\sum_{k=0}^{n}E(nk)x^{n-k}
and follows directly from the formula of Worpitzky. Its generalization is contained in the following
theorem, and the proof is similarly easy.

Theorem 13

\displaystyle \sum_{x=0}^{\infty}i^{n}(i)_{r}x^{i}=\frac{x^{r}}{(1-x)^{n+r+1}}\sum_{k=0}^{n}E_{r}(n, k)x^{n-k}
At the end we add one more formula from our thesis.

Corollary 7

E_{r}(nn-k-1+r)=\displaystyle \sum_{l=0}^{k}\left(\begin{array}{ll}
n+r & +1\\
l & 
\end{array}\right)(-1)^{l}(k+1-l)^{n}(k+1-l)_{r}.
This is the r‐case� of the known formula [17]

E(n, n-k-1)=\displaystyle \sum_{l=0}^{k}\left(\begin{array}{ll}
n & +1\\
 & l
\end{array}\right)(-1)^{l}(k+1-l)^{n}
The first r‐Eulerian polynomials

E_{0,r}(x) = r!
E_{1,r}(x) = r!(1+rx)
E_{2,r}(x) = r![1+(3r+1)x+r^{2}x^{2}]
E_{3,r}(x) = r![1+(7r+4)x+(6r^{2}+4r+1)x^{2}+r^{3}x^{3}]
E_{4,\mathrm{r}}(x) = r![1+(15r+11)x+(25r^{2}+30r+11)x^{2}+

(10r^{3}+10r^{2}+5r+1)x^{3}+r^{4}x^{4}].
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4.2 Eulerian‐like numbers connected to the Whitney numbers

The above studied r‐Eulerian numbers are connected to the r‐Stirling numbers. We know that there is

another direction of generalization of the Stirlings: the Whitney numbers. Hence we can ask: can we

define Fubini numbers and Eulerian numbers connected to the Whitney numbers? Can we connect them

via a Frobenius‐like formula as in Theorem 7?

The answer is twofold: there is an analogue, which is not a straight generalization (in the sense that

it does not give back the Frobenius formula as a special case) but it has combinatorial interpretation.
This is due to the present author [27]. On the other hand, one can find a direct generalization, too, but

it has no known combinatorial meaning [34]. We describe the former shortly. For the details please refer

to [27].
Let p_{1}\cdots p_{n-1}p_{n} be a permutation on n elements such that the last element is in the last position, i.e.,

p_{n}=n . Moreover, let the first n-d elements be coloured with one of m colours, and the non‐coloured

elements are in increasing order at the end of the partition (followed by n
,

as we said before). Then we

call this permutation an m‐coloured Dowling d‐permutation on n elements.

For example, the permutation

\check{n-d=5}d3745126brrgb_{\sim\frac{89}{=4}}
is a 3‐coloured Dowling 4‐permutation on 9 elements.

We say that in the position i there is a Dowling descent if one of the next assumptions satisfy:

1. in position i there is a �classical� descent,

2. i separates the coloured and non‐coloured elements,

3. i separates the non‐coloured elements.

In the example above

\check{n-d=5}d=4374512689brrgb_{\sim}
there are 6 Dowling descents:

7—4, 5—1: these are descents in the classical sense, too.

1—2: is a descent by another reason: it separates coloured and non‐coloured elements.

2-66-8
, 8—9: these separate non‐coloured elements.

Moreover, a Dowling run is a maximal subsequence separated by Dowling descents. Let A_{m,d}(n, k)
denote the number of m‐coloured Dowling d‐permutations on n elements with k Dowling runs. Finally
we sum on d :

A_{m}(nk)=\displaystyle \sum_{d=1}^{k}A_{m,d}(nk) .

With the above definitions and notations we can present the analogue of the Frobenius formula.

Theorem 14 It holds true that

\displaystyle \sum_{k=1}^{n}W_{m}(n, k)m^{k}k!=\sum_{k=1}^{n}A_{ $\tau$ n}(n+1, k+1)2^{n-k}
The numbers on the left can be considered as the generalization of the Fubini numbers to the Whitney‐
setting. There is no �official� name for them, however they were investigated in the 1990\mathrm{s} by M.

Benoumhani [45] and later by Rahmani [35].
We close the paper with a question.
Open problem. Having the original Frobenius formula, and its extensions towards the r‐Stirling

case and the Whitney number case, we ask the following: how to extend combinatorially the Frobenius

formula to the r‐Whitney case?
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