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Abstract

In this paper, we give a new criterion for the algebraic independence of the
values of power series. In particular, we deduce the algebraic independence of the
values Y o°_o B~%m, where 8 is a Pisot or Salem number and (wm)3_, is a certain
increasing sequence of nonnegative integers satisfying lim,— 00 Wm+1/Wm = 1.

1 Review of the (-expansions of real numbers

Criteria for the transcendence of real numbers are deduced from the properties of Dio-
phantine approximations for algebraic numbers. In this paper, we study criteria for the
transcendence of real numbers, using the S-expansions of algebraic numbers in the case
where 8 is a Pisot or Salem number. Moreover, we also give a new criterion for the
algebraic independence of real numbers, using the approximation properties of iterated
sumsets.

We recall the definition of Pisot and Salem numbers. Let 8 be an algebraic integer
greater than 1. We denote the conjugates of 8 by B = B, B,...,B4. Then B is a Pisot
number if |G;| < 1 for any ¢ = 2,...,d. For instance, any rational integer b > 2 and
the golden ratio (1 + 1/5)/2 are Pisot numbers. Moreover, £ is called a Salem number if
[B;) < 1for any i = 2,...,d and if there exists j > 2 such that |3;| = 1. For instance,
the unique zero' 7 > 1 of X% — X% — X2 — X + 1 is a Salem number. We denote the
integral and fractional parts of a real number z by |z| and {z}, respectively. Moreover,
[z] denotes the minimal integer not less than .

For any real number 8 > 1, the S-transformation T : [0,1) — [0,1) is defined by
Ts(z) = {Bz} for z € [0,1). Then the S-expansion of z, introduced by Rényi [15], is
denoted as

=Y ta(B,2)B7", (1.1)

where t,(83,z) = }_ﬂ’.l:,l"‘l(x)j forn=1,2,.... If 8 = b is an integer greater than 1, then
(1.1) coincides with the ordinary base-b expansion of z. '



Bertrand [4] and Schmidt [16] independently proved for each Pisot number § that
any z € [0,1) N Q has an ultimately periodic S-expansion (¢,(3,z))52;. Conversely,
Schmidt [16] showed for each real number 8 > 1 that if any rational number z € [0,1)
has an ultimately periodic S-expansion, then f is a Pisot or Salem number. Schmidt also
conjectured for each Salem number S that any rational number has an ultimately periodic
B-expansion, which is still an open problem.

Moreover, it is generally difficult to investigate the digits (¢,(8,%))3, in the S-
expansion of z in the case of x ¢ Q(B). For instance, if § = b is an integer, then
Borel [6] conjectured that any algebraic irrational number z is normal in base-b. In par-
ticular, if this conjecture is true, then we see that any digit h € {0,1,...,b — 1} occurs
with average frequency tending to 1/b, which is still unproved.

We introduce known results for Borel’s conjecture, that is, lower bounds for the num-
bers of nonzero digits in S-expansions. Moreover, we consider the numbers of nonzero
digits in the case where 3 is a Pisot or Salem number. Let 8 > 1 and = € [0,1) be real
numbers. For any positive integer N, put

An(B,z) :=Card{n € Z |1 <n <N, t,(8,z) # 0},

where Card denotes the cardinality.
First, we consider the case where 8 = b > 1 is an integer. If Borel’s conjecture is true,
then, for any algebraic irrational number z, we have
fim 2600 01

N—o0 N b

However, there is no algebraic irrational number x such that the inequality

lim sup M >0
N—oo N
was proved. Suppose that z is an algebraic irrational number of degree D. If b = 2, then
Bailey, Borwein, Crandall, and Pomerance [3] showed that there exist positive constants
C1(z) and Cy(z), depending only on z, such that

An(2,z) > Cy(z)NYP (1.2)

for any integer N > Cs(x). Note that Ci(z) is effectively computable but Ca(z) is not.
Adamczewski, Faverjon [2], and Bugeaud [7] proved an effective version of (1.2) for general
integral base b > 2 as follows: there exist effectively computable positive constants Cs(b, )
and C4(b, x), depending only on b and z, such that

)‘N(b’ .’L‘) > 03(b’ E)NI/D

for any integer N > Cy(b, x).

Next, we consider the case where (3 is a general Pisot or Salem number. In the rest
of this section, suppose that z is an algebraic number with D = [Q(8, z) : Q(5)], where
[L; K] denotes the degree of field extension L/K. Moreover, we denote f >> g if there
exists an effectively computable positive constants C, depending only on 8 and z, such
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that f > Cg. Bugeaud [9] showed that if there exist infinitely many integers n > 1 with
tn(B, Z) # th+1(B, z), then

(log N)*2

(loglog N)1/2 (13)

An(B,z) > (B, z) >

for any integer N > 1, where
W(B,7) = Card{n € Z|1 <n < N, ta(B, ) # tnr1(B, 2)}-

Under the assumption that there exist infinitely many integers n > 1 with ¢,(8,z) # 0,
(1.3) was improved as follows [13]:

1/2D~1) :
An(B,z) > (m) (1.4)

for any integer N > 1. In this paper, we introduce further improvement of (1.4):

THEOREM 1.1 ([14]). Let 3 be a Pisot or Salem number and = an algebraic number with
D =[Q(B,z) : Q(B)]. Let A be a positive integer and (t,)3, a sequence of nonnegative
integers with t, < A for any n > 0. Assume that

[><]
T= Zt,,ﬁ'”
n=0

and that there exist infinitely many integers n with t, # 0. Then, there exist effectively
computable positive constants Cs(B, z, A) and Cs(B, z, A), depending only on B, z, and A,

such that
N \VP
log N )

Card{n € Z | n < N,t, # 0} > C5(B,z, A) (

for any integer N > Co(8, z, A).

In particular, applying Theorem 1.1 to the numbers of nonzero digits in the j-
expansions, we sharpen (1.4) as follows:

N \YP
An (B, z) > (m)
for any integer N > 1.

2 Transcendence of the power series at certain alge-
braic points

In what follows, w = (wn)5-, denotes a sequence of nonnegative integers satisfying
W1 > Wy, for any sufficiently large m. For such a sequence w, put

o0

flw,X) =Y X,

m=0
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Bugeaud [8] posed the problem following: If w increases sufficiently rapidly, then f(w, @)
is transcendental for any algebraic number a with 0 < |a| < 1. Corvaja and Zannier [10]
verified for any algebraic number a with 0 < || < 1 that if

f Wm+1

lim in > 1,
m—c0 Wy,

then f(w,a) is transcendental. For instance, the numbers

o 1)
' m
Z a™, § : ah

m=0 m=0
are transcendental, where h is any integer greater than 1. Moreover, Adamczewski [1]
showed for any Pisot or Salem number 3 that if
Wm+1

lim sup >1,

m—oo W,

then f(w,871) is transcendental. The purpose of this section is to consider the transcen-
dence of f(w,371) under the assumption that

lim ¥m+l _ g (2.1)

m—0o0 wm
Using Theorem 1.1, we get the following:
THEOREM 2.1. Let R > 1 be a real number. Suppose that

,
lim sup — > 0. 2.2
m—)oop mE ( )

Then, for any Pisot or Salem number 3, we have

[o(8.1 (w:87) ) :Q(B)] 2 [RI.

Note that Theorem 2.1 was essentially proved by Bailey, Borwein, Crandall, and
Pomerance [3] in the case where 8 = b is an integer.

Proof. We may assume that f(w, 37!) is an algebraic number, namely,
D= [Q(8,f (w;57)) : Q(B)] < oo.
Put z := f(w, 37!). Then, for an arbitrary positive real number ¢, (2.2) implies that
An(B,z) < NH/R (2.3)

for any sufficiently large N. On the other hand, Theorem 1.1 implies that there exist
infinitely many integers NV satisfying

N~HYE < Ay (8, 2). (2.4)
Combining (2.3) and (2.4), we get

ol ~
x| =

!
O

Since ¢ is arbitrary, we obtain R <
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For instance, put

G(X) =) Xt

m=0
for any real number y > 1. Note that
o L1
m~»c0 l_myJ

Duverney, Nishioka, Nishioka, Shiokawa [11], and Bertrand [5] independently showed that
if y = 2, then (5(a) is transcendental for any algebraic o with 0 < |a| < 1. However, if
y # 2, then the transcendence of (,(a) is not known. Applying Theorem 2.1, we see for
any Pisot or Salem number § that

[e(s.6(87™)) @B 2 vl
Moreover, using Theorem 2.1, we deduce the following criterion for transcendence:
COROLLARY 2.2. Assume for any real number R that

=1

limsup — > 0.
m—)oop mR

Then, for any Pisot or Salem number 8, we have f(w,371) is transcendental.

For instance, let
p(pim) = mE™” = exp ((logm)™*?)
for a real number p > 1 and an integer m > 1. Set

(o]
By(X) = Z X le@m)]

m=1

Using the mean value theorem, we see that

A
e Le(p;m)]

It is easily checked that the sequence |p(p;m)](m = 1,2,...) satisfies the assumption of
Corollary 2.2. Thus, Corollary 2.2 implies for any Pisot or Sa.lem number B that ®,(671)
is transcendental.

3 Algebraic independence of the power series at cer-
tain algebraic points

In this section, we consider the algebraic independence of real numbers including the
values (,(37) and ®,(8~!) defined in the previous section. Results in this section are
deduced from Theorem 3.4, a criterion for linear independence.

First we investigate the algebraic independence of ®,(871) for distinct real numbers
p. Recall that a nonempty set S of complex numbers is algebraically independent if any
distinct elements xy, ..., , with any number r are algebraically independent.



16

THEOREM 3.1. Let 3 be a Pisot or Salem number.

(1) The set
{267 1p21, peR}

is algebraically independent.
(2) Ifp and p' are distinct positive real numbers, then the numbers ®,(87') and &y (871)
are algebraically independent.

Using our criterion for linear independence, we also deduce the following:
THEOREM 3.2. For any Pisot or Salem number 3, the two numbers
Z IB_Lmlong’ Eﬁ_’.mloglogmj
m=1 m=3
are algebraically independent.

Next, we introduce partial results for the algebraic independence of real numbers
including the values (,(87!). For any integer k > 4, it is easily seen that there exists a
unique real number oy, satisfying 0 < 0% < 1 and

(l—O’k)k+(k—l)Uk~1=0.
THEOREM 3.3. Let A be a positive integer and y a real number. Suppose that

y>A ifA=123,
y>o3 ifA>4

Moreover, let B be a Pisot or Salem number.
(1) For any positive real number p, the set

{6 (5" 2, ()"

is linearly independent over Q(f).
(2) For any integer h > 2, the set

{ & (67" (i ﬂ""") )

m=0

bk €Z,0< ki SA0< k)

ki,k2 €Z,0< k; SA,OSkz}

is linearly independent over Q(B).

In the rest of this section, we introduce a general criterion for linear independence.
For any nonzero power series f(X) = > -t X", put

S(f):={ne€Z|n>0,t, #0}.
We define the iterated sumsets of S(f) as follows: For any nonnegative integer k, set

{0} ' if k=0,

. kS(f):={{sl+...+sk|31,___,skes(f)} ifk>1.



“For any nonzero power series f1(X), ..., fr(X) and nonnegative integers k;, .. ., k., put

D ES(f)={s1+ - +5:.| 51 € 1S(f1), .., 5r € k:S(f)}.

i=1
Moreover, for any nonempty set A of nonnegative integers, let

6(z; A) .= max{a € A|a < R},

A(R; A) == Card([0, R] N A)
for any real numbers z, R with z > min.4 and R > 0. We say that g(R) = o(h(R)) if
g(R)/h(R) tends to zero.

THEOREM 3.4. Let A > 1 and r > 2 be integers and f;(X) = Yoo tOxn ¢

2 =0
Z[[XIN\Z[X] (i = 1,...,7) be power series. Assume that f1(X),..., fT(X1)‘ satisfy the
following four assumptions: :

1. There ezists a positive constant Cy such that
0t <y

for any nonnegative integern >0 and 1 <1 < n.

2. Let ky, ks, ..., k- be nonnegative integers satisfying
' M<A-1 ifr=2,
Then

r—2 R
R-0 ( RY RS(f) + (L +k -I)S(fr-1)> =o (H’f-l MNE S(fi))k*)

i=1

as R tends to infinity.
3. There exists a positive real number § satisfying
MR; S(fr) = o (R5+14)
as R tends to infinity. Moreover, for anyi=2,...,r and any positive real number
€, we have
€
A(B; S(fi) = o (A\(B; 8(fi-1))")
as R tends to infinity.
4. There ezists a positive constant Cs satisfying
[R,CsRINS(f,) # 0
for any sufficiently large R.
Then the set

(A LB - £ (B
is linearly independent over Q(B).

OSkl SA;OSk2ak3a""kr}
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