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1 Introduction

The purpose of the present paper is to exhibit some recent developments
at the intersection of metric Diophantine approximation and the theory of

almost everywhere convergence of function series, analytic number theory,
and the theory of irregularities of distributions modulo one. The connection

between these diverse areas is made by so‐called GCD sums (sums involving
greatest common divisors), which will be discussed in detail below. These

sums are of the form

\displaystyle \frac{1}{N}\sum_{k,l=1}^{N}\frac{(\mathrm{g}\mathrm{c}\mathrm{d}(n_{k},n_{l}))^{2 $\alpha$}}{(n_{k}n_{l})^{ $\alpha$}} , (1)

or, more generally,

\displaystyle \sum_{k,l=1}^{N}c_{k}\overline{c}_{l}\frac{(\mathrm{g}\mathrm{c}\mathrm{d}(n_{k},n_{l}))^{2 $\alpha$}}{(n_{k}n_{l})^{ $\alpha$}} . (2)

Here n_{1} ,
. . .

, n_{N} are distinct positive integers, a is a real parameter, which

usually is from the range [1/2, 1], and c_{k} are (real or complex) coefficients

which are normalized such that \displaystyle \sum|c_{k}|^{2}=1 . The significance of these sums

(in the case  $\alpha$=1 ) was probably first observed by Koksma in the 1930\mathrm{s}.

The problem of finding the maximal possible order (over all configurations
n_{1} ,

. . .

, n_{N}) of the sum in (1) for  $\alpha$=1 was suggested as a prize problem to the

Wiskundig Genootschap at Amsterdam by Erdós, and was shortly later solved

by Gál [16], who proved that this sum is of order at most (loglog N)^{2} and

that this upper bound is optimal. The problem in the case  $\alpha$=1/2 appears

in the context of the Dufiin‐Schaeffer conjecture, a notoriously difficult open

problem in Diophantine approximation, in a paper of Dyer and Harman [14].
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However, the maximal order of the GCD sum in this case was only found

very recently by Bondarenko and Seip [10, 11], where it was shown to be

\displaystyle \exp(c\frac{\sqrt{\log N}\sqrt{\log\log\log N}}{\sqrt{\log\log N}})
The intermediate case  $\alpha$\in(1/2,1) was solved in [2]; the maximal order in

this case is

\displaystyle \exp(c_{ $\alpha$}\frac{(\log N)^{1- $\alpha$}}{(\log\log N)^{ $\alpha$}}) (3)

For  $\alpha$>1 the optimal order is easily seen to be at most c_{ $\alpha$} , and in the

case  $\alpha$\in(0,1/2) an optimal solution was found in [9]. Thus the problem
concerning the maximal order of GCD sums is now completely solved. The

upper bounds for (2) are of the same order as those for (1). The problem of

finding the maximal value (also over the coefficients cl, .. ., c_{N}) of the sum

in (2) has a natural interpretation in terms of finding the largest eigenvalue
of a so‐called GCD matrix, a problem which is of some interest in its own

right. See [3, 21].

In the subsequent sections we will show how GCD sums arise in different

areas of mathematics and which role they play there. However, before moving
on we want to make a few remarks on where the upper bounds mentioned

above come from, how they are obtained, and on a closely related similar

problem.

Gál�s proof was based on a combinatorial optimization argument: if a

configuration gives the maximal value for the GCD sum_{f} then it must have

strong structural properties (since otherwise the value of the GCD may be

further increased). Such structural properties are for example the fact that

for every number contained in \{n_{1}, . . . , n_{N}\} , all its divisors must be contained

as well. Another such structural property is the fact that there cannot be too

many primes involved when factorizing all the numbers \{n_{1}, \cdots, n_{N}\} . As a

hint as to where (3) comes from, assume that N=2^{M} and let \{n_{1}, \cdots, n_{N}\} be

the set of all square‐free numbers generated by the first M primes p_{1} ,
..

., p_{M}.

Then the GCD sum in (1) has a strong symmetric structure, and one can

calculate

\displaystyle \frac{1}{N}\sum_{k,l=1}^{N}\frac{(\mathrm{g}\mathrm{c}\mathrm{d}(n_{k},n_{l}))^{2 $\alpha$}}{(n_{k}n_{l})^{ $\alpha$}}=\prod_{m=1}^{M}(1+p_{m}^{ $\alpha$}) . (4)

This product is easily shown to be of order roughly (3).
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The upper bound given in [2] for the case  $\alpha$\in(1/2,1) uses a strategy
similar to Gál�s at the beginning, but involves some heave machinery from

complex analysis (analysis on the infinite‐dimensional polydisc, to be more

precise). The case  $\alpha$=1/2 is even more diffcult. Quite amazingly, an

alternative, totally different proof was given for the case  $\alpha$\in(1/2,1) in a

paper of Lewko and RadziwiH [20]; they used an interpretation of the GCD

sum as an integral involving a random model for the Riemann zeta function.

This proof indicates a connection between GCD sums and properties of the

Riemann zeta function, a point which will be discussed in more detail in

Section 3 below.

Finally we mention the problem of maximizing the expression

\displaystyle \sum_{k,l=1}^{N}c_{k}\overline{\mathrm{q}}\frac{(\mathrm{g}\mathrm{c}\mathrm{d}(k,l))^{2 $\alpha$}}{(kl)^{ $\alpha$}} , (5)

where c_{k} are normalized such that \displaystyle \sum|c_{k}|^{2}=1 (and where the maximization

problem is over all coefficients c_{1} ,
.. .

, c_{N}). Note that the maximal value of

this expression is obviously dominated by the one in (2). The problem was

solved by Hilberdink [17], who obtained the upper bounds

c(\log\log N)^{2} for  $\alpha$=1,

\displaystyle \exp(c_{ $\alpha$}\frac{(\log N)^{1- $\alpha$}}{1\mathrm{o}\mathrm{g}1\mathrm{o}gN}) for  $\alpha$\in(1/2,1) , (6)

\displaystyle \exp(c\frac{\sqrt{}\ulcorner \mathrm{o}gT}{\sqrt{\log\log N}}) for \mathrm{a}/2.

Note that these upper bounds are similar to those given above, but different

for  $\alpha$\in(1/2,1) and  $\alpha$=1/2 . However, there is a close similarity in the prob‐
lems of finding numbers n_{1} , .. ., n_{N} maximizing (1) and finding coefficients

\mathrm{c}_{1} ,
.. .

, c_{N} maximizing (5), respectively. For instance, to find an example
achieving (6) one can take coefficients supported on the square‐free integers
generated by the first M primes and make a calculation similar to (4), where

however one has to choose M\approx\log N/\log\log N rather than M\approx\log N to

make sure that the largest non‐zero coeffcient really has index at most N.

2 Metric Diophantine approximation and al‐

most everywhere convergence of function

series

To see how GCD sums appear in metric number theory, assume that f is the

indicator function of an interval modulo one, centered such that \displaystyle \int_{0}^{1}f(x)dx=
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0 ,
and that we want to calculate

\displaystyle \int_{0}^{1}(\sum_{k=1}^{N}c_{k}f(n_{k}x))^{2}dx , (7)

where c_{k} are real coefficients and (n_{k})_{k\geq 1} is a sequence of distinct positive
integers. This is a very natural problem, since this integral is just the

variance of the sum \displaystyle \sum_{k=1}^{N}c_{k}f(n_{k}x) , understood as a random variable on

([0,1], B(0,1),  $\lambda$) , where  $\lambda$ is the Lebesgue measure. An upper bound for this

variance, together with Markov�s inequality and the Borel‐Cantelli lemma,
will allow us to make metric statements on the asymptotic order (or conver‐

gence/divergence) of the sum as  N\rightarrow\infty.

Let f(x)\displaystyle \sim\sum_{j=-\infty}^{\infty}a_{j}e^{2 $\pi$ \mathrm{i}jx} be the Fourier series of f . By orthogonality,
the integral in (7) equals

1\displaystyle \leq k,l\leq N,jj_{2}\in \mathbb{Z}\sum_{j_{1}n_{k}=j_{2}^{1}n_{l}},, c_{k}c_{l}a_{j_{1}}a_{j_{2}}.
We assumed that f is the indicator function of an interval, which allows us

to deduce that |a_{j}|\leq( $\pi$|j|)^{-1} . Since f(x) has mean zero, we have a_{0}=0.
Thus (7) is dominated by

\displaystyle \frac{1}{$\pi$^{2}}\sum_{j_{1}n_{k}=j_{2}n_{l}}1\leq k,l\leq N,j_{1},j_{2}\in \mathbb{Z}\backslash \{0\}, \frac{c_{k}\mathrm{c}_{l}}{\dot{j}_{1}j_{2}}.
Now the crucial observation is that j_{1}n_{k}=\dot{j}_{2}n_{l} whenever j_{1}=jn_{l}/\mathrm{g}\mathrm{c}\mathrm{d}(n_{k}, n_{l})
and j_{2}=jn_{k}/\mathrm{g}\mathrm{c}\mathrm{d}(n_{k}, n_{l}) for some integer j . Thus we get the upper bound

\displaystyle \frac{1}{$\pi$^{2}}\sum_{1\leq k,t\underline{<}N}\sum_{j\in \mathbb{Z}\backslash \{0\}}\frac{c_{k}c_{l}(\mathrm{g}\mathrm{c}\mathrm{d}(n_{k},n_{l}))^{2}}{j^{2}n_{k}n_{l}}=\frac{1}{3}\sum_{1\leq k,l\leq N}\frac{c_{k}c_{l}(\mathrm{g}\mathrm{c}\mathrm{d}(n_{k},n_{l}))^{2}}{n_{k}n_{l}},
which gives an expression such as the one in (2). The same reasoning works

if f is not an indicator function of an interval, but a function of bounded

variation [18]. Additionally, if one knows that the Fourier coefficients a_{j} with

indices j close to zero are small (for example because f is the indicator of a

short interval) and wants to exploit this fact, then one is led quite naturally
to a GCD sum with parameter  $\alpha$=1/2 . GCD sums with  $\alpha$\in(1/2,1) are

obtained for example by interpolation between the cases  $\alpha$=1 and  $\alpha$=1/2
using a weighted geometric mean. As noted, arguments of this form play
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a major role in a paper of Dyer and Harman [14] on the Duffin‐Schaeffer

conjecture. In [2] and [20] such arguments allowed the authors to solve

a decades‐old open problem on the almost everywhere (a.e.) convergence

of series of dilated functions, which can be seen as a generalization of the

problem asking for the a.e. convergence of Fourier series, which was famously
solved by Carleson [12] in 1966. Currently, the first and third author of the

present paper are preparing a manuscript together with Mark Lewko on

the metric theory of pair correlations, where GCD sums will also play a

crucial role and will lead to improvements of results such as those obtained

by Rudnick and Zaharescu [23].

3 Analytic number theory

Quite unexpectedly, recently a connection between GCD sums and certain

properties of the Riemann zeta function was established. One indication

of such a connection was exposed by the proof of Lewko and Radziwi}l of

upper bounds for the maximal value of GCD sums, which, as noted above,
is based on an interpretation of GCD sums in terms of a random model

for the Riemann zeta function. However, a direct formal connection was

established in a paper of Hilberdink [17], who modified the resonance method

of Soundararajan [24] in such a way that GCD sums show up there in a

natural way. In the sequel, we want to describe this connection along general
lines.

A well‐known conjecture concerning the Riemann zeta function is the

Lindelöf hypothesis, which asserts that  $\zeta$(1/2+\mathrm{i}t)=\mathcal{O}(t^{ $\epsilon$}) for all  $\epsilon$> O.

The Lindelöf hypothesis is far from being proved; the exponent 1/6 (rather
than  $\epsilon$) in the upper bound, due to Hardy‐Littlewood, has only been slightly
improved during a century. The Lindelöf hypothesis is weaker than the Rie‐

mann hypothesis, whose truth would imply that

 $\zeta$( $\sigma$+\displaystyle \mathrm{i}t)=\mathcal{O}(\exp(\frac{c_{ $\sigma$}(\log t)^{2-2 $\sigma$}}{\log\log t}))
for fixed  $\sigma$\in[1/2 , 1). The best known lower bounds are

 $\zeta$( $\sigma$+\displaystyle \mathrm{i}t)= $\Omega$(\exp(\frac{c_{ $\sigma$}(\log t)^{1- $\sigma$}}{(\log\log t)^{ $\sigma$}}))
for  $\sigma$\in(1/2,1) , due to Montgomery [22] (and conjectured to be optimal),
and

 $\zeta$(1/2+
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which was recently shown by Bondarenko and Seip [10] using some of the

methods described in this section.

Suppose we want to establish a lower bound for the Riemann zeta func‐

tion. The idea of the resonance method is to find a function A(t) such that

I_{1}:=\displaystyle \int_{0}^{T}| $\zeta$( $\sigma$+\mathrm{i}t)A(t)|^{2}dt
is �large� and

I_{2}:=\displaystyle \int_{0}^{T}|A(t)|^{2}dt
is �small�, since obviously there must exist a value of t\in[0,T] for which

| $\zeta$( $\sigma$+\mathrm{i}t)|^{2} is at least as large as the quotient I_{1}/I_{2} . In Soundararajan�s origi‐
nal argument the integral I_{1} shows up with exponent 1 rather than 2; the ver‐

sion with exponent 2 and the following observations are due to Hilberdink [17].
Assume that we can approximate  $\zeta$ by a Dirichlet polynomial

 $\zeta$( $\sigma$+\displaystyle \mathrm{i}t)\approx\sum_{n\leq N}\frac{1}{n^{ $\sigma$+it}},
which is just the initial segment of its representation as a Dirichlet series.

Assume that A(t) also is a Dirichlet polynomial of the form

A(t)=\displaystyle \sum_{k=1}^{K}b_{k}k^{\mathrm{i}t}.
Then, just by squaring out, we have

I_{1} \displaystyle \approx \int_{0}^{T}\sum_{1\leq m,n\leq N}\sum_{1\leq k,l\leq K}\frac{b_{k}\overline{b}_{l}}{(mn)^{ $\sigma$}}(\frac{mk}{nl})^{\mathrm{i}t}dt
= (8)

(9)

In line (8) we have (mk/nl)^{\mathrm{i}t}=1 for all t , and thus this hne equals
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We have mk=nl whenever m=jl/(\mathrm{g}\mathrm{c}\mathrm{d}(k, l)) and m=jk/(\mathrm{g}\mathrm{c}\mathrm{d}(k, l)) for

some integer j , so this sum is of order

T\displaystyle \sum_{k,l=1}^{K}b_{k}\overline{b}_{l}\frac{(\mathrm{g}\mathrm{c}\mathrm{d}(k,l))^{2 $\sigma$}}{(kl)^{ $\sigma$}}
(if we ignore the values of j above), and thus we have in a very natural way

obtained a GCD sum as in (5). On the other hand, it turns out that the

term in hne (9) is small if N and K are small powers of T , and that I_{2} is of

order T also if K is a small power of T . Thus a lower bound for the GCD

sum yields a lower bound for the maximum of the Riemann zeta function.

Furthermore, the argument around line (4) suggests how \mathrm{a}^{ $\iota$}�good� resonator

A(t) could be constructed, namely in a multiplicative form as a finite Euler

product. In comparison it is remarkable how in the argument in the present
section the functions (m/n)^{it} ,

which are �almost orthogonal� on [0,T] if m, n

are not too large, play the role of the (orthogonal) trigonometric system in

the previous section.

The purpose of the present section was only to exhibit the way how GCD

sums arise in the context of the Riemann zeta function, and can be used to

prove the existence of large values of the zeta function. The argument in

the hnes above corresponds to the sum in (5) and gives the lower bounds for

such GCD sums mentioned in the lines below equation (5). In comparison
to what was said at the beginning of the present section, these lower bounds

are weaker than the best ones known for large values of the zeta function.

This defect can be overcome by using an �extremely long resonator�, which

leads to a GCD sum as in (2) rather than (5). The problem with this long
resonator is that one loses the �almost orthogonality�� property which played
a crucial role in the argument sketched above. To see how this problem can

be solved, we refer the reader to [1, 10]. There are further issues when trying
to generalize this method to L‐‐functions; see [7].

4 Irregularities of distributions

A sequence of real numbers (x_{n})_{n\geq 1} in [0 ,
1 ] is called uniformly distributed

modulo one (u.d. mod1) if

\displaystyle \lim_{N\rightarrow\infty}\frac{1}{N}\sum_{n=1}^{N}1_{[a,b]}(x_{n})=b-a
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for all [a, b]\subset[0 , 1 ] . Here, and in the sequel, 1_{[a,b]} denotes the indicator

function of the interval [a, b] . The most classical example in this theory is

the sequence of fractional parts (\{n $\alpha$\})_{n\geq 1} , which is u.d. mod1 if and only
if  $\alpha$\not\in \mathbb{Q} , which was shown independently by Bohl, Sierpiński and Weyl
in 1909/1910. Another famous example (Weyl [25], 1916) states that for

distinct integers (n_{k})_{k\geq 1} the sequence (\{n_{k} $\alpha$\})_{k\geq 1} is u.d. mod1 for almost

all a in the sense of Lebesgue measure — however, in this general setting
it is usually totally impossible to explicitly determine the exceptional set of

measure zero.

Uniform distribution modulo one can be quantified using the notion of the

discrepancy. Let x_{1} ,
.

.., x_{N}\in[0 , 1 ] . Then the discrepancy of these numbers

is defined as

D_{N} ( x\mathrm{l} ,
. .. , x_{N} ) =\displaystyle \sup_{[a,b]\subset[0,1]}|\frac{1}{N}\sum_{n=1}^{N}1_{[a,b]}-(b-a)|.

An infinite sequence is u.d. mod1 if and only if the discrepancy of its first

N elements tends to zero as  N\rightarrow\infty . (Note the similarity of this notion to

the Glivenko‐Cantelli theorem in probability theory). A quantitative version

of Weyl�s theorem was given by R.C. Baker [8]: for every strictly increasing
sequence of integers (n_{k})_{k\geq 1} we have

D_{N}(\displaystyle \{n_{1} $\alpha$\}, \ldots, \{n_{N} $\alpha$\})=\mathcal{O}(\frac{(\log N)^{3/2+ $\Xi$}}{\sqrt{N}}) \mathrm{a} . \mathrm{e} . (10)

This result is known to be optimal, except for the exponent of the logarith‐
mic term (whose optimal value is a major open problem in metric number

theory). The proof makes heavy use of Carleson�s theorem (in the form of the

Carleson‐Hunt inequality), as well as of the Erdós‐Turán inequality, which

allows one to estimate the discrepancy in terms of exponential sums. The

method of proof is similar to the one mentioned in Section 2: one first estab‐

lishes upper bounds for the variance and then uses Markov�s inequality and

the Borel‐Cantelli lemma.

Proving metric lower bounds is a totally different business; simply speak‐
ing, the problem with lower bounds is that they can neither be deduced from

moment bounds nor with the (second) Borel‐Cantelli lemma, because large
moments do not necessarily imply large exceptional sets and because the sec‐

ond Borel‐Cantelli lemma is not applicable since there is no independence.
Recently the authors of the present paper have developed a new, general
method which allows to prove lower bounds in metric discrepancy theory,
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which makes crucial use of GCD sums. Let (n_{k})_{k\geq 1} be a sequence of inte‐

gers. By the so‐called Koksma inequality (see for example [13, 19], which

are the standard references for uniform distribution theory and discrepancy
theory) we have

ND_{N}(\displaystyle \{n_{1} $\alpha$\}, \ldots, \{n_{N} $\alpha$\})\geq\frac{1}{4h}|\sum_{k=1}^{N}e^{2 $\pi$ ihn_{k} $\alpha$}|,
where h is an arbitrary positive integer. This implies that

ND_{N}(\displaystyle \{n_{1} $\alpha$\}, \ldots, \{n_{N} $\alpha$\})\geq\frac{1}{4N^{2 $\epsilon$}}\sum_{1\leq h\leq N^{\mathrm{e}}}|\sum_{k=1}^{N}e^{2 $\pi$ \mathrm{i}hn_{k} $\alpha$}| , (11)

where  $\epsilon$ is a small real number. Let  A denote a set of those  $\alpha$\in[0 , 1 ] where

|\displaystyle \sum_{k=1}^{N}e^{2 $\pi$ \mathrm{i}n_{k} $\alpha$}| is of size at least N^{c+ $\eta$}
,
where c is an appropriate real constant

(coming from the L^{1} norm of the exponential sum) and  $\eta$ is an appropriate
real parameter. Then the right‐hand side of (11) is certainly large whenever

\displaystyle \sum_{1\leq h\leq N^{ $\Xi$}}1_{A}(\{h $\alpha$\}) (12)

is large. Thus we have a problem in Diophantine approximation, and have to

check how regularly the fractional parts \{h $\alpha$\} are contained or not contained

in A as h takes the values 1, 2, . .

., N^{ $\epsilon$} . For this we have to estimate the

variance of (12), which can be done as in Section 2 and for which some

information on the regularity of the set A is required. Then we have

\displaystyle \sum_{1\leq h\leq N^{ $\epsilon$}}1_{A}(\{h $\alpha$\})\approx N^{ $\epsilon$} $\lambda$(A) ,

for �typical�  $\alpha$ , where  $\lambda$ denotes the Lebesgue measure, provided that the

variance is not too large (of significantly smaller order than  N^{ $\epsilon$} , which turns

out to be the case). If we know for the L^{1} norm of the exponential sum that

|\displaystyle \sum_{k=1}^{N}e^{2 $\pi$ \mathrm{i}n_{k} $\alpha$}|\approx N^{c} , then (by dyadic sphtting and the pigeon hole principle)
the measure of A has to be roughly N^{- $\eta$} for some appropriate  $\eta$ , and we have

 ND_{N}(\{n_{1} $\alpha$\}, \ldots, \{n_{N} $\alpha$\})\gg N^{-2 $\epsilon$}N^{c+ $\eta$}N^{ $\epsilon$}N^{- $\eta$}=N^{c- $\epsilon$}.

Refining the argument a bit and using the (first) Borel‐Cantelli lemma gives
an asymptotic result for  N\rightarrow\infty . Thus lower bounds for  L^{1} norms of

exponential sums together with upper bounds on GCD sums lead to lower

bounds in metric discrepancy theory. This is a novel method, which has led

to several interesting results. Among them are the following.
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Results for (n_{k})_{k\geq 1} being the so‐called Thue‐Morse sequence of inte‐

gers, that is the sequence of positive integers having even sum‐of‐digits
in base 2. The necessary estimates for L^{1} norms of exponential sums

come from a paper of Fouvry and Mauduit [15]. The new results in [4]
show an interesting deviation between the metric behavior of exponen‐
tial sums and that of the discrepancy, respectively, something that has

not been observed before.

Results for (n_{k})_{k\geq 1} being the values p(k) of a polynomial p\in \mathbb{Z}[x] . The

necessary L^{1} bounds come from bounds for the number of representa‐
tions of an integer as the difference of two values of the polynomial.
See [6].

By a classical trick, which is based on a clever application of Hölder�s

inequality, a lower bound for the L^{1} norm of exponential sums follows

from an upper bound on the L^{4} norm. Moreover, the L^{4} norm of an

exponential sum of (n_{k} $\alpha$)_{1\leq k\leq N} is a purely combinatorial object, and

actually is equal to what is called the additive energy in additive com‐

binatorics (a notion which has received a lot of attention recently).
Thus upper bounds for the additive energy imply lower bounds for the

metric discrepancy. In particular, minimal additive energy (of order

N^{2}) implies an L^{1} norm of maximal order (that is, \sqrt{N}), which, by the

argument above (for c=1/2) gives ND_{N}\approx\sqrt{N}. In view of Baker�s

result (10), this is essentially the maximal order of the metric discrep‐
ancy. In other words, results from additive combinatorics allowed us

to identify several new classes of integer sequences (n_{k})_{k\geq 1} which give
the maximal possible order in metric discrepancy theory. See [5] for

details.
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