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Abstract

We study a certain class of g-analogues of multiple zeta values, which appear
in the Fourier expansion of multiple Eisenstein series. Studying their algebraic
structure and their derivatives we propose conjectured explicit formulas for the
derivatives of double and triple Eisenstein series.

1 Introduction

For ki, ..., ke—1 > 1,k > 2 the multiple zeta value ((ki,...,k,) is defined by

C(hy, . k) = > kl; (1.1).

0<my < <my my mfr
By r we denocte its depth, k; + - - - + k. will be called its weight and for the Q-vector
space spanned by all multiple zeta values we write Z. These numbers have been studied
recently in many different contexts in mathematics and theoretical physics'. In [GKZ06]
the authors studied several connections of double zeta values (the r = 2 case of (1.1))
to modular forms for the full modular group. One famous result of [GKZ06] is the
relationship between linear relations between ((a,b) with both @ and b beeing odd and
cusp forms of weight a + b. For example it was shown, that the coefficient of the period
polynomial of the first non trivial cusp form A in weight 12 can be used to obtain the
relation 5197
o1 ¢(12) = 168((7,5) + 150((5,7) +28((3,9) . (1.2)
Further it is conjectured, that there is a one-to-one correspondence between cusp forms

and these type of relations among double zeta values. Another connection between



double zeta values and modular form which was first introduced in [GKZ06] are double
Eisenstein series. These can be seen as a mixture of classical Eisenstein series and
double zeta values. The higher depth case, the multiple Eisenstein series, where then
studied in [Ba]. For k;,.. .,k > 2 the multiple Eisenstein series Gy, k. (T) i is defined!
by 4 )

Gryyodr(T) = Y /\; (1.3)

Xer
0<A1 <<y
MEZT+HL

where 7 € {w +1iy € C |y > 0} is an element in the upper half plane and the order <
on Zt +7Z is defined by my7 +mny < maoT +ng 1 (my < ma)V (my = maAny < ng). In
the case r = 1 these are the classical Eisenstein series which have the following Fourier
expansion (k > 2)

Gu(r) = c(k>+(k2’”’ Eak ) (g=e),

with the divisor-sum o1 (n) = 3, d*~1. The main result of [Ba] was that the multiple
Eisenstein series also have a Fourier expansion and that it can be written as

le,...,lcr (T) = C(kla ey kr) + Z aml,...,ml : gmH,;,...,m.- (Q) + gkl,...,kr ((I) )

ST S AT

where the oy, . m, are Q-linear combinations of multiple zeta values of depth ! and
weight m; +---+m; and gx,, x,(q) = (—2mi)art-+erg, 1 (q). The series gi, . 1.(q) €
Q[[q]] will be studied in detail in this work and its coefficient can be seen as a multiple
version of the divisor sums.

By some classical results of modular forms together with the results in [Ba] or [BT] it
can be shown that every modular form can be written in terms of multiple Eisenstein
series. For example it is

(2mi)? 5197

m N = 691 G12 - 168G7’5 - 150G5,7 - 28G3’9 5

which gives another way to prove the relation (1.2) since the constant term of the
Fourier expansion of the cusp form on the left hand side vanishes.

Since there just exist multiple Eisenstein series for the cases ki,...,k, > 2 a natural
question was if there is an extended definition of Gy, . (7) for the cases in which the
multiple zeta value ((kq, ..., k,) exists. This question was answered in [BT], where the
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1Since the sum in (1.3) is just absolute convergent in the cases k, > 3 one uses Eisenstein summation’

for k, =2



authors introduced the functions Gf;, _, (7) for all ki,...,k, > 1, which coincide with
Gk, . (T) in the cases ky,...,k. > 2. These series have a Fourier expansion of the
form

G (T) = C(kry o ) + > e * Ty e (4) + G, (0) 5
m1+~~-+}n<rl=<lz1+~~-+kr

where the (™ (ky,...,k.) € Z are the shuffle-regularized multiple zeta values ([IKZ06])
and again am,,..m € Z. Here it is §f, , (q) = (—2mi)frt-+hrgn . (q), where the g™
can be seen as ”shuffle regularized” versions of the functions g. For example it is

GTa() = ((1,3) — ¢(2) - (2mi)* - g5*(q) + (2mi)" - gT'3(q) -

We will study the algebraic structure of the series g, _, (¢), to make progress towards
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a question on multiple Eisenstein series and their derivatives which we will describe in

the following. ]
Denote by £ the Q-vector space spanned by all Gf, for> r > 0 and ky,...,k, > 1
and consider the projection 7 to the constant term in the Fourier expansion, i.e.

7 E—Z
G? ek "_)Cm(kli"'rk‘r)'

1yeenyor

Since the space of modular forms is contained in the space £ it is clear that the space

of cusp forms is contained in the kernel of the map 7.

It is therefore an interesting question if the kernel of 7 consists more than just of cusp
forms. In fact there are already non-trivial elements in the kernel of m in weight 3.
Since ((1,2) — ((3) = 0 it is GT, — G§' € kerm, but GT, — G§ # 0. We will see that
Gl — G = (—2"5‘2 d G1, where the operator d = qd% plays also an important role in the
theory of modular forms. Another way of interpreting this is that (27)2d G, is again
an element in £. In general it is not known, but expected, that the space £ is closed
under d, i:e. (27i)>d € C €. This question will be one motivation for the present paper.
For this we will study two types of g-series. The first one, first introduced in [BK] and
[B], will be the double indexed. series g,(c‘fj"‘“‘,‘,;‘j’)(q) for dy,...,d, >0 and ky,...,k > 1.
Similar to multiple zeta values there are two different ways to express the product
of these series and we will describe this double shuffle structure in detail. The other

series, already mentioned before, are the gi.  (q) appearing in the Fourier expansion

of multiple Eisenstein series. The g™ can be written explicitly in terms of the double-
_indexed g. Though the behavior of g under the operator.d is well-understood (See

*We set GF, 4 (1) =1forr=0.

.....
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Section 4.1), the behavior of g™ under this operator is an open problém.

d? d
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Figure 1: Overview of the spaces spanned by G™,g and g™ and the behavior of the
operator d = qa‘%. The dashed equalities and lines are expected but unproven so far. .

Since every G™ can be written as a C-linear combination of g™ and vice versa, the
space spanned by them are the same. Therefore to prove that the multiple Eisenstein
series are closed under the operator d it suffices to prove it for the functions g®. We
will present new results on this and prove the following:

Theorem 1.1. 3) Fork>1 andd = q% we have

k+1

1
% dgy = (k +1)gk42 — 2(2 — 2)9kr2-nn -
n=2

i) For ki, k, k3 > 2 the series dgf; ,, and d g , . can be written as linear combi-
nations of g™.

For Theorem 1.1 ii) we will present explicit formulas for the mentioned linear com-
bination modulo lower weight terms (Theorem 4.10). Since it is expected (Question
4.3) that the space spanned by the g™ modulo lower weight terms has the same alge-
braic structure as the space of multiple Eisenstein series this will lead us to propose
conjectures on explicit formulas for the derivative of double- and triple Eisenstein series.
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2 Algébraic setup

~ We recall Hoffman's algebraic setup for quasi-shuffle products ([Ho00]) but with slightly
different notations. First we start with the two product structures coming from the
theory of multiple zeta values. After this we introduce an analogue setup for the
product structure of the g-analogues which will be introduced in the next section.

2.1 Classical case
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Write ) = Q(eq, €;) for the non commutative polynomial algebra, of indeterminates eg ‘

and e; over Q, and define its subalgebras $° and $' by
=Q l+eHeCH =Q-1+eHCH,

where 1 denotes the empty word here. For k > 1 we put e = e;ef™!, so that the
monomials e, . . . e, form a basis of ' and the monomials ey, . . . e, with k. > 2 form
a basis of H°.

We consider two Q-bilinear commutative products m on §) and * on !, called the
shuffle and the harmonic (or stuffle) products, which are defined by

lmw=wml=w (w € H),
avmbw = a(vmbw) + blavmw)  (a,b,€ {eg,e1},v,w € H)

and

lxw=w*xl=w (weH'),

€l U * €W = g, (U * W) + €xy (€, U % W) + €y 4, (V ¥ W) (k1 k2 > 1,0,w € H).

Denote by $y (resp. $H!) the commutative Q-algebra § (resp. $!) equipped with the
multiplication m (resp. ). It is easy to see that the subspaces ' and $° of $ (resp.
the subspace $)° of ') are closed under m (resp. *) and we therefore write )}, and H2
(resp. $?) for the corresponding subalgebras of £, (resp. $HL).
Identifying an indexset (ki,...,k,) with the word e, ..., €, it is easy to see that the
“indexsets for which the multiple zeta values C(ky, ..., k,) exists correspond exactly to
the words in $°. One therefore can interpret the miltiple zeta values as a Q-linear map
¢ : $° — R, where we send the empty word in $° to 1. It is well known that this map
is a Q-algebra homomorphism from both $° and $° to R, i.e. in particular it is

Cwm) = ((w) - ((v) = ((wv), (@1
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for any words w, v € $°. These relations are known as (finite) doubie shufHle relations. -

Another well known fact (See [IKZ06]) is, that the map ¢ can be extended to algebra
homomorphisms (™ : §;, — R and ¢* : ] — R, which are uniquely determined by
(™ (e1) = ¢*(e1) = 0 and (™ (w) = (*(w) = ((w) for w € H°.

Define for words u,v € $! the element ds(u,v) € $' by

ds(u,v) =u*v—umv. (2.2).

If both u,v € $° we have by (2.1) that ¢(ds(u,v)) = 0. But more generally we have
the following Theorem, which conjecturally gives all linear relations between multiple
zeta values.

Theorem 2.1. (Extended double shuffle relations) For u € $° and v'€ $' it is

¢"(ds(u, v)) = ¢*(ds(u,v)) = 0

Proof. This is Theorem 1 together with Theorem 2 (iv) and (iv*) in [IKZ06]. O

2.2 Setup for the g-analogue case

We now want to recall a similar algebraic setup from [B] for our g-analogue which will
be defined in the next section. In analogue to the space $!, which was spanned by
words in the letters e, with £ > 1, we will now' consider the space $? spanned by
words in the double-indexed letters efcd) with £ > 1 and d > 0. More precisely we
define $* = Q(A) to be the noncommutative polynomial algebra of indeterminates
A={e? |k>1,d>0} over Q.

Definition 2.2. (”Harmonic product analog” B on $?) In analogy to the product x on
H' we define the product ® on H? by lBw=w® 1 =w for w € H? and

di +d2\ (d1+d
4 ) ks (VB W)

di+d di+d
() St s (415 S 2,
=1

where the numbers Ai,b € Q for1 < j < a are defined as

efc‘f‘)v ei‘;”) = ekll)(v E3 e(d2)w) + e(dz)(e(d‘)v w) + (

a+b—j—1\ Bapp-;
a—j (a+b—75)"

W= (-1

with By being the k-th Bernoulli number.



It can be checked that $? equipped with this product becomes a commutative Q-algebra
which be denote by $2, ( [B], Theorem 3.6.). For example we have

1
& B = eVel? 1 el 4o - L, (2.3)
el B el = elel® + ePelV + 3¢l — 3¢ . (2.4)

Notice that up to the term -—— ( ) equation (2.3) looks -exactly like the harmonic
- product ey * e3 = eges + ezep + e5 in $. »

The reason for introducing double-indexes, i.e. the d;, will become clear now when we
will introduce the second product on $)? corresponding to the shuffie product m on $*.
For this we first define for a fixed r the following generating series of monomials in
depth r

X1y, X
vM(yi)‘“’Y):z Z efc‘fl). -egr)Xfl_laanr_l’Yldl...Y,.d'

k1,ekr>1
Lo S
as an element in H%[[X3,..., X,,Y1,...,Y;]], i.e. the variables X; and Y; are commuting

for 1 <i,5 <.

Definition 2.3. For ki,...,k. > 1,dy,...,d, >0 and w = efcd‘), - ,eg') define P(w)
as the coefficients of

Y,-,K-_1+}/7-,...,Y_1+"'+Yr.)

' k1~-1 kr—1  yd1 dr .
Z Pw)Xy ... X, DO Al M(X,.—Xr_th—l_X"_Z""’Xl

k1yokr>1
d1,...,dr >0

We deﬁne the Q-linear map P : $* — $H? by setting P(1) = 1 and extending the above
definition on monomials linearly to H?.

Notice that the map P is an involution on $2, i.e. P(P(w)) = w for all w € $2. For
r = 1 the definition reads

S P xEYE = w1 ) = Y i

k121 k1>1
d12>0 d1>0

and therefore P(eg‘)) = eg::_ll) Other examples are

P(ePel) = @6 4 360 (25)
P(egl)e(lz.)) = ego)ego) + 2e§0)eg0) + 3e§0)eio) (2.6)
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which can be obtained by calculation the coefficient of X OXIYEY} (resp. XPXJYYR)

in M(310%)-

- Definition 2.4. ("Shuffle product analog” @ on $2) Define on $5* the product @ for
u,v € H? by
uBv=P(Pu)B P()).

- This product is commutative and associative which follows from the fact that P is
an involution together with the properties of @. We denote by $2 the corresponding
Q-algebra equipped with this product.
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Example 2 5. We now use (2.4), (2.5) and (2. 5) together with P(e(o)) = eV and

P(e?) = € to calculate el me:

e mel = P(P(E”) @ P(ed)) = P(el! e
= PVe® 4 @6 4 36 _ 360
ego)ego) + 36(0) (0) + 66(0) o4 36(1) 36510) .

Compare this to the shuffle product e;me3 = eze; + 3ezes + 6ejeq on $HY.

3 Certain q-analogués of multiple zeta values

In recent years several different g-analogues of multiple zeta values have been studied.
An overview of these different models can be for example found in [Zh]. Our model we
present here has its motivation in its appearance in the Fourier expansion of multiple
Eisenstein series. It was first studied in [BK] and later in more detail in [B].
this section we want to introduce two types of g-series which are closely related to each
other. We will construct two maps, where the first one, denoted by g, will be an algebra
homomorphism from both $2 and $2 to Q[[¢]]. The multiplication of Q[[g]] here is
the usual multiplication of formal g-series. Similar to the case of multiple zeta values
we will obtain a large family of linear relations between these g-series, by comparing
g(u B v) and g(u @ v).

The second map, denoted by g™, will be more closely related to multiple zeta values
since it will be an algebra homomorphism from £, to Q[[g]].

17 1dr

3.1 The series Iy and the map g

In this section we will recall some of the result of [B] and [BK]. Here we use a different
notation which matches the one used in [BT].
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Definition 3.1. For ky,... k. > 1, dj, ...,dr > 0 we define the following q-seﬁesa

dy dr k1—1 kr—1
(dly -dr) Uy U, Uy A U U V1 - Uurvr
Ihrr ke (D) : T g € Q[la]]-
g o<.,12<:...<.., ! dl (k=) (ke = 1)
0<v1,ues,Ur

Byki+---+k-+di+---+d. we denote its weight and by r its depth.

Since ¢ will be fixed the whole time we will also write g( " ’) instead of g(d" ’d')(q)
For the Q-vector space spanned by all of these g-series we erte

G = (gt 2 0k ke 2 Lody e 2 O),

where we set g(d" 4} — 1 for r = 0. In the case dy =+ =d, =0 we write?
0,...,0
Gerskr = G

and denote the subspace spanned by all of these by
g(o) = <9k1, kr I’l" >0,k,.. ke > 1>Q cq.
Deﬁmtlon 3.2. We define the Q linear map g fmm 52 to G on the monomials by
g: 52 —_ g
d dr dy,..dr
w=eft) e — glw) = gl

and set g(1) = 1.
Theorem 3.3. The following statements hold for the map g.

1) The map g is invariant under P, i.e. for all w € $? it is
9(P(w)) = g(w).

i) g is an algebra homomorphism from $% to Q[[q]] with respect to both products ®
“and [, i.e. we have for all u,v € 2

g(u@v) =g(u) - g(v) = g(u@v),

3In [B] a different notation and order was used. There the series g( ........ 'f' was called bi-bracket
and it was denoted by [ b 1] and instead of G the author used BD.

4The series gi,,..k v;ere first studied in [BK], where the author referred to it as brackets and
denoted it by [kr,...,k1]. The space G(¥) was denoted MD there.

------



where - denotes the usual multiplication of formal q-series in Q[lg)]. In particular
the space G = g($H?) C Q[[g]] is an Q-algebra.

Proof. The first statement is Theorem 2.3 (Partition relation) in [B]. It has a nice
description using the conjugation of partitions, which is the reason for the name of the
map P. The second statement is Theorem 3.6. in [B]. O

The statement ii) in Theorem 3.3 can be seen as double shuffle relations for the g-series

g,(;ff."“"‘,;‘f’) similar to the double shuffle relations (2.1) of multiple zeta values.

Example 3.4. We have seen before that

1
e® g e® = (Ve 4 e(o> 0,0 1o

=e€'¢€3 12 3 .
ego) O ego) = e(o)ego) + 36(0) Oy Ge(o)eio) + Sef,l) - 3,6‘(10)

and therefore we obtain the relation

1
0=g(e)) ®el) — gle” mel”) = g5 — 2925 — 6914 — 395" + 394 — 129"

Since $! and $° have a natural embedding in $H? by sending a monomial ey, ... e, tO

e efc ) we will view both $ and $° as subspaces of $? in the following, i.e.

50 C f)l C ﬁ2 .
In pa._rticular we can view g as a map from $)' (resp. H°) to G. Clearly the image of H!
under g is exactly the space G = g($').
Proposition 3.5. The spaces $* and $° are closed under ® and therefore we also have
for u,v € H (resp. H°) that
8(u) - 9(v) = g(uBv).
In particular the space GO is a subalgebra of G.

Proof. This follows directly from the definition of'.the product @, since it does not
increase the indexes d;. O

Notice that the analogue statement of Proposition 3.5 for the product @ is false, since
by Example 2.5 we have e; [ e3 ¢ 1.

Remark 3.6. Even though it is not the purpose of this paper we give a remark on why
the series g can be considered as a q-analogue of multiple zeta values. This was discussed

31
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“in [BK], where the authors introduced the following map. Define for k € N the map
Qllg]] = RU {oo} by Zx(f) = limy1(1 — q)*f(q). One can show ([BK], Proposition
64} thatforkl,...,kr_l Z 1,]6,- 2 2and k= k1++k1- it is

Zy(Gky,ohe) =GR,y - oo )

In this note we will not focus on this aspect in more detasl.

We end this section by discussing the generating series of our g-series g;,
will need them in the remaining sections. By Theorem 2.3 in [B] we have the followmg
explicit expression

(. ,’r'), since we

T(Xl, ) Z g’(cdl, .dr) Xkl—l Xk,—lyldl yr
o X LY
y, LI | ’
dy,e,dr >0 o . .n (31)
S D e
— X1 T — eXrgnr "
0<ny1 < <ny 1 € q 1 € q

Notice that with this the invariance of the map g under the involution P (Theorem 3.3
i) ) can be stated as

T(xl,...,x,):T<K,K_1+K,---,1’1+--'+"r)_ (3.2)

Yi,..., Y. X —Xe 1, Xo 1 — X0y, Xy
For the generating series of the g-series gk, .x, = g,(::’ 9 we will write
o le k1-1 kr—1
T(Xy,...,X,) = o Z Gkyo i, XEL X
T k121
- X R (33
= — T
0<ny <--<nr 1—efign 1—erg

3.2 The series g,':‘;,mkr and the map g"

Following [BT] we define for ny,...,n, > 1 the following series

H( Ny Ty ) = E eh X1 (_\qd1 )"1 edrXr (_ ;r) "
_ d e e _ - -
X0, X, Oy 1—g* 1—g¢
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Observe that by (3.1), (3.2) and (3.3) we have

1,...,1 : : :
T(Xy,...,Xs)=H Y . .
( b ’ ) (Xr - Xr—ly Xr—-l - Xr—?; ce ,Xl) (3 4)

Definition 3.7. i) For ky,..., k. > 1 define the g-series gm0 € Q[lq]] as the
coefficients of the following generating function:

Tu(X1,. ., X,) = Z g e @XPh Xk

K1yeeeskr>1

-y y ! H( iniaeim )
il ] \Xy = Xoeiys Xomiy = Xreismigs - oy Xin )

m=1 iy +-+im=r im
T1yenim>1

Again we also write g5, ., instead of gfi . (q).
i) Define the Q-linear map g™ from $* to Q[[q]] on the monomials by
" : %' — Qllgl],
W= ey - 00 (W) =G
set g™(1) = 1 and extend it linearly to $*.
Theorem 3.8. i) For all ky,... k. 2 1 we have g, 4, €G.
ii) In the cases ki, ke 22, ke > 1dtis gy =Gy, € GO,
i) The map g™ is an algebra homomorphism from $L to G.

Proof. This is Proposition 5.5 together with Theorem 5.7 in [B], where the series gf . ;.

is denoted [kr,...,k1|™. Statement iii) was originally proven in [BT], where also a

slightly weaker version of ii) can be found. Since we will need some parts of the proof
we will recall the basic ideas:

i) To show that gf; , € G it is sufficient to prove that the coefficients of the series

n 2 n
H aré elements in G. This can be done by observing that ( é,%;) = ‘-&l—éﬁ;}; -
n . n \" N
l—ii}q—,.. Inductively this enables one to write the terms (é,%;) , appearing in
the definition of H, as derivatives of é}g—;, i.e. to write H in terms of derivatives

of T'. Since the coefficients of T are by definition in G the statement follows.

ii) To show thai; iy = Gkrpr € G© in the cases ki,....kry, 22,k > 1, one
observes that there is just one summand in the definition of g;. ., , namely the
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case iy = --- = iy, = 1, where all variables Xj, ..., X, appear. By (3.4) this gives
exactly gk, . k.-

if) The statement that g™ is an algebra homomorphism is equivalent to prove certain
functional equations for the series T,. This can be done by using results of Hoffman
on quasi-shuffle product. In the lowest depth case this functional equation reads

Ta(X) Tu(Y)=Ta(X, X +Y)+ TV, X +Y), (3.5)
which we will use later in the proof of Theorem 4.1.
O
Due to the proof of Theorem 3.8 i). , writing g™ as elements in G can be done explicitly:
Proposition 3.9. i) In depth two it is

. 1/
iy ko = Jkryka + Oky1 - 5 (9;(52) - gkz)

i) And in depth three it is

. ' 1/ o 1/ 0a 1,0
gll:]x,kz,ka = Gk ko ks T 6’61,1 . 5 (gl(cz,k)s - gkz,ks) + 5k2,1 : 5 (gl(u,kl - gl(n,kl - gkl,ka) .

1o 1g 1
+ Oy ka1 * (6 ;(ca) - Zg’(“’) + 69193) .

Here 0, denotes the Kronecker delta which is 1 in the case a = b and 0 otherwise.

Proof. This is i) and ii) of Corollary 5.8 in [B]. O

4 Derivatives

In this section we will discuss the behavior of the above introduced g-series under the
operator d = q%. Since this operator acts on a g-series by d Enzo g™ = Y 50 Mg
it is easy to see that by definition we have

T .
di,...y d1yeensdjt1,enydr
dgl(clj...,kir) = Z(dj +1) k- gl(cl:...,kjff-l,...,kr . (4.1)

=1

In particular it follows that the space G is closed under d.
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4.1 Derivatives of g and g=
In [BK] it was proven, that also the subspace GO is closed under the operator d (The-
orem 1.7 [BK]). This is not obvious at all, since by (4.1) we have for example

dgkl,kz = dgl(c(: (l)c)z klgl(ei-g)l ko + kzgl(c(l)’,}c)2+1 ’
and a priori g} ,, and g} | are not elements in G©. Tn [BK] the authors also
give explicit formulas for d g, and d gk, k,. Numerical experiments suggest, that also
the space spanned by all g™ is closed under d, but so far there are no khown results on
this. We now give the first result on this observation by the following explicit formula
for d gi'.

Theorem 4.1. (Theorem 1.1 1)) For k> 1 andd = qudE we have

k+1

FAgE = (b Dol = 32" = Dol (42)
n-—2 .

Proof. To prove (4.2) we will construct the generating functions of both sides and then
show that they are equal. First notice that '

dT, (Y)—édT(Y) () Ze‘” d( dqd>

Ee (L) )4 6o ()

o<d
(4.3)

Applying [;¥...dY to both sides of (4.3) and using H(2) + H(%) = g, We obtain

92+Z dgka H()lc) +H()2() =T(X)+H()2(> .

k>0

This is the generating series of the left-hand side of (4.2), where we also included the
term g in the case k = 0. This will also be included in the generating function of
(k + 1)g&,, for which we get A

Z(k+1)gf+2x’°_=2(k—1_ w k-2 dXZ m k-1 d”)l(T (X) = T(X

k>0 k>1 k>0



The generating function of the second part on the right-hand side of (4.2) is given by

k-1 : .
> (2(2" - 2)g;;'+2_,,,-n) X* = 2T (X, 2X) — 2Tw (X, X).

k>0 \n=2

We therefore need to show
2\ 1+ d
T(X)+ H(X) = d_XT(X) —2TR(X,2X) + 2Tx (X, X) . ,

Using the shuffle product formula (3.5) for T;;, we obtain

T(X)? = Tu(X)? = Tu(X, X + X) + Tu(X, X + X) = 2T (X, 2X).

2
. X gn © e Xagn Xgn .
Using (ﬁq_") = R Toche — Toe¥qw We also derive

—e qn

T(X)? = 2T(X, X) + %T(X) —-T(X).
Combining (4.5) and (4.6) we obtain
2T,,,(X,_2X) =2T(X, X) + %T(X).— T(X).
By definition of T}y we have.
9T, (X, X) = 2T(X, X) + H( ;) .

Equation (4.4) now follows by combining (4.7) and (4.8).

(4.4)

(4.5)

(46)
4.7

(4.8)

O
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Remark 4.2. 'Multiplyz'ng both sides in Theorem 4.1 with (1.— q)*=2, taking the limit
q — 1 and making a shift from k+2 to k we get as a Corollary for k > 3 the following

formula

(k= 1)¢(k) = 32" = 2)C(k—n,m),

n=2

which is a combination of the classical and the weighted sum formula ([OZ], Theorem

3) for double zeta values.
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4.2 Mﬁltiple Eisenstein series and derivatives of g”

As mentioned in the introduction our motivation of studying the series g™ are their
appearance in the Fourier expansion of the multiple Eisenstein series G}, . € C[[q]]-
For the Q-vector space spanned by all multiple Eisenstein series of weight & we write

& :=(Gh .k €Cllall | b+ +k =k,0< 7 <k), andset £= &.

k>0

The connection of G™ and g™ is given by a complicated but explicit formula, the
Goncharov coproduct, in [BT]. By abuse of notation we will consider G™ as a Q-linear
map

G™: 5" — Cllq]],

w=e,...e — G®(w) = T
As shown in [BT], this map is an algebra homomorphism from $ to C[[g]]. Recall
that we defined for words u,v € ' the element ds(u,v) € $' by

ds(u,v) =uxv—umuv.

As seen in Theorem 2.1 it is ¢™(ds(u,v)) = 0 for all u € $', v € $° and conjecturally
these give all relations between multiple zeta values. A natural question therefore is,
in which cases we have G™(ds(u,v)) = 0. This will not be the case for all u € $' and
v € $H° and we will see below, that the failure of the extended double shuffle relations
for multiple Eisenstein series has a connection to the action of the operator d. But
since the definition of G™ is quite complicated, we need to restrict our attention to the
series g™ . Luckily numerical calculations suggests, that these two objects have a really
close connection. To make clear what we mean by this we first define for & > 1

G2 = (0h, .k €G 1 it +h Sk, 0T < k).

The motivation for this are the following questions, which are all motivated by numerical
experiments and which are expected to be true. '

Question 4.3. . i) Do we have (2mi)*d & C Eqz and A G2y, C GZ1 10 ?

i) Is the map F, given by

F:& — g_gk /ggk—l



G ™ Gk for s
_ an isomorphism of Q-vector spaces?
iis) Assumingi), does the map F satisfy dF(f) = F((27ri)2-df) forall f € &7
VProp'osition 4.4. Fork 2 1 we have |
dgp =2k - g™ (ds(es, ext1)) ' mod G4y
Proof. Notice that by Proposition 3.9

o
TRk = Ghuke + 01 508, mod G2y,

and since the quasi-shuffle product @ equals the ha.fmbnic product * if one divides out
lower weight, it is

Gk * Gy = ks * Gka. = Gy + ks by + Grrwky  mOd G4 4y, g -
With this we obtain
9" (ds(ex,, ekz)) = g™ (ex, * €x;) — g™ (ekl I €k, )
= gZi oo g;‘;,kl + Giyke ~ ks * Ihy

m
(Sklslgkz + 6k2,lgk1 mod g$k1+k2—1~

The statement now follows sincedgy = k- 91(:131- O

Remark 4.5. We remark that the exphczt ezpression of d git in Theorem 4.2 can also

be written as
k-1

% dgk = Z 9" (ds(e:, ext2-3)) -
z—l
Therefore from Proposition 4.4 we can deduce 21_2 o™ (ds(e;, ext2:)) € G-

Considering question 4.3 one should have the same formula for the derivative of Eisen-
stein series as the above Proposition. This is indeed the case:

Theorem 4.6. For k > 1, the derivative of the Eisenstein series Gy is given by

(2ri)*d Gy = 2k : G™(ds(e1, €x+1)) = Glgs1 + Gian + Gioyz — Giyr * GT € &k
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Proof. This was first proven by M. Kaneko in an unpublished work. It can also be

obtained by using the explicit formulas for the Fourier expansions of Double Eisen-
stein series presented in [BT] and the quasi-shuffle product formula for the functions g
introduced in the beginning. ‘ [

- We now want to give the depth 2 and 3 version of Proposition 4.4. For this we neéd
the following two Lemma.

Lemma 4.7. For ky,k; > 2 it is g,(ci”(,g, g,(c?;)z € G2y thpt1-

Proof. Recall that we have g, = gi' for all £ > 1 and g, = g, whena >1and b > 1.
First we notice that also g1 € G%,,, for all b > 1: By the quasi-shuffle product it is
g1 9= Gip+ Gp1 + E;’:} a;g; for some a; € Q. Since g1 - gy, g; € Gy, We deduce
91p € Gppr- ,

Now consider the quasi-shuffle product in depth 3

91 ks ks = Glr,ka + Gki,Lks + Gk ka1 + E Bayb * Gap s
a+b<k;+ko
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for some B, € Q. Since for ki, ke > 2 we have gop, 91 ° Gku ko> Gk ka1 € Gk, rhpr 1t _

follows that g1k, .k, + Gki1k € G2k, 4kat1-
Using the explicit formula for gz, . from Proposition 3.9 it is easy to see that for
kla kZ Z 2
207 ky + 208 14y = 2 - o
Ik ke T 20k, 1k = 290ke ke + 291, 1k — 2Gk1 k2 + Gy ky -
From this we observe g,?l)}c)z € G2y, +k,+1 Since by the discussion above every other term
in this equation is also in G2 4,11

Now we want to show that also g,(;?cl € G2, +k,+1- For this consider again that for some -

v; € Q the qﬁa,si—shufﬂe product of g,(c? - gk, reads

k1+k2
1 1,0 0,1 . 1
o) gy = gl + g + D g8
=1
By Theorem 4.1 we know that g§l) = (3—11) dg;-; is again an Elemeni; in GZ; 14,41 for

j < ki + ko. Since we proved g,(c?i)z € G2, 1x,+1 above we therefore also obtain that

(1,0)
9k, k2 € ggkl +ko+1°
' O

Similar to the depth 1 case we will ”measure” -tﬁe failure of the double shuffle relations
of g™ and then relate this to the action of the operator d.
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Lemma 4.8. Let ki, ko, k3, ks > 1 and k = ky + -~ + ks be such that there is ezactly
one index 1 < j < 4 with k; = 1. Then we have V '

I _ 1 01 L/ oy a0 o
Z) g (ds(ekl 3 ek2€k3)) = 6"7111 59’(62,162) +_6k3115 (gl(s:g,k)l - gl(i;g,k)l) mOd gsk1+k2+k3—1 '

. _ 1 001 17001 (01,0 ,
i) g™ (ds(ex, ; er,ersers)) = 6k1,1§gl(c2,k3,)lc4 + 0k (glg:g,k;;,)kl = -ql(cz,k;;}cl) mod G, -

i) 8% (ds(et ok ersrs)) = iz (90005, — 0020, + 000, — 9010,

by (00 ne — 000 )

F s (9000, ~ o050, + 602, — 9120

2 (60— 2%, mod G2, ;.
Proof. i) Since gk, ks € GZ, 1xy4ks—1 a0d we assume that there is just one index j with
k; =1, i.e. the term with &, .k, 1 does not play a role, we get by Proposition 3.9 that

+ 01

_ 1 10 1/ 01 1,0
g;:[l,kz,ka = gkl,k21k3 + 6’31)1 : Egl(cz,k)s + 5’52)1 ’ 5 (gl(cl,kl - g’(‘?l,kl) mod guslkl-l*kz-i-lca—l (4'9)

and therefore

m _.m m m m m
9" (€ky * €ky€hs) = Gky kprks T Tk ks T Tha ks by + Toytha ks + kg Jes +hs

1 1/ (01 0
= gl(ex, * eryeks) + Ory1 - 59:(;,2)3 t 0k 5 (gl(u,k?; - gl(ci,kl)

1 ape 1/ 01 1,0
+0ky1 - 59,(cl,k)3 + 01 5 (gl(cz,kl - gl(cz,kl)

1 o 1/ 01 1,0
+ 6’92’1 ’ 595(63,521 + 6’93»1 : 5 (gizyki - 93(62,’“)1)

1
+ 6’32,1 59](612!463 mOd gnslk1+k2+k3—l .
On the other hand we have

9" (ex, mer,ex,) = g7 (€r,) - 97 (exyehs)

1
= Gk, - (gkz,ka + 5&,,15 (QJE:;) - gks))

. 1 0,1 1,0 1 m
= g(ekl * ekZekS) + 6"’2:15 (g’(cl,kl + -ql(c:;,k)l + gl(cl)-l-kg) mOd gSk1+k2+k3—1

Here we used again that the extra terms appearing in the quasi-shuffle product all
vanish since they are elements in G ., 14, ;- For the product g, - g,(c? this is the case



because we know by Theorem 4.1 that g(l) € G2k, thaths—1 0T J < k1 + kg + ks — 1.
The result follows from g™ (ds(ex,, ek2ek3)) = g‘“ (€xy * Exyers) — §™ (€r, M €xyek, ).

To prove ii) a.nd iii) we use the same idea as in i). First calculate g™ (ex, * ex,exsex, ) and
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" g™ (ex, *€ex,exser, ) by using (4.9) and the following formula, which can be obtained using -

the same technique as in the proof of Proposition 3.9 together with our assumptions on
the kji :

_ 1 (100 0,1,0 1,00
gl?[,kz,ka,k,t = gkl,kz,ka,k«t + 5k1 2gl(c2 k3 304 + 5’“2» 2 (gl(cl,ksju - gl(u JcaJu)

0,0,1 (0,1,0)
+ ‘ska’ (gl(u,kz,;u - gkl,kz k4) mod gSk—l :

When calculating g™ (e, 11 ex,ex,ex,) and g™ (e, m ex,ex;€x,) one derives again the the
quasi-shuffle products and then apply Lemma 4.7 to argue why the appea.nng error
terms of the form g(l ) and g(o ') with a,b > 2 vanish. O

Remark 4.9. Since it is expected that &, and G2k / gz, , are isomorphic as Q-vector
spaces, Lemma 4.8 can be used to guess which eztended double shuffle relations are
fulfilled by multiple Eisenstein series. In [BT] it is proven, that for ky, ko, ks > 2

G™(ds(ex, , exexs)) =0. (4.10)

But due to Lemma 4.8 i) it is expected that (4.10) also holds for the cases ky = 1
and ky, k3 > 2. In other words the triple Fisenstein series may satisfy all finite double
shuffle relations. The special case ko = 1 and k; = k3 = 2 of (4.10) was proven in [B]
Ezample 6.14.

_ Theorem 4.10. For ki, ks, k3 > 2 andd = q% we ﬁave
9 d gy ik, = 2k1 (87 (ds(e1, €xy4168,)) — 07 (ds(exy, x14101)))
-+ 2k - g™ (ds(e1, ex, €x,+1)) mod gnslk1+k2+1

%) dgg kyks = 2k1-g" (ds(er, ex, +1€k,6k5) + dS(€xs, €xreR,+1€1))
+2k1 - g™ (ds(exs, €k, +14k,€1) — ds(ex, +1€1, €xy€k5))
+2k - g% (ds(ex, ek, €xp16x5) — dS(ks) €k Ekp11€1))
+2k3 - g™ (ds(e1, ek, €x,€ks+1)) mod G2k, 1k, ks +1

Proof. i) Since for ky, ks > 2 it is g 4, = Gk, ky, = 9oy, We have by (4.1) that

bitg 1v0 Oyl)
dgkl,kz = klgl(61+)1,k2 + kzgl(cl,k2+1 .



42

By Lemma 4.8 we obtain

1 ap — : - .
§gl(cl+)1,k2 = g" (ds(e1, e, +16x,)) — 87 (ds(ex,, €x,111) mod G4 1y s

1 0,1 m vm
Egl(sl,kZH-l = g™ (ds(e1, ex, €x,+1) mod Gkithatt s

" from which the statement follows.
(1,0,0) (0,1,0)

ii) Similar to i) one uses Lemma 4.8 to get explicit formulas for Ghrt1ka ks’ Tkr kot ks

and g,(c?’,?c’zl’ia +1» Which we will omit here since the calculation is easy but messy. O

From Theorem 4.10 the statement of Theorem 1.1 ii) follows.

Example 4.11.

dgas = 4934 + 4953 + 4952 — 495,
— 49755 + 49730 + 249741 — 49513 — 49222 + 89’2]33,1 mod G

Conjecture 4.12. For ki, ko, ks > 2 the derivative of the Double and Triple Eisenstein
series are given by

(—2mi)* d GY, &, = 2k1 (G™(ds(er, exy168,)) — G™(ds(ex,, €k, 41€1)))
+2k;y - G™(ds(e, ek, €xp+1))

and
(—2mi)? d Gy, koks = 2k1 - G™(ds(e1, €x,+1€k,6k5) + dS(€xs), ErrER 41€1))
+2k1 - G™ (ds(exs; €xy+1+k2€1) — ds(ex,+1€1, €k, €k5))
+2k2 -G" (ds(el, eklekz-i-lek:;) - dS(€k3, eklek2+lel))
+2k3 . G’"‘(ds(el, 6k16k2€k3+1)) .
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