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DECOMPOSITION OF ELLIPTIC MULTIPLE ZETA VALUES AND
ITERATED EISENSTEIN INTEGRALS

NILS MATTHES

ABSTRACT.. We describe a decomposition algorithm for elliptic multiple zeta values,
which amounts to the construction of an injective map 1 from the algebra of elliptic
multiple zeta values to a space of iterated Eisenstein integrals. We give many examples
of this decomposition, and conclude with a short discussion about the image of . It turns
out that the failure of surjectivity of ¢ is in some sense governed by period polynomials
of modular forms.

1. INTRODUCTION

The purpose of this paper is to describe a decomposition of elliptic multiple zeta val-
ues into linear combinations of iterated Eisenstein integrals, which clarifies the algebraic
structure of elliptic multiple zeta values. This point of view was first taken up in [2], and
the present paper summarizes and extends some of its main results.

1.1. Elliptic multiple zeta values. The notion of elliptic multiple zeta value first ap-
peared explicitly in [13] under the name “analogues elliptiques des nombres multizétas”.
Elliptic multiple zeta values come in two closely related versions, namely A-elliptic and
B-elliptic multiple zeta values, each corresponding to one of the two canonical homology
cycles a and § on a once-punctured elliptic curve. Elliptic multiple zeta values are linked

- to a variety of other subjects, such as multiple elliptic polylogarithms [7, 18], elliptic braid
groups and elliptic associators [8, 12], as well as mixed elhptlc motives [16]. They also
occur in amplitude computations in string theory [1].

Elliptic multiple zeta values are known to satisfy very many Q-linear relations, which
are studied in [1, 2, 23]. Understanding the entirety of all such relations is a delicate
problem, which, despite some advances [23], is not yet fully understood.

The main theme of this paper is that the study of relations becomes somewhat simpler
when one rewrites elliptic multiple zeta values as iterated integrals on the upper half-
plane. More precisely, every elliptic multiple zeta value can be decomposed uniquely as a
linear combination of iterated Fisenstein integrals [6, 20]. The gain of this representation
is that the set of all iterated Eisenstein integrals is linearly independent over C [21], thus
finding relations between elliptic multiple zeta values reduces to solving linear systems
of equations. In fact, this procedure was used in [23] to prove optimal lower bounds for
spaces of elliptic double zeta values.

1.2. Analogy with decomposition of motivic multiple zeta values. The decom-
position of elliptic multiple zeta values into iterated Eisenstein integrals is in many ways
reminiscent of the decomposition algorithm for motivic multiple zeta: values into polynomi-
als in non-commutative variables f3, fs, fr, .. ., the so-called “ f-alphabet”, which amounts
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to an isomorphism [3, 4]

¢: 2" = T(F)" @0 Qlf2)- (11)
Here Z™ is the Q-algebra of motivic multiple zeta values (™(ky, . .., k5 ), T(F)" denotes the
graded dual of the tensor algebra on the set F = {for1|k > 1}, and f; is an additional
variable, which commutes with all for,; and corresponds to (™(2). The main ingredient
for the construction of ¢ is the motivic coaction for motivic multiple zeta values [3, 15].
In addition, one needs to choose a set of free algebra generators for Z™, and therefore the
construction of ¢ is not canonical.

The analogous situation for elliptic multiple zeta values is similar, but technlcally sim-
pler. Dencting by £2% the Q-algebra of A-elliptic multiple zeta values, there is an
injection [2, 22

Ph E2% o T(E)Y ®q Z[2ri], (1.2)

where E = {eg, €,€4...} and Z is the Q-algebra of multiple zeta values.! Here, the vari-
able ey, should be thought of as corresponding to the Eisenstein series Eo(7) for SLo(Z)
(where Eo(r) := —1). The key to the construction of 1* is the differential equation for
elliptic multiple zeta values, found by Enriquez [12, 13]. In fact, we argue that this differ-
ential equation can be seen as an elliptic analogue of the motivic coaction. In contrast to
the ¢-map for motivic multiple zeta values, the construction of 4* is completely canonical
and does not depend on any initial choices. However, unlike ¢, the morphism * is not an
isomorphism: The failure of surjectivity is related to a certain Lie algebra of derivations,
and ultimately to the existence of modular forms for SL2(Z) [1, 24]. A precise description
of the image of ¢* will be given in a joint work with Lochak and Schneps [19].

1.3. Overview of the article. In Section 2, we give a brief introduction to iterated
Eisenstein integrals, focusing on their algebraic structure. Section 3 contains the definition
of elliptic multiple zeta values and also a short discussion of their differential equation.
The consequences of this differential equation are then studied in the remaining sections:
In Section 4, which essentially follows [2], we construct the map ¥* and give many concrete
examples. Then, in Section 5, we turn our attention towards describing the image of 9*
by relating it to the aforementioned Lie algebra of derivations.

1.4. Acknowledgments. This article was written on the occasion of the conference
Various aspects of multiple zeta values, held at the Research Institute for Mathemati-
cal Sciences (RIMS) in Kyoto during July 2016. It is my pleasure to thank the organizer
Hidekazu Furusho for the invitation to talk there. Also, many thanks to the mathematical
department of Nagoya University and RIMS for hospitality.

2. ITERATED EISENSTEIN INTEGRALS

Iterated Eisenstein integrals are a special case of iterated Shimura integrals [20], which
were introduced by Manin to study the rational homotopy theory of modular curves.
More recently, the theory of iterated Shimura integrals has been thoroughly revisited and
extended by Brown [6]. In the context of this paper, iterated Eisenstein integrals will be
the basic building blocks of elliptic multiple zeta values.

10ne also has aninjection ¢B : £2B — T(E)V Qq Z[2ni], where £ZB is the algebra of B-elliptic
multiple zeta values [22].
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2.1. Generalities. We begin by recalling the general notion of an iterated integral, due
to Chen [9]. Let M be a complex manifold. Given a collection of smooth differential
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one-forms wy,...,w, € N}(M) and a piecewise smooth path « : [0,1] — M, one defines .

the iterated integral

/7 Wiy = /Ostlsmstng7*(w1)(t1)>...7*(wn)(tn) ec, @1

where v*(w)(t) € Q1(]0,1]) denotes the pull-back of w along 7, and ¢ is the natural
coordinate on [0,1}. If n =0, then [, := 1 (the empty iterated integral).
General properties of iterated mtegrals include the shuffle product formula

/(/.)1 ce W / Wryl .. Wryg = /wa(l) - Wo(r+s)y v (22)
it v

where ¥,, C X, denotes the set of (r,s)-shuffle, i.e. the set of all permutations o
of the set {1,...,r + s} such that o~! is strictly increasing on both {1,...,7} and on
{r+1,...,7r+ s}. Also, iterated integrals satisfy the differential equation

d
—t_a[hwl...wn=—(wl,y'(a))/%wzu.wn, (2.3)

OED,,

dtls=

where (-, ) is the natural pairing and for a € [0, 1], we denote by 7, : [0,1] — M the path
t — v(t+ (1 — t)a). For more properties of iterated integrals, we refer to [5, 17].

2.2. Iterated integrals on the upper half-plane. In the definition of iterated inte-
grals, we will be mainly interested in the case where M is the upper half-plane H = {2 €
C| Im(z) > 0}. In this case, if the differential one-forms wy, . ..,w, are holomorphic, the
value of the iterated integral [ w;...w, depends only on the start and end point of v
(this holds more generally on every one-dimensional and simply connected complex mani-
" fold). Hence, given two points a,b € H and w, . . . ,w, as above, we may write f,f Wi ... Wy
without ambiguity.

One can also define iterated integrals along a path between a point 7 € H and the
" cusp ¢oo, provided the differential forms w; have at most simple poles at ico. This uses
Deligne’s tangential base points (cf. [10], §15), and is worked out in detail in the case of
iterated integrals on H in [6], Séction 4. In the sequel, we use the conventions and notation
from [6], in particular, all our integrals are regularized with respect to the tangent vector
—1)00 at 100.

The iterated integrals on H we are interested in are the iterated Eisenstein integrals

5(2]{,‘17 T 2kn; T) = (27”:)71 /loo E2k1 (Tl)dTl <o Eékn(Tn)dTn: (24)

where ky,...,k, > 0 and 7 € H. Here Eo(7) := —1 and for k > 1, Eox(7) denotes the
Hecke—normahzed Eisenstein series?

2k - 1)! 1 _Ba
Eoy(T) = —— = + > oo—1(n)q" (2.5)
2(2mi)2k (mm)C 2B ((0,0)) (m + nT)? Ak nz>:1

. 2Thecase k=1 requires Eisenstein summation

E © @mp = lim  lim Z E amn
—DOCM—)OO =N e

(m,n)€Z?
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where g = €*™, B, denotes the m-th Bernoulli number, defined by i = Y150 Bnly,
and o, (n) := Y4, d™ is the m-th divisor function. For notational convenience, we extend
the definition of the Eisenstein series to all non-negative integers by setting Ex(7) = 0, if
k > 1is odd. In particular, E(ki,. .., k,;7) = 0, if one of the k; is odd.

The iterated Eisenstein integrals E(ky,. .., ky; ) -are holomorphic functions of 7 and
the analogue of the differential equation (2.3) is (cf. [6], Proposition 4.7)
1 d
— vk T)=— ko, ..., kn; p). 2.
omidr szg(kh 7kna7-) Ekl(P)g( 2y s py p) ( 6)

2.3. The algebra of iterated Eisenstein integrals. Let Q(£) C O(H) be the Q-vector
subspace spanned by the iterated Eisenstein integrals (where O(H) is the C-algebra of
holomorphic functions on H). By (2.2), we have the shuffle product formula (cf. e.g. [6],
Proposition 4.7)

g(k‘l, v ,kr; T)E(k‘hul, ‘e ,k,+s;7') = Z g(k,,(l), A 7ka(r+s);7-)‘ (2.7)
CED, s

In particular, Q(£) is a Q-algebra. In order to describe Q(€) in more detail, let E :=
{eo,€2,€4,...} be a set of variables indexed by the non-negative even integers, and let
T(E) be the tensor Q-algebra, which is graded by giving the variables ey, degree one.
In fact, T(E) has the natural structure of a graded Hopf algebra: its coproduct A :
T(E) — T(E) ®q T(E) is the unique coproduct such that all the ey are primitive,
ie. Aley) = ey ®g 1+ 1 ®g ey for all k& > 0, and its antipode is the unique anti-
homomorphism sending ez; — —eg;. We denote by T(E)V the graded dual of T(E),
which is the Hopf algebra dual of T(E). Its product is the shuffle product

W : T(E)" ®q T(E)" — T(E)"

\ \ \% \% \2 \%
D Y A N D DL S A (2.8)
o€Xr s

and its coproduct is given by deconcatenation

AV : T(E)Y — T(E)" ® T(E)Y

: . n
e;/kl P e\2/kn ""> Ze;/kl .« e e%/k‘ ®Q e;/ki+l e e;/kn. (2.9)
' i=0
Given a multi-index 2k = (2k, .. .4, 2kn) € (2Z5o)", we will frequently write ey instead
of ey ...e¥ .
The following theorem is a consequence of C-linear independence of iterated Eisenstein
integrals [21]. It shows in particular that Q(E). is a graded Hopf algebra in a natural way.

Theorem 2.1. For any Q-subalgebra K C C, the K-linear morphism
¥: Q) ®g K — T(E)" ®q K,
E(2ky, ..., 2kn;T) ey ... e5 (2.10)
is a well-defined isomorphism of K -algebras.

In particular, the only algebraic relations between iterated Eisenstein integrals are given
by (2.7).
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3. ELLIPTIC MULTIPLE ZETA VALUES

In this section, we recall the definition of elliptic multiple zeta values [13] (see also
[1, 2, 23]). An important role in the definition is played by a certain Jacobi form in two
variables, whose study dates back to Eisenstein and Kronecker [27].

3.1. Differential forms on a once-punctured elliptic curve. For a point 7 € H, we
will denote by EX := C/(Z + Zr) \ {0} the associated once-punctured complex elliptic
curve, with its canonical coordinate £ = s 4+ r7, where r, s € R. In [7], Brown and Levin
have introduced the following differential one-form

2mra ‘r( ) (£+O¢)
&) = = ——dg, 3.1
60) = 0.t -1
which is a variant of the Kronecker-Eisenstein series F,(§, a) = %%1 [27, 28] Here,
= Y (-1l )grir(od)’ (32)
nezZ )

is the odd Jacobi theta function. As explained in [7], Section 3.5, Q-(&, ) is invariant
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under lattice translations & — & +m + n7 for m,n € Z, and has a formal expansion in o

Q-6 a) = Y w®ar, (3.3)

k20
~ where every w®) is a smooth differential one-form on EX.

3.2. Definition and first examples of elliptic multiple zeta values. Elliptic mul-
tiple zeta values will be defined as regularized iterated integrals of the forms w® along
paths on EX. There are two natural such choices, namely the images o and 8 of the (open)
straight line paths from 0 to 1 resp. from 0 to 7 under the projection C\ (Z+Z7) — EX.
Corresponding to the two natural paths o and B on the once-punctured elliptic curve
EX, there are two types of elliptic multiple zeta values, namely A-elliptic and B-elliptic
multiple zeta values, which are related to one another by a certain modular transforma-
tion formula (cf. [13], Section 2.5). For simplicity, we will consider in this paper only the
A-elliptic multiple zeta values:

Definition 3.1. For integers ki,...,k, 2. 0, define the A-elliptic multiple zeta value
IA(Ky,. .., k,;7) to be the regularized?® iterated integral

IA(ky,. .. Ky 7) = (2mi)~Catthn—n) / wkn) | k), (3.4)

The length of I(ky, ... ky; ) is defined to be n.

Remark 3.2. The original reference for elliptic multiple zeta values is [13], with additional
references being [1, 2, 23]. Note that the pre-factor (2ri)~(*1+-+kn=7) js not included in
the original definition of A-elliptic multiple zeta values. In the context of this paper,
introducing this factor has the benefit of removing many cumbersome powers of 277 from
the formulas, which will make the algebraic structure of A-elliptic multiple zeta values
more transparent. ' '

As functions of 7, A-elliptic multiple zeta values are holomorphic on the upper half-
plane. In fact, more is true.

3See [23], Definition 2.1 for the details, which employs Deligne’s regularization prescription using
tangential base points ([10], §15).
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Proposition 3.3 ([13], Proposition 5.3). Every A-elliptic multiple zeta value has a con-
vergent Fourier expansion
Y amg™,  q=€", (3.5)

m>0
such that a,, € Z[2ni], where Z denotes the Q-algebra of multiple zeta values.

Example 3.4. In length one, we have
Ak 7) = %3& ?f k ?s even,
0  ifkisodd,
where By, denotes the k-th Bernoulli number. This is straightforward to verify using the

definition I2(k;7) = f,w™® and the Fourier expansion of the Kronecker-Eisenstein series
F (¢, &) (cf. 28], Theorem 3).

3.3. Differential equatlon and constant term In [13], Théoréme 3.3, Enriquez has
found a differential equation for elliptic multiple zeta values, viewed as holomorphic func-
tions in the coordinate 7 on H. This differential equation is recursive for the length of
the elliptic multiple zeta values, and can be expressed using Eisenstein series.*

(3.6)

Theorem 3.5 (Enriquez). We have

1 d : :
§E51mhuxmﬂ=%wg%ﬂmﬁwﬁn¢mﬂ-%ﬁﬁhﬂmﬁwhujmnﬂ

+ z { _l)kiak'i-l+ki+lEki_1+k.‘+1( )I (kla . 1—2,0 k’t+17 kn’ T) (37)
=2
ki—1+1
ki+m-—1
- Z ( ¢ m )ak,‘_l-m—f-lEk,‘_l—m+1(7-)IA(klv vy ki—2» m+ kia ki'i"l’ (RN kna 7-)
m=0 .
ki+1
ki1 +m-—1
+ Z ( =1 >aki—m+1Eki—m+1(T)IA(k17 R ki—27m + ki—b ki+1> ceey k’lh T)}?
m=0 -
-1 ifn=0,
where oy = ¢ 0 ifn=1,
Given IA(ky, ..., kn;7) with Fourier expansion Y., ang™, we have
1 d
T kq,. . kg T) = m, 3.8
gk ki) = 3 mang (38)

Thus, (3.7) gives a recursive formula for the Fourier coefficients a,, for m > 1. On the other

hand, the constant term ao in the Fourier expansion is given by lim, 00 I (1, ..., kn; 7).

In order to retrieve the constant terms of A-elliptic multiple zeta values in a systematic
way, we consider the generating series of A-elliptic multiple zeta values

Ar) =Y(-1)" Y I*ki,... ks;7)ad™(a)(b)...ad"(a)(b) € C{a,b). (3.9)

n>0 K1y >0
Here, C{(a, b)) is the C-algebra of formal power series in the non-commuting variables a
and b, and ad®(a) denotes the k-fold iterate of the adjoint action ad(a)(p) = ap — pa on

4To be precise, the result in [13] is expressed in terms of the (not normalized) Eisenstein series Go (1) =

2k
222:;:11 [ E2k( )
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C{a, b)). The series A(7) is related to the series A(7) € C{a, b)) occurring as a datum of
Enriquez’s elliptic KZB associator [12] by A(7) = e~ ™l A(7).5

Theorem 3.6 ([12], Proposition 6.3). The limit lim 0 A(T) ezists and we have
lim A(7) = e™®(§,t)e*¥®(g,t) 7,

T30

(3.10)

where t = —[a,b] and § = —ET??;(%(I)) and ® is the Drinfeld associator [11,-14].

The coefficients of the Drinfeld associator ® are given by Q-linear combinations of
multiple zeta values; see [14], Proposition 3.2.3 for an explicit formula. Comparing co-
efficients on both sides of (3.10), one therefore obtains a formula for the constant term
Hm, o0 I2(Ke, ... kn;7) of I2(ky,. .. kn;7) in terms of Q[27i]-linear combinations of
multiple zeta values, which is however rather cumbersome to write down in practice (cf.
[2], Section 2.3.1 for some examples).

It turns out that the differential equation for A-elliptic multiple zeta values (i.e. The-
orem 3.5) can also be expressed using the generating series A(7). We will come back to
this in Section 5.

4. DECOMPOSITION OF ELLIPTIC MULTIPLE ZETA VALUES

We will show how the results of the last section can be used to rewrite A-elliptic multiple
zeta values as iterated Eisenstein integrals. This has the crucial advantage that, by The-
orem 2.1, the algebraic relations satisfied by iterated Eisenstein integrals are completely
under control.

4.1. The decomposition map. The starting point is the interpretation of the differen-
tial equation (3.7) as a statement about the algebraic structure of A-elliptic multiple zeta
values. Let £2* be the Q-vector space spanned by the A-elliptic multiple zeta values

£2* = Spang{I*(ky,... ,ka;7) [0 >0, k; > 0}. (4.1)
By the shuffle product formula for iterated integrals (2.2), £24 is a Q-algebra.

Proposition 4.1. There is a natural embedding of Q-algebras
Yt E2% < T(E)Y ®@q Z[2ni]. (4.2)

Proof: We first claim that every  A-elliptic multiple zeta value can be written as a
Z[2mi]-linear combination of iterated Eisenstein integrals (2.4). By Example 3.4, we
have I*(2k;7) = %fﬁ& and I*(2k + 1;7) = 0, which are Z[2ni]-linear combinations of
the empty iterated Eisenstein integral & (0; 7) = 1, hence the claim is true for A-elliptic
multiple zeta values of length one. Now assume the claim for all A-elliptic multiple zeta

values up to and including length n — 1. By the differential equation (3.7), we know that

ﬁ%IA(kl, ...y kn;7) is a Q-linear combination of products Eg(7)IA(my,...,mp_1;7),
for I > 0 and m4,...,m,_; > 0. Using the differential equation for iterated Eisenstein

integrals (2.6) and the induction hypothesis, one sees that I (ky, ..., kn;7) is a Z[2mi]-
linear combination of iterated Eisenstein integrals, plus a constant of integration, which

5To be precise, Enriquez writes the elliptic KZB associator in variables z, y, which are related to the
variables a, b introduced here by a = 2miz, b = (2mi)~ly. This also slightly changes the appearance,
though not the essential content, of several results concerning A(7) such as Theorems 3.6 and 5.2.
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is given by lim, 0o [4(k1, . ., kn;7) € Z[27i], by Theorem 3.6. In conclusion, we have a
unique representation
MKy, .o k) = > ap&K;T), (4.3)
kl

for a finite number of multi-indices &’ = (k/,...,k},) € (Z30)", and oy € Z[2mi]. Applying
the isomorphism of Theorem 2.1 in the case K = Z[2ri|, we get the result. O

Remark 4.2. Recall from Section 2.3 that T(E)Y is a Hopf algebra, whose coproduct
AV is given by deconcatenation. By base-extension, AV naturally defines a coproduct on
T(E)" ®q Z[2ni], which restricts to a coaction

EZ* - (T(E)Y ®¢ Z[2mi]) ®g E2*. (4.4)
This coaction on £2* can be seen as an elliptic analogue of the motivic coaction for

motivic multiple zeta values Z™ [3, 15]. In fact, it is known that under a suitable isomor-

phism ¢ : Z™ 5 T(F)V ®g Q[f2] (cf. Section 1.2), the motivic coproduct on the Hopf
algebra Z™/{™(2) corresponds precisely to the deconcatenation coproduct on T'(F)V (cf.
[4], Section 3).

4.2. Examples. We describe some explicit examples of the decomposition map in low
lengths. The case of length one is clear from Example 3.4: we have

YA (IA(2k;7)) = Qggfk, P (I 2k +1;7)) = 0. (4.5)
In what follows, we will set vg, g, = lim, 00 I*(k1, ..., kn; 7).

Length two: Tt follows from the differential equation (3.7) together with (3.6) that
I k1, kay T) = Yoy ko — Bry s €k + 1;7)
+ Brar1 (k2 + 1;7)
— (=1)*Bry 1ky 11,0E (k1 + k2 + 15 7) (4.6)
kitl (kz +m-1

up>

“m=0

kat1 (k1 +m-1

)ﬂk1—m+l,m+k2€(k1 —-m+1;7)

m

- Z )ﬂkz—m+l,m+k1£(’c2 -—m+ 17 T)’
m=0 m
where Bij = ai% if j is even-and B;; = 0 if j is odd (recall that a; was defined in

Theorem 3.5). In addition, comparing coefficients on both sides of (3.10), we get

_1k22 )2
( )2( i) i’;i’? if ki #1orky #1,

Yky,ke = (47)
0 if by =ky=1.

One now obtains ¢*(I2(ki,ke; 7)) by replacing in (4.6) every £(2m,2n;7) by ey ey,
(recall that E(m,n;7) =0, if m or n is odd).

Note that, since there are no Eisenstein series of odd weight, and also since g; ; = 0, if
j is odd, we see that I*(ki, ka;T) = Y, b, € Q- (2m9)2, if ky + kg is even. In particular,
IA(ky, ko; 7) is, up to a power of 27, a rational multiple of an A-elliptic multiple zeta value
of length one. This is a special case of the “length-parity theorem” for elliptic multiple
zeta values (cf. [2], Appendix A.1).
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Length three: Instead of giving a closed formula, which would be cumbersome to write
down, we give a few typical examples.
Consider the A-elliptic multiple zeta value I4(2,0,0;7). From (3.7), we get

1d

5 dTIA(2 0,0;7) = 2I*(3,0; 7). (4.8)
On the other hand, by (3.10), the constant term 7,00 = (273)382 = @ Since
0, 2130 72
IA(3,0;7) = —2mi (8(4; 7) + 5156 (0 T)), by (4.6), it follows that
2mi)?
14(2,0,0;7) = 2m'<( ;72’) — 2£(0,4;7) — 12—05(0 0; 7‘)) (4.9)
Thus, we have
A/TA . _ '(27”;)2_'vv_va ’
P (I1*(2,0,0; 7)) = 2%2( = 2ey ey T30 |- (4.10)
Similarly, one shows that
[ (2mi)?
IA 2.0: — ( — ; s .
(0,2,0;71) 2m( = &0 (0,0,7‘)), (4.11)
- 2 B
140,0,2;7) = 2mi ((2’”) —26(0,4;7) — Elog(o, 0; T)), (4.12)
so that
[ (2mi)? 1
YA (I20,2,0; 7)) = 2m( = +4dejey + 6—Oegeg , (4.13)
[ (2mi)? 1
PA(I40,0,2;7)) = 27rz< 72) — 2eyey — megeg . (4.14)

Note that I4(2,0,0;7) = I*(0,0,2;7), which is an example of the reflection relations
between elliptic multiple zeta values [2, 23].

Length four: We end this section with the decomposition of 14(0,1,0,0; 7). This is the
smallest example in which a non-trivial multiple zeta value occurs as a coefficient. Using
the same procedure as before, we have by (3.7)

1 d
2midr
and 70,100 = —6mi((3) by (3.10). Using (4.11) and (4.12), we then get

IA(O,l,O 0;7) = IA(O 2,0;7) — I*(0,0,2;7), (4.15)

1
I*(0,1,0,0;7) = 2mi ( —3¢(3) +6£(0,0,4;7) + ES(O’ 0,0; 'r)) , (4.16)
which yields

. ‘
¥A(1%(0,1,0,0;7)) = 27ri( —3¢(3) + 6eyeyey + 1 Oegegeg) (4.17)
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5. THE IMAGE OF THE DECOMPOSITION MAP

In the last section, we have constructed an embedding
Yt £2% < T(E)Y ®q Z[27i] (5.1)

by rewriting A-elliptic multiple zeta values as iterated Eisenstein integrals. In this section,
we will see that 1/* is not surjective, and that its image lies in a subspace associated to a
certain Lie algebra of derivations u [24, 26] (see below). The key to establish this result
is the differential equation for the generating series A(7) of A-elliptic multiple zeta values
[12].

5.1. A Lie algebra of derivations. Let £ be the free C-Lie algebra on the set {z,y}
(cf. e.g. [25], Chapter IV). For every k > 0, define a derivation €5 : £ — £ by the
formula

ear(z) = ad™(2)(y), en(y) = Y (-1V[ad’(2)(y),ad™ T (2)(v)],  (5:2)

0<j<k
where ad"()(y) := [z, [z, ..., [z,y],...,]]. Note that & is simply the derivation yZ € sl,,
N ! . '
n
while e, = —ad([z,y]) is an inner derivation. Also, for every k, we have ex([z,y]) = 0

(cf. e.g. [24]).
Let Der’(£) be the Lie Q-algebra of derivations of £, which annihilate [z,y], and let

u = Lie(go, k > 0) C Der®(£L) - (5.3)

be the Lie subalgebra of Der’(£) generated by the e5. The Lie algebra u was first
studied by Tsunogai [26] in a slightly different context (Galois representations of once-
punctured elliptic curves). In his master thesis [24], Pollack showed that relations between
commutators of egx’s can be traced back to modular forms for SLy(Z). In particular, u
is not freely generated by the ;. An equivalent formulation of this fact goes as follows.
Let U(u) be the universal enveloping algebra of u, and recall the definition of the tensor
algebra T(E) (cf. Section 2.3). Since u is generated by elements eo, for k > 0, there exists
a canonical surjection of Hopf Q-algebras

T(E) —» U(u)
€21 > Eok, (54)

and the fact that u is not freely generated by the e3; means that this morphism is not
injective. Equivalently, the dual morphism

v:U(u)Y — T(E)Y (5.5)
is not surjective, where U(u)¥ denotes the graded dual of U(u) (all g5 have degree one).
Example 5.1. In u, we have for example the relation (cf. [24], eq. (3))

[e2k,€2] =0, VEk >0, (5.6)

which follows from €, = —ad([z,y]), and from the fact that every eo annihilates [z, y].
Since [eox, €a] = €ak © £9 — £3 © €9k, the relation (5.6) implies that a linear combination
3 Agweyy is contained in ¢(U(u)Y), only if Ag2x = Aoy 2 for every k > 0.

A more interesting example is the relation (cf. [24], eq. (4))

[€10,€4] — 3[es, €6] = €100€4 — 4019 — B(sg 066 — €50 €8) = 0, (5.7)
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which essentially goes back to Ihara and Takao. Let W C T(E)" be the four-dimensional
subspace spanned by eyyey, eyey;, eyef and efey. Then the intersection +(U(u)V) N W
is contained in the (three-dimensional) annihilator of (5.7), viewed as the column vector
(1,-1,-3,3)t € Q* Explicitly

YU(u)Y) N W C Spang{ey, W ey, ey Wey,3efpey +egey }, (5.8)
and one can show that equality holds.

5.2. The differential equation revisited. As was already mentioned at the end of
Section 3, the differential equation for A-elliptic multiple zeta values can be reformulated
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as.a differential equation for its generating series A(7). The precise result is the following® -

Theorem 5.2 ([12], Proposition 6.2, and [13], eq. (7)). The series A(t) satisfies the
differential equation

1 d -
2—7rid_7‘A 7') = ( - ,g) E2k(7')52k) (A('T)) , (5~9)
where Eor(T) denotes the Eisenstein series (2.5), and
2 .
= _ (2k—2)!62k ka > 0’ 5.10
ook {—60 ifk=0. (5:10)

As shown in [13]; Section 4, Theorem 5.2 is equivalent to Theorem 3.5. Solving (5.9)
iteratively, using in addition the initial condition A, := lim, ;0 A(7), which is known
explicitly by Theorem 3.6, we get that .

A(7) = 9(m)(As) = 9(7) (€™ 8 (7, 1)e*™ (5, 1)), (5.11)
with g(7) = 3 £(2k; 7)Z2k, where the sum is over all multi-indices (2ki, . . . , 2ky) € (2Zo)"
(for all n > 0), and &g = &gk, 0 ... 0 Eag,.

Theorem 5.2 is the key to relate A-elliptic multiple zeta values to the Lie algebra u.

- Theorem 5.3. The decomposition map ¥ : E2* — T(E)Y ®q Z[2mi] factors through
the subspace (U (u)V) ®q Z[2mi], where ¢ : U(u)Y < T(E)Y is the natural dual injection
(5.5). ' :

Proof: Let B be a homogeneous vector space basis for U(u), and write

g(r) =) [Z Ak b€ (2Kk; T)] - b, (5.12)

beB

where Agpp € Q and the innermost sum is finite for every b. Under the isomorphism
Y : Q(E) = T(E)Y of Theorem 2.1, the element g(7) corresponds to

Yg(r)) =3 [Z )‘%,beg_k] b, (5.13)

beB
and ¥(g(7)) can be seen as a morphism
Uu)Y — T(E)Y
B v B ((9(r)) = 3 A€ (2K 7). (5.14)

6See also the footnote on page 7.
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This morphism is clearly dual to the natural surjection T(E) — U(u) given by eg — &2,
thus, comparing with (5.5), we see that the image of (5.14) is equal to ¢(U(u)Y).

Now since A(7) is the generating series of the I*(ky,...,kn;7), the Q-span of the
coefficients of A(7) = g(7)(A.) equals £2Z*. On the other hand, by definition the image
of ¥® is equal to the Q-span of the coefficients of %(g(7))(As), which, by the preceding
discussion and the fact (cf. Theorem 3.6) that the coefficients of A, lie in Z[27i], are
contained in (U (u)")®q Z[2m3]. Thus, the image of ¢4 is indeed contained in ¢(U(u)V)®q
Z[2mi]. O

Remark 5.4. Essentially the same result holds for the algebra £22 of B-elliptic multiple
zeta values. More precisely, one has a canonical embedding

YB : E2B < T(E)Y ®¢ Z[27i). (5.15)
The details will appear in [22].-

'5.3. The Fourier subspace. In the last subsection, we have seen that the relation be-
tween the differential equation for A(7) and the derivations &y implies that the image of

¥ lies in ¢(U (1)) ®g Z[27i]. In this subsection, we will see that the Fourier expansion of
A-elliptic multiple zeta values (cf. Proposition 3.3) further constrains the image of ¥*.”

Definition 5.5. The Fourier subspace Q(€)rou C Q(£) is the Q-linear subspace defined
by

Q<£>Fou» = Span@{go(zkh LR 2km T) |'fl 2> 07 k‘i 2> 0}7 . (516)
where £%(2ky, ..., 2k,_1,0;7) := 0 and for k, # 0, we set
EC(2ky,. .., 2kn;T) :=E(2ky, . .., 2kp;T) — Izi’“’*e(zkl, vy 2kn1,0;7). (5.17)

We will denote by T(E)y,, the subspace of T(E)Y, which is the image of Q(&)ro, under
the isomorphism 1 : Q(€) 5 T(E)" of Theorem 2.1. Note that T(E)Y,, is a Q-subalgebra,
of T(E)Y and a left comodule under T'(E)Y, i.e. the coproduct AV on T'(E) restricts to
a morphism ’

T(E)fou — T(E)" ®@ T(E)pou- (5.18)

Remark 5.6. The name “Fourier subspace” is motivated by the fact that a Q-linear
combination of iterated Eisenstein integrals £(2ks, ..., 2k,;7) has a Fourier expansion in
g = €™ if and only if it is contained in Q(&)gy,. This follows easily from Ey;(7) = —%f—l—
O(g), valid for k > 0, which together with Eo(7) := —1 implies that £°(2k,, . ..,2k,; ) €
O(q) (since the ideal ¢ - C[[g]] C C[[g]] is closed under integration with respect to the
measure 27idr = d(log q)). :

Theorem 5.7. The morphism 1/}"“ maps EZ% into the Fourier subspace; more precisely
YA €28 — (U ()Y )pou Qg Z[27), (5.19)

where L(U(u)Y )pou := L(TUW)Y) NT(E) e, and ¢ : Uw)Y. — T(E)V is the natural injection
(5.5). :

"We should note that this additional constraint is a particular feature of A-elliptic multiple zeta values.
More precisely, the analogue of Theorem 5.7 for B-elliptic multiple zeta values is false, since B-elliptic
multiple zeta values in general do not have a Fourier expansion.
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Proof: We can rewrite g(7) using the £%(2ky, .. ., 2k,; 7) as follows:
g(r) = E(2k;T)En
=Y (80(%; )+ 22712‘8(2191, .. ,2kn_1,0;7'))5%

kn#0
+ > E(2k1,. .., 2kn_1,0;7)E2, © ... 0 Eak,_, © &0 (5.20)
kn=0
=3 E0(2k; Bk + Y E(2kn, ., 2kn1,0;7)Eok; 0 ... 0 Eaky_ (eo+ Y 2’““5%,,)
kn>1 kn
=.D

where all sums are over the multi-indices 2k = (2k1,...,2ks) € (2Z30)", for alln > 0. It is
shown in the proof of [12], Proposition 6.3, that D is a derivation of C{{a,b)) that annihilates

both § = —ﬁ%(b) and t = —[a, b], thus it annjhilates every word in § and ¢. Since A, =
e ®(,t)e>™FP(f, )~ is a power series in § and ¢, it follows that D(A,,) = 0. Hence,

A(T) = 9(7)(Aoo) = (X £%(2k; )2 ) (Asc), (5.21)
and therefore every coefficient of A(7) is contained in Q(&€)roy ®qg Z[27i]. Combining this with
Theorem 5.3, the result follows. O
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