On The Borsuk-Ulam Theorem and Bordism

Seiji Nagami

1 Introduction

In [1], Crabb, Goncalves, Libardi, and Perche studied the Borsuk-Ulam property by using bordism relation. Let $\tau\colon M\to M$ be a free involution between m-dimensional manifold \widetilde{M} , and Y a topological space. Then the pair $((\widetilde{M},\tau),Y)$ satisfies the Borsuk-Ulam property (the BUP) iff for any continuous map $f:\widetilde{M}\to Y$ there exists $x\in \widetilde{M}$ such that $f(x)=f(\tau(x))$ ([[1]]). Set $M=\widetilde{M}/\langle T\rangle$. Then the quotient map $q:\widetilde{M}\to M$ is a double covering map. Let λ denote the real line bundle associated with the covering map. Then by usinf the obstruction theory and cobordism theory, Crabb, Goncalves, Libardi, and Perche obtained the following ([[1]]), where R_i denotes the unoriented cobordism group of dimension $i, R_i(X)$ the unoriented bordism group of a topological space X, and $R(\mathbf{Z}_2)$ the unoriented bordism group of free \mathbf{Z}_2 action on closed smooth manifolds. Note that $R(\mathbf{Z}_2)\cong R(B\mathbf{Z}_2)$ holds, and that $R(\mathbf{Z}_2)$ is generated by the classes $[A_i]\in R(\mathbf{Z}_2)$ represented by the untipodal maps $A_i:\mathbf{S}^n\to\mathbf{S}^n$. For general references about bordism theory, see [2].

Theorem 1.1. $((\widetilde{M},\tau),\mathbf{R}^m)$ satisfies the BUP if and only if $w_1(\lambda)^m \neq 0$

Theorem 1.2. Suppose that m > 1. Let $\alpha \in R_m(\mathbf{Z}_2)$. Then α is written as $\alpha = a_0 p_m + a_1 p_{m-1} + \cdots + a_{m-1} p_1 + a_m p_0$ for some $a_i \in R_i$.

- (i) If $\alpha = [(\widetilde{M}, \tau)]$, then $a_0 = \langle w_1(\lambda)^m, [\widetilde{M}] \rangle$.
- (ii) $\alpha = [(\widetilde{M}, \tau)]$ holds for some connected \widetilde{M} .
- (iii) If $a_0 = 1$ and $\alpha = [(\widetilde{M}, \tau)]$, then $((\widetilde{M}, \tau), \mathbf{R}^m)$ satisfies the BUP.
- (iv) If $a_0 = 0$ and $\alpha = [(\widetilde{M}, \tau)]$ with \widetilde{M} connected, then $((\widetilde{M}, \tau), \mathbf{R}^m)$ does not satisfy the BUP.

Theorem 1.3. Supose that 1 < n < m. Then,

- (i) There is a pair (\widetilde{M}, τ) such that $\alpha = [(\widetilde{M}, \tau)]$ with \widetilde{M} connected, and that $((\widetilde{M}, \tau), \mathbf{R}^n)$ satisfies the BUP.
- (ii) If $(a_0, a_1, \ldots a_{m-n}) \neq (0, 0, \ldots 0)$ and $\alpha = [(\widetilde{M}, \tau)]$, then (\widetilde{M}, τ) satisfies the BUP.
- (iii) If $(a_0, a_1, \ldots a_{m-n}) = (0, 0, \ldots 0)$, then there exists a pair (\widetilde{M}, τ) such that $\alpha = [(\widetilde{M}, \tau)]$ with \widetilde{M} connected, and that (\widetilde{M}, τ) does not satisfy the BUP.

It seems interesting to restrict τ to spin stucture preserving case. Following corollary is obtained by Theorem 1.1.

Corollarly 1.1. Suppose that \widetilde{M} is a spin manifold and that τ is spin structure preserving. Then $((\widetilde{X}, \tau), \mathbf{R}^2)$ satisfies the BUP if and only if the types of spin structures that are preserved by τ are unique.

Our aim of this paper is to generalize the BUP property to compact Lie groups and to consider similar result for the case $G = \mathbf{U}(1)$. We work in smooth category.

2 Definition of the BUP for compact Lie gruop

Let \widetilde{M} be a closed smooth m-dimensional manifolds such that a compact Lie group G acts freely. Suppose that G acts on \mathbf{R}^n via a representation $\rho: G \to GL(n,\mathbf{R})$ Let $f:\widetilde{M} \to \mathbf{R}^n$ a continuous map.

If G is finite (resp. not finite), set $f_G(x) = \frac{1}{\sharp(G)} \sum_{g \in G} g^{-1} f(g(x))$ (resp.

$$f_G(x) = \int_G g^{-1} f(g(x)) dx$$
. Note that $f_G(gx) = gf_G(x)$ holds for all $g \in G$.

Definition 2.1. Let $\rho: G \to GL(n, \mathbf{R})$ be a representation. Then $((\widetilde{M}, G), \rho)$ satisfies the BUP if and only if for any continuous function $f: \widetilde{M} \to \mathbf{R}^n$ there exists $x \in \widetilde{M}$ such that $f_G(x) = 0$.

3 Borsuk Ulam property for (G, ρ)

Let $\rho_2: \mathbf{U}(1) \to GL(2,n)$ denote the representation defined by $\rho_2(e^{\theta i}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Then define the representation $\rho: \mathbf{U}(n) \to GL(n,\mathbf{R})$ as follows;

$$\rho = \begin{cases} \rho_2 \oplus \cdots \oplus \rho_2 & (n : even) \\ \rho_2 \oplus \cdots \oplus \rho_2 \oplus 1 & (n : odd) \end{cases}$$

From now on, we consider the case for $G = \mathbf{U}(1)$ together with the above representation. In this case, the quotient map $\widetilde{M} \to M = \widetilde{M}/\mathbf{U}(1)$ is the projection map of a principal $\mathbf{U}(1)$ -bundle λ equipped with the classifying map $f: M \to B\mathbf{U}(1)$.

In case for odd n, we have the nowhere-zero section $s: M \to E(n\lambda) = \widetilde{M} \times_{\rho} \mathbf{R}^{n}$ given by $s(x) = [\widetilde{x}, (0, 0, \dots, 0, 1)]$. Therefore we obtain;

Proposition 3.1. If n is odd, then $((\widetilde{M}, \rho), \mathbf{R}^n)$ does not satisfy the BUP.

We also have;

Proposition 3.2. $((\widetilde{M}^{2n+1}, \rho); \mathbf{R}^{2n})$ satisfies the BUP if and only if $c_1(\lambda)^n \neq 0 \in H^{2n}(M; \mathbf{Z})$ holds.

 $((\widetilde{M}^{4n+1}, \rho); \mathbf{R}^{4n})$ satisfies the BUP if and only if $p_1(\lambda)^n \neq 0 \in H^{4n}(M; \mathbf{Z})$ holds.

3.1 Unoriented bordism category

W first consider in the unoriented bordism category R_* .

Theorem 3.1. Let m = 2n + 1.

```
Suppose that \alpha = a_0p_n + a_2p_{n-1} + \cdots + a_{2n}p_0 \in R_{2n}(BU(1)), where a_i \in R_i (i) If \alpha = [(M^{2n}, f)], then a_0 \equiv \langle (c_1(\lambda)^n)_2, [M]_2 \rangle holds modulo 2.
```

- (ii) There exists (M^{2n}, f) such that $\alpha = [(M, f)]$ and that M is connected.
- (iii) If $a_0 \neq 0$ and $\alpha = [(M^{2n}, f)]$, then $((\widetilde{X}, \rho); \mathbf{R}^{2n})$ satisfies the BUP.

It seems natural to consider in the oriented bordism category rather than in the unoriented bordism category,

3.2 Oriented bordism category

Next we consider in the oriented bordism category Ω_* . Our consequences are following;

Theorem 3.2. Suppose that $\alpha \in \Omega_{2n+1}(\mathbf{U}(1)) \cong \Omega_{2n}(B\mathbf{U}(1))$

- (i) If $[(M^{2n}, f)] = \alpha$ holds, then $a_0 = \langle c_1(\lambda)^n, [M] \rangle \in \mathbf{Z} \cong \Omega_0$
- (ii) There exists (M^{2n}, f) such that $\alpha = [M, f]$ and that M is connected.
- (iii) If $a_0 \neq 0$ and $\alpha = [(M^{2n}, f)]$ hold, then $((\widetilde{M}, \rho); \mathbf{R}^{2n})$ satisfies the BUP.
- (iv) If $a_0 = 0$, then there exists (M^{2n}, f) such that $[(M, f)] = \alpha$, that \widetilde{M} is connected, and that $((\widetilde{M}^{2n+1}, \rho); \mathbf{R}^{2n})$ does not satisfies the BUP.

Theorem 3.3. Suppose that $m \ge 2n + 2$ and that $\alpha = a_0 p_m + a_1 p_{m-1} + \cdots + a_m p_0 \in \Omega_i(B\mathbf{Z})$.

- (i) There exists $\exists (\widetilde{M}, \tau)$ such that $[(\widetilde{X}, \tau)] = \alpha$, and that \widetilde{X} is connected, and that $((\widetilde{X}, \tau); \mathbf{R}^n)$ satisfies the BUP.
- (ii) If $(a_0, a_1, \ldots a_{m-n}) \neq (0, 0, \ldots, 0)$ and $(\widetilde{M}, \tau) = \alpha$ hold, then (\widetilde{M}, τ) ; \mathbb{R}^n) does not satisfies the BUP.
- (iii) If $(a_0, a_1, \ldots a_{m-n}) = (0, 0, \ldots, 0)$ holds, then there exists (\widetilde{X}, τ) such that $[(\widetilde{M}, \tau)] = \alpha$, that \widetilde{M} is connected and that $((\widetilde{M}, \tau); \mathbf{R}^n)$ satisfies the BUP.

References

- [1] **Z**₂-Bordism and the Borsuk-Ulam Theorem, M. C. Crabb. D.L. Goncalves, A. K. M. Libardi, L. Q. Percher, arXiv:1504.03929v2[mathAT].
- [2] Differentiable periodic maps, P. E. Conner and E. E. Floyd, Springer, 1964, Berlin.

Academic Support Center Setsunan University Neyagawasi ikeda-nakamati 17-8 JAPAN

E-mail address: nagami@atf.setsunan.ac.jp