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Abstract

Thís paper studies the monodromy of a coonfluent hypergeometric system with two irregular
singular points and regular singular points. By using the convergent semi‐formal solution

introduced in [1] we will show a concrete formula of the monodromy around irregular singular
and regular singular points.

§1. Introduction

In [2] we gave the concrete formula of the monodromy for the confluent Hamiltonian

system with an irregular singular point The system was obtained by the confluence

of regular singular points of a hypergeometric system. We used the expression of con‐

vergent semi‐formal solutions given by first integrals of the Hamiltonian system. (See
also [1]). In this note we continue to study the monodromy of confluent hypergeometric

systems in a Hamiltonian form with two irregular singular points. We will give concrete

formula of the monodromy by using the semi‐formal theory. We will see that equations
with two irregular singular points and a regular singular point have different monodromy
about the irregular singular point compared to the equations with one irregular singular
point.

This paper is organized as follows. In section 2 we study the convergent semi‐formal

solutions. In section 3 we introduce a class of confluent hypergeometric system written

in a Hamiltonian form. In section 4 we construct functionally independent first integrals
and calculate the monodromy for a certain example.
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§2. Semi‐formal solution via first integrals

Let n\geq 2 and  $\sigma$\geq 1 be integers. Consider the system

(2.1) z^{2 $\sigma$}\displaystyle \frac{dq}{dz}=\nabla_{p}\mathcal{H}(z, q,p) , z^{2 $\sigma$}\frac{dp}{dz}=-\nabla_{q}\mathcal{H}(z, q,p) ,

where q= (q2, . . . , q_{n}) , p= (p2, . . . , p_{n}) , and where \mathcal{H}(z, q,p) is analytic in z\in \mathbb{C} in

some neighborhood of the origin and entire in (q,p)\in \mathbb{C}^{n-1}\times \mathbb{C}^{n-1} . We note that, by

taking q_{1}=z as a new unknown function (2.1) is written in an equivalent form for the

Hamiltonian function H, H(q_{1}, q,p_{1},p) :=p_{1}q_{1}^{2 $\sigma$}+\mathcal{H}(q_{1}, q,p)

(2.2) q_{1}=H_{p_{1}}=q_{1}^{2 $\sigma$}, p_{1}=-H_{q_{1}}=-2 $\sigma$ p_{1}q_{1}^{2 $\sigma$-1}-\partial_{q_{1}}\mathcal{H}(q_{1}, q,p) ,

\dot{q}=\nabla_{p}H=\nabla_{p}\mathcal{H}(q_{1}, q,p) , \dot{p}=-\nabla_{q}H=-\nabla_{q}\mathcal{H}(q_{1}, q,p) .

The solution of (2.1) is given in terms of that of (2.2) by taking q_{1}=z as an índependent
variable.

Semi‐formal solution. We define the semi‐formal solution of (2.1) following [1]. Let

\mathcal{O}(\tilde{S}_{0}) be the set of holomorphic functions on \tilde{S}_{0} , where \tilde{S}_{0} is the universal covering

space of the punctured disk of radius r, S_{0}=\{|z|<r\}\backslash \{0\} for some r> O. The

(2n-2)‐vector \check{x}(z, c) of formal power series of c

(2.3) \displaystyle \check{x}(z, c) :=\sum_{| $\nu$|\geq 0}\dot{x}_{ $\nu$}(z)c^{ $\nu$}=\check{x}_{0}(z)+X(z)c+\sum_{| $\nu$|\geq 2}\check{x}_{ $\nu$}(z)c^{ $\nu$}
is said to be a semi‐formal solution of (2.1) if \check{x}_{ $\nu$}\in(\mathcal{O}(\tilde{S}_{0}))^{2n-2} and (q(z, c),p(z,c)) :=

\check{x}(z, c) is the formal power series solution of (2.1). As for the properties of the semi‐

formal series (2.3) we refer to [1]. Here X(z) is \mathrm{a}(2n-2) square matrix with component

belonging to \mathcal{O}(\overline{S}_{0}) . If X(z) is invertible, then we say that (q(z, c),p(z, c)) is a complete

semi‐formal solution. We say that a semi‐formal solution is a convergent semi‐formal

solution (at the origin) if the following condition holds. For every compact set K in

\tilde{S}_{0} there exists a neighborhood U such that the formal series converges for q_{1}\in K and

c\in U . The semi‐formal solution at the general point z_{0}\in \mathbb{C} is defined similarly.

Monodromy function. We consider (2.1). Let z_{0} be any point in \mathbb{C} and let q and

p be semi‐formal solutions of (2.1) around z_{0} . We define the monodromy function v(c)
around z_{0} by

(2.4) (q,p)((z-z_{0})e^{2 $\pi$ i}+z_{0}, v(c))=(q,p)(z, c) ,

where v(\mathrm{c})=(v_{j}(c)) . The existence of v(c) in the class of formal power series of c is

proved in [1]. If we denote the linear part of v(c) Uy M^{-1}c , then by considering the

linear part of the monodromy relation we have X((z-z_{0})e^{2 $\pi$ i}+z_{0})=X(z)M . Hence

M is the so‐called monodromy factor.
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In the following we will show that the convergent semi‐formal solutions of (2.1) can

be obtained by solving certain system of nonlinear equations given by first integrals.
We consider (2.2). Given functionally independent first integrals H(q_{1}, q,p_{1},p) and

$\psi$_{j}\equiv$\psi$_{j}(q_{1}, q,p)(j=1,2, \ldots, 2n-2) of (2.2), where the functional independentness
means that there exists a neighborhood V of the origin of (q,p,p_{1}) such that the matrix

(2.5) {}^{t}(\nabla_{q,p,p_{1}}H, \nabla_{q,\mathrm{p},p_{1}}$\psi$_{i})_{j\downarrow 1,2,\ldots,2n-2}
has full rank 2n-1 on (q_{1}, p_{1}, q,p)\in\tilde{S}_{0}\times V . We assume that every coefficient of $\psi$_{j}
expanded in the power series of q,p is holomorphic with respect to q_{1} on \overline{S}_{0}.

Let the point (q_{1,0},p_{1,0}, q_{\mathrm{O}},p_{0}) and the values c_{\dot{},0}(j=1,2, \ldots, 2n-2) satisfy that

(2.6) H(q_{1,0},p_{1,0}, q_{0},p_{0})=0, $\psi$_{j}(q_{1,0}, q_{0},p_{0})=\mathrm{c}_{j,0}, (j=1,2, \ldots, 2n-2) .

For c_{j}=\tilde{c}_{j}+c_{\mathrm{j},0}, \tilde{c}=(\tilde{c}_{1}, \ldots,\tilde{c}_{2n-2})\in \mathbb{C}^{2n-2} we consider the system of equations of

p_{1}, \mathrm{q} and p

(2.7) H(q_{1},p_{1}, q,p)=0, $\psi$_{j}(q_{1}, q,p)=c_{\mathrm{j}}, (j=1,2, \ldots, 2n-2) .

If (2.7) has a solution, then we denote it by q\equiv q(q_{1}, c) , p\equiv p(q_{1}, c) , p_{1}\equiv p_{1}(q_{1}, c) . We

see that q, p and p_{1} are holomorphic functions of q_{1} in \tilde{S}_{0} and \tilde{c} in some neighborhood
of the origin if we assume (2.5). We have

Theorem 2.1. Suppose that H(q_{1}, q,p_{1},p) and $\psi$_{j}\equiv$\psi$_{j}(q_{1}, q,p)(j=1,2, \ldots,

2n-2) be functionally independent. Assume (2.6). Then the solution of (2.7) gives the

convergent complete semi‐formal solution (q(z, c),p(z, c))(q_{1}=z) of (2.1) provided q

or p is not a constant function.

The proof of Theorem 2.1 was given in [2].

§3. Confluent hypergeometric equation

We consider a class of hypergeometric system

(3.1) (z-C)\displaystyle \frac{dv}{dz}=Av,
where C is a diagonal matrix and A is a constant matrix. The system has only regular

singular points on \mathbb{C}\cup\{\infty\} . Set v={}^{t}(q,p) \in \mathbb{C}^{n} and assume that C and A are block

diagonal matrices

(3.2) C=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\Lambda$_{1}, $\Lambda$_{1}) , A=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(A_{1}, -{}^{t}A_{1})
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where $\Lambda$_{1} and A_{1} are n-1 square diagonal and constant matrices, respectively such

that $\Lambda$_{1}A_{1}=A_{1}$\Lambda$_{1} . Define

(3.3) H :=\{(z-$\Lambda$_{1})^{-1}p, A_{1}q\rangle.

Then one can write (3.1) in the Hamiltonian form

(3.4) \displaystyle \frac{dq}{dz}=H_{p}(z, q,p) , \frac{dp}{dz}=-H_{q}(z, q,p) .

First, by setting  z=1/ $\zeta$ in (3.4) we have

(3.5) -$\zeta$^{2}\displaystyle \frac{dq}{d $\zeta$}=(\frac{1}{ $\zeta$}-$\Lambda$_{1})^{-1}A_{1}q, -$\zeta$^{2}\frac{dp}{d $\zeta$}=-{}^{t}A_{1}(\frac{1}{ $\zeta$}-$\Lambda$_{1})^{-1}p.
Subsitute  $\zeta$=$\epsilon$^{-1} $\eta$ in (3.5). Replace  $\lambda$_{ $\nu$} with  $\epsilon \lambda$_{ $\nu$} if  $\nu$\in J and multiply the  $\mu$‐th

row of  A_{1} with $\epsilon$^{-1} if  $\mu$\in J . Then we let  $\epsilon$\rightarrow 0 . Define the diagonal matrix Pt by
\mathfrak{A} := diag (\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{n}) where \mathfrak{A}_{ $\nu$} is given by -$\lambda$_{ $\nu$}^{-1} if  $\nu$\in J and ($\eta$^{-1}-$\lambda$_{ $\mu$})^{-1} if  $\mu$\in J,
respectively. Then we obtain

2dq 2dp
(3.6) - $\eta$\overline{d $\eta$}=\mathfrak{A}A_{1}q, - $\eta$\overline{d $\eta$}=-{}^{t}A_{1}\mathfrak{A}p.
We will write (3.6) in a Hamiltonian form. Set  $\eta$=q_{1} , and define H by

(3.7) H(q_{1},p_{1}, q,p):=p_{1}q_{1}^{2}-\langle \mathfrak{A}(q_{1})A_{1}q,p\rangle.

One can easily see that \displaystyle \dot{q}=$\eta$^{2}\frac{dq}{d $\eta$} and \displaystyle \dot{p}=$\eta$^{2}\frac{dp}{d $\eta$} . Because -\mathfrak{A}A_{1}q=H_{p} and -{}^{t}A_{1}\mathfrak{A}p=

H_{q} ,
one easily sees that (3.6) is equivalent to the Hamiltonian system with the Hamil‐

tonian function (3.7).
We will introduce the irregular singularity by the confluence of singularities. We

assume $\lambda$_{j}\neq 0 for all j . Suppose that $\lambda$_{j} �s are mutually different. Then it follows

from $\Lambda$_{1}A_{1}=A_{1}$\Lambda$_{1} that A_{1} is a diagonal matrix. Denote the diagonal entries of A_{1}

by $\tau$_{j} . Let J, J and J� be the nonempty disjoint subsets of \{ 2, 3, . . .

, n\} such that

J\cup J\cup J^{n}=\{2, 3, . . . , n\} . The characteristic roots $\lambda$_{j} corresponding to j\in J and

j\in J merge to 1 and 0 , respectively. Then, by the confluence of singular points we

obtain the Hamiltonian

(3.8) H(q_{1},p_{1}, q,p)=p_{1}q_{1}^{2}+\displaystyle \sum_{j\in J}\frac{$\tau$_{j}}{$\lambda$_{\mathrm{j}}}q_{j}p_{j}+\frac{q_{1}^{2}}{(q_{1}-1)^{2}}\sum_{j\in J}\frac{$\tau$_{j}}{$\lambda$_{j}}q_{j}p_{j}+q_{1}\sum_{j\in J}, \displaystyle \frac{$\tau$_{j}}{$\lambda$_{j}}\frac{q_{\dot{}}p_{\dot{}}}{q_{1}-$\lambda$_{j}^{-1}}.
§4. Calculation of monodromy

In this section we will calculate the monodromy for the Hamiltonian (3.8) via first

integrals. We assume that $\lambda$_{j} �s are mutually different. First, we construct first integrals
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of the Hamiltonian vector field

(4.1) $\chi$_{H}:=q_{1}^{2}\displaystyle \frac{\partial}{\partial q_{1}}-2q_{1}p_{1}\frac{\partial}{\partial p_{1}}-\sum_{j\in J^{JJ}}\frac{$\tau$_{j}}{$\lambda$_{j}}\frac{q_{j}p_{\mathrm{j}}}{(q_{1}-$\lambda$_{j}^{-1})^{2}}\frac{\partial}{\partial p_{1}}
+\displaystyle \sum_{j\in J'}\frac{$\tau$_{j}}{$\lambda$_{j}}(q_{j}\frac{\partial}{\partial q_{j}}-p_{j}\frac{\partial}{\partial p_{j}})+\sum_{j\in J''}\frac{$\tau$_{j}}{$\lambda$_{j}}\frac{q_{1}}{q_{1}-$\lambda$_{j}^{-1}}(q_{j}\frac{\partial}{\partial q_{j}}-p_{j}\frac{\partial}{\partial p_{j}})
+\displaystyle \frac{2q_{1}}{(q_{1}-1)^{3}}(\sum_{j\in J}\frac{$\tau$_{j}}{$\lambda$_{j}}q_{j}p_{j})\frac{\partial}{\partial p_{1}}+\frac{q_{1}^{2}}{(q_{1}-1)^{2}}\sum_{j\in J}\frac{$\tau$_{j}}{$\lambda$_{j}}(q_{j}\frac{\partial}{\partial q_{j}}-p_{j}\frac{\partial}{\partial p_{j}}) .

For k=2 ,
. . . , n we will construct the first integrals in the form q_{k}w_{k}(q_{1}) . We see that

w_{k} satisfies

(4.2) \{(q_{1}^{2}\}_{w_{k}}^{w_{k}}w_{k} 000 \mathrm{i}\mathrm{f}k\in J\mathrm{i}\mathrm{f}k\in J\mathrm{i}\mathrm{f}k\in J,.
Hence we have

(4.3) w_{k}(q_{1})=\left\{\begin{array}{ll}
\exp\exp\}^{\frac{$\tau$_{k}}{\frac{}{})$\lambda$_{k$\tau$_{k}}(q_{1}-1)$\lambda$_{k}q_{1}})} & \mathrm{i}\mathrm{f}k\in J\mathrm{i}\mathrm{f}k\in J,\\
(\frac{q_{1}}{q_{1}-$\lambda$_{k}^{-1}})^{$\tau$_{k}} & \mathrm{i}\mathrm{f} k\in J.
\end{array}\right.
Next we consider the first integrals w :=p_{k}u_{k}(q_{1}) . By (4.1) the equation $\chi$_{H}w=0

can be written in a similar form as in the above. Hence we have u_{k}(q_{1})=(\displaystyle \frac{q_{1}}{q_{1}-$\lambda$_{k}^{-1}})^{-$\tau$_{k}}
if k\in J^{;} , and =\displaystyle \exp(-\frac{$\tau$_{k}}{$\lambda$_{k}q_{1}}) if k\in J', =\displaystyle \exp(-\frac{$\tau$_{k}}{$\lambda$_{k}(q_{1}-1)}) if k\in J . Hence we have

(4.4) u_{j}(q_{1})=w_{j}(q_{1})^{-1}, j=2 , . . . , n.

By (4.3) and (4.4) we have the first integrals $\Psi$_{j}(j=2, \ldots, n) and \tilde{ $\Psi$}_{j}(j=2, \ldots, n)

(4.5) $\Psi$_{j}=q_{j}w_{j}(q_{1}) , \tilde{ $\Psi$}_{j}=p_{\mathrm{j}}w_{j}(q_{1})^{-1}

Summing up the above we have

Theorem 4.1. Assume $\lambda$_{\dot{}}\neq 0 ,
1 for all j and that $\lambda$_{j} �s are mutually different. Then

the Hamitonian vector field (4\cdot 1) has 2n-1 functionally independent first integrals H,

$\Psi$_{j} �s and \tilde{ $\Psi$}_{j} �s (j=2, \ldots , n) given by (4 \cdot 5).
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We will determine monodromy using first integral. We take the convergent non

constant semi‐formal solution  q(q_{1}, c) , p(q_{1}, \mathrm{c}) and p_{1}(q_{1}, c) defined by (2.7). The mon‐

odromy function v(c) around z_{0} is defined by (2.4). In view of the argument in section

2, we will study the monodromy around the origin z_{0}=0 or around z_{0}=$\lambda$_{k}^{-1} for some

k\in J . Note that $\lambda$_{k}^{-1} is a regular singular point of the our equation which remains

unchanged under the confluence procedure.
First we consider the case z_{0}=0 . In order to determine the monodromy function

v(\mathrm{c}) , we first note H(q_{1}e^{2 $\pi$ i},p_{1}, q,p)=H(q_{1},p_{1_{3}}q,p) . For 2\leq j\leq n-1 we have

(4.6) $\Psi$_{j}(q_{1}e^{2 $\pi$ i}, q,p)=q_{j}w_{j}(q_{1}e^{2 $\pi$ i})=

=\left\{\begin{array}{ll}
e^{2 $\pi$ i$\tau$_{j}}q_{j}w_{j}(q_{1})=c_{j}e^{2 $\pi$ i$\tau$_{j}} & \mathrm{i}\mathrm{f}j\in J\\
q_{\dot{}}w_{j}(q_{1})=c_{j} & \mathrm{i}\mathrm{f} j\in J\cup J.
\end{array}\right.
Similarly we have

(4.7) \tilde{ $\Psi$}_{j}(q_{1}e^{2 $\pi$ i}, q,p)=p_{\dot{}}w_{j}(q_{1}e^{2 $\pi$ i})^{-1}=

=\left\{\begin{array}{ll}
e^{-2 $\pi$ i$\tau$_{j}}p_{j}w_{j}(q_{1})^{-1}=c_{j}e^{-2 $\pi$ i$\tau$_{\mathrm{j}}} & \mathrm{i}\mathrm{f}j\in J^{J}\\
p_{j}w_{j}(q_{1})^{-1}=c_{j} & \mathrm{i}\mathrm{f} j\in J\cup J.
\end{array}\right.
We define v(c)=(v_{j}(c))_{j} by

(4.8) v_{j}(\mathrm{c})=\left\{\begin{array}{ll}
c_{\dot{}}e^{2 $\pi$ i$\tau$_{j}} & \mathrm{i}\mathrm{f} 2\leq j\leq n, j\in J^{J}\\
c_{j} & \mathrm{i}\mathrm{f} 2\leq j\leq n, j\in J\cup J'.
\end{array}\right.
Similarly we define \tilde{v}(c)=(\tilde{v}_{j}(\mathrm{c}))_{j} by the right‐hand side of (4.8) with $\tau$_{j} in (4.8)
replaced by -$\tau$_{j}.

As for the monodromy function around $\lambda$_{k}^{-1}(k\in j^{J}) we define the monodromy
function w^{(k)}(c) by the right hand side of (4.8) with $\tau$_{j} replaced by -$\tau$_{j}$\delta$_{k,j} . Here $\delta$_{k,j}
is Kronecker�s delta. We similarly define w^{-(k)}(c) by replacing $\tau$_{j} with $\tau$_{j}$\delta$_{k,j}.

Let q and p satisfy (2.7) with $\psi$_{j} �s given by (4.5). Then we easily see that

(4.9) H(q_{1}e^{2 $\pi$ i},p_{1}, q,p)=0, $\psi$_{j}(q_{1}e^{2 $\pi$ i}, q,p)=v_{j}(c) , 1\leq j\leq 2n-2.

By the uniqueness of semi‐formal solution we obtain q(q_{1}e^{2 $\pi$ i}, v(c))=q(q_{1}, c) and

p(q_{1}e^{2 $\pi$ i},v(c))=p(q_{1}, c) . This implies that v(c) is the monodromy function as de‐

sired. In the case of other regular singular points we may argue in the same way as in

the case of the origin. Thus we have proved

Theorem 4.2. Assume $\lambda$_{j}\neq 0 , 1 for all j and that $\lambda$_{j}s are mutually different.
Then the monodromy functions v(c) about the origin corresponding to the semi‐formal
solution of (2.1) defined by (2.7) is given by v(c) and \tilde{v}(c) . On the other hand, the

the monodromy functions about q_{1}=1 is the identity function, while those around $\lambda$_{k}^{-1}
(k\in J) are given by w^{(k)}(c) and \tilde{w}^{(k)}(c) .
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§S. Nonlinear case

Consider the Hamiltonian H+H_{1} , where H and H_{1} are given, respectively, by (3.8)
and

(5.1) H_{1}=\displaystyle \sum_{\dot{}=2}^{n}q_{j}^{2}B_{j}(q_{1}, q) ,

where B_{j}(q_{1}, q) �s are holomorphic at the origin with respect to (q_{1}, q)\in \mathbb{C}\times \mathbb{C}^{n-1}.
In order to give the formula of the monodromy we will construct first integrals of the

Hamiltonian vector field $\chi$_{H}+$\chi$_{H_{1}} in the forms q_{k}w_{k}(q_{1})(k=2, \ldots , n) and p_{k}u_{k}(q_{1})+
W_{k}(q_{1}, q)(k=2, \ldots, n) . Note that $\chi$_{H_{1}} is given by

(5.2) $\chi$_{H_{1}}=\displaystyle \sum_{j=2}^{n}(-2q_{j}B_{j}\frac{\partial}{\partial p_{j}}-q_{j}^{2}\sum_{ $\nu$=2}^{n}\partial_{q_{ $\nu$}}B_{j}\frac{\partial}{\partial p_{ $\nu$}}-q_{j}^{2}(\partial_{q_{1}}B_{j})\frac{\partial}{\partial p_{1}}) .

As for the first integrals q_{k}w_{k}(q_{1}) we have $\chi$_{H_{1}}(q_{k}w_{k}(q_{1}))=0 because the first integrals
do not contain p and p_{1} . Hence q_{k}w_{k}(q_{1}) �s are first integrals of $\chi$_{H}+$\chi$_{H_{1}} ,

where w_{k} is

given by (4.3).
We will construct the first integrals p_{k}u_{k}(q_{1})+W_{k}(q_{1}, q) by solving ($\chi$_{H}+$\chi$_{H_{1}})(p_{k}u_{k}+

W_{k})=0 , where u_{k}=w_{k}^{-1} and k=2 ,
. ..

, n . We compare the coefficients of p_{k} in the

equation. Because no term containing p_{k} appears from $\chi$_{H_{1}}(p_{k}uk+W_{k}) , we may consider

$\chi$_{H}(p_{k}u_{k})=0 . We easily see that uk is given by u_{k}=w_{k}^{-1} (q1), where w_{k}(q_{1}) is given

by (4.3). Next we construct W_{k} by comparing the coefficients of the powers of p_{k}^{0}=1 in

the equation ($\chi$_{H}+$\chi$_{H_{1}})(p_{k}u_{k}+W_{k})=0 . Because $\chi$_{H_{1}}W_{k}=0 by definition, it follows

that W_{k} is determined by the equation

$\chi$_{H}W_{k}=-$\chi$_{H_{1}}(p_{k}u_{k})=u_{k}(2q_{k}B_{k}+\displaystyle \sum_{j=2}^{n}q_{j}^{2}\partial_{q_{k}}B_{j})
By expanding B_{j}(q_{1}, q)=\displaystyle \sum_{\ell}B_{j}^{(\ell)}(q_{1})q^{\ell} and W_{k}(q_{1}, q)=\displaystyle \sum_{\ell}W_{k}^{(\ell)}(q_{1})q^{\ell} and setting

\mathcal{R}^{(l)}(q_{1})=(kk-2e_{j}),
where e_{k} is the k‐th unit vector, we see that W_{k}^{(\ell)}(q_{1}) satisfies

(5.3)

(q_{1}^{2}\displaystyle \frac{d}{dq_{1}}+\sum_{\dot{}\in J'}\frac{$\tau$_{j}}{$\lambda$_{j}}\ell_{j}+\sum_{\dot{}\in J''}\frac{$\tau$_{j}}{$\lambda$_{j}}\frac{l_{j}q_{1}}{q_{1}-$\lambda$_{j}^{-1}}+\frac{q_{1}^{2}}{(q_{1}-1)^{2}}\sum_{j\in J}\frac{$\tau$_{j}}{$\lambda$_{j}}\ell_{j})W_{k}^{(\ell)}=w_{k}(q_{1})^{-1}\mathcal{R}^{(I)} (q1).
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In view of (4.2) we can easily see that the solution of the inhomogeneous equation is

given by \displaystyle \prod_{j=2}^{n}w_{j}(q_{1})^{l_{\mathrm{j}}} . Hence W_{k}^{(l)} is given by

(5.4) W_{k}^{(l)}=(\displaystyle \prod_{ $\nu$=2}^{n}w_{ $\nu$}(q_{1})^{p_{ $\nu$}})\int_{a}^{q_{1}}k,
where a\in \mathbb{C}\backslash 0 is some fixed point. Note that W_{k}^{(\ell)} is analytic on the universal covering

space of \mathbb{C}\backslash \{0, $\lambda$_{j}^{-1}(j\in J The series \displaystyle \sum_{\ell}W_{k}^{(l)}(q_{1})q^{p} converges if q_{1} is on some compact

set in the universal covering space of \mathbb{C}\backslash \{0, $\lambda$_{j}^{-1}(j\in J)\} and q is in some neighborhood
of the origin. Note that \displaystyle \sum_{\ell}W_{k}^{(l)}(q_{1})q^{\ell} is the convergent semi‐formal series. Summing
up the above we have

Theorem 5.1. The Hamiltonian system with the Hamiltonian function H+H_{1}
has (2n-1) functionally independent first integrals of the form, H+H_{1}, q_{k}w_{k}(q_{1}) ,
p_{k}w_{k}(q_{1})^{-1}+W_{k}(q_{1}, q)(k=2, . . . , n) .

We expect that one can calculate the monodromy of the Hamiltonian system with

the Hamiltonian function H+H_{1} by using the first integrals in Theorem 5.1, which is

left for the future problem.

References

[1] Balser, W., Semi‐formal theory and Stokes� phenomenon of nonlinear meromorphic sys‐

tems of ordinary differential equations, Formal and analytic solutions of differential and

difference equations, Banach Center Publications, 97 (2012), 11‐28.

[2] Yoshino, M., Semi‐formal solution and monodromy of some confluent hypergeometric
equations, RIMS Kôkyûroku Bessatsu, 52 (2015), 255‐262.

136


