BRI TS a5 0% 15
#2023% 20174 15-28

Asymptotic expansion of the transition probability for
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1 Introduction

Long time behavior of random walks on graphs has been studied by many authors in var-
ious settings. In particular, the central limit theorem (CLT) is one of the most important
results in probability theory. As a classical case, let us consider the random walk {X,, }nen
on the integer lattice Z given by the sum of iid random variables:

Xn=Z1+Z2+"'+Zn7

where P(Z; = 1) = p and P(Z; = —1) = 1 —p = ¢. Then the central limit theorem asserts
that for any a < b

X, —m O T
limP,(a <2 —<b)= | ——e 7 dz,
ngg ® ( - o \/ﬁ - ) /,; \/2—71'
where m = p — ¢, the mean of Z; and 0% = 4pq, the variance of Z;. In addition, if
m = 0, that is, the random walk is symmetric, then the transition probability p(n, z,y) :=
P.(X, = y) has the following integral expression by the well-known Fourier inversion

formulra .
p(n,z,y) = / cos(nf)e?™V =102 g2nv/=T(6.4) 4
0
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Using the expansion of cos(nf) (known as the Laplace method), the following long time
asymptotics can be obtained:

Theorem 1.1 (Local central limit theorem (LCLT))

2

lim V2nw p(n,z,y) — e 2| =0.
n—o0

Theorem 1.2 (Asymptotic expansion)

2
p(n,z,y) ~ \/21_"”?6_ = (1 +a(z,y)nt + ez, y)n 2 - ck(x,y)n“k) .
Here these limits are taken uniformly for z,y in some domains. See for instance, [9], [10]
and [14] for the detail.

As Spitzer has mentioned in [10], the periodicity of Z¢ plays a crucial role to obtain
the asymptotics. This motivated Shirai and Sunada to study the long time asymptotics
of a symmetric random walk on a crystal lattice, an abelian covering of a finite graph.

They emphasized in their articles (3], [4], [5], [6], [7], [11], [12], [13]) that the long
time behavior of the random walk must not depend on the choice of the realization. In
this geometric point of view, they found that a canonical realization with a flat metric
is naturally appeared in the asymptotics called a standard realization. Moreover, Sunada
presented in [{12] the local central limit theorem for the non-symmetric random walks on
crystal lattices. In the proof, the notion of the modified standard realization of the graph
into the corresponding continuous space plays a crucial role.

In this exposition, we give an outline of the proof of the asymptotic expansion of the
transition probability of the non-symmetric random walks on crystal lattices which is
recently proved in [1]. See also [2] for the explicit calculation on the triangular lattice.

2 Discrete harmonic analysis on crystal lattices

We review the general facts about the discrete harmonic analysis on crystal lattices.

First of all, we give the definition of the crystal lattice. An oriented, locally finite
connected graph X = (V, E) is called a crystal lattice if there exists an abelian group I"
acting on X freely and its quotient Xo = I'\ X is a finite graph. In other words, X is the
abelian cover of a finite graph X, with the covering transformation group I' (see Figure
1). Without loss-of generality, we always assume that T is torsion-free (I' ~ Z¢ for some
d) by changing the quotient Xp.

For an oriented edge e € E, the origin and the terminus of e are denoted by o(e) and
t(e), respectively. The inverse edge of e € E is denoted by €. Let E, = {e € E| o(e) = z}
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Square lattice Triangular lattice
‘ T = (01,07} =22 T = (01,00) 222

Figure 1: Crystal lattices

be the set of edges with o(e) = z € V. We consider a random walk on X given by a
T-invariant transition probability p: E — [0, 1] with

Y ple)=1, ple)+p(E) >0 (e€E).
e€Ey

The transition operator L is an operator acting on functions on X defined by

Lf(z) =Y ple)f(t(e)).

e€Ey

Then the n-step transition probability p(n, z,y) from z to y is given by

p(n) wyy) = Z p(el)p(GZ) '»' 'p(en)y

(e1,€2,-,n)

where the sum is taken over all n-length paths (e, eq, ..., e, )from z to y. We mention
L"f(z) =Y p(n,z,9)fly) (z€V).
yev

If, in addition, there exists a positive function m : V — R such that

ple)m(o(e)) = p@)m(i(e)) (e € B),

then the random walk is said to be symmetric (or reversible), and the function m is called
a reversible measure for the random walk. Note that m is uniquely determined up to



a constant multiple. The most canonical symmetric random walk is the simple random
walk with the transition probability given by p(e) = (dego(e))™! (e € E).

Now let us consider the discrete spectral analysis on Xp. By the I-periodicity of the
random walk on X, the corresponding random walk on X, can be defined. We always
assume that the random walk on X is irreducible, that is, for every z,y € Vp, there exists
some n = n(z,y) € N such that p(n, z,y) > 0. We note that the irreducibility on X, holds
on X. However, the converse does not in general. By the Perron-Frobenius theorem, there
exists a unique positive function m : V5 — R, called the invariant probability measure,
satisfying 3 .y, m(z) = 1 and

m(z) = ‘Lf(z), (2.1)
where *Lf(x) = Eee(Eo), p(e)f(t(e)), the transposed operator of L. It means that the
invariant measure m is an eigenfunction of ‘L for the maximal positive eigenvalue 1.

We put

m(e) = m(o(e))ple) (e € Eq).
When m(e) = m(€), the random walk is said to be (m-)symmetric.
We consider the 0-chain group

Co(Xo, R Z .| a; € R}
zeVp
and the 1-chain group
C1(Xo,R Z ace| a. € R},
e€Ep

where the relation € = —e is imposed for e € Ey. The boundary operator 8 : C1(Xo,R) —
Co(Xo,R) is defined by 9(e) := t(e) — o(e). The first homology group H;(Xp,R) is the
kernel Ker(9) C C1(Xo,R). H1(Xj,Z) is also defined by replacing R by Z.

We define the 0-cochain group

C°(Xo,R) :={f : Vo = R}
with the inner product

(fuh)o=Y A@fa(x)  (fi,f» € C°(Xo,R)),

zeVo

and the 1-cochain group
CY(Xo,R) := {w: Ey — R| w(&) = —wl(e)}

with the inner product

(Wi, wa)1 = = Z wi(e)wa(e)  (wi,ws € C'(Xo,R)).
eEEo
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A 1-cochain is occasionally called a 1-form on Xp.
We define the difference operator d : C°(Xo, R) — C{X,,R) by

df(e) = f(t(e)) — f(oe)) (e € En),

and the first cohomology group H!(Xo,R) := C'(Xo,R)/Im(d). Note that H'(X,,R) is
the dual of the first homology group H;(Xp, R).
We define the homological direction by

=Y Me)e € C1(Xo,R).
e€Ey
We observe that 8y, = 0 and hence, 7, € H;(Xo,R). We note that v, = 0 if and only if
p gives a symmetric random walk, i.e., m(e) = m(€). A 1-form w is said to be modified

harmonic if
Spw(z) + (Yp,w) =0 (z € V), (2.2)

where (8,w)(2) 1= — X oc (g, P(E)w(€) and (15, w) = ¢, (x,.r) (¥p» W) 1 (x, ) 15 COSant as
a function on V5. We denote by H(X;) the set of modified harmonic 1-forms, and equip
H(Xp) with the inner product

(Wi wa) =Y wile)wa(e)mile) = (vpywr) (ypywa)  (wi,wz € H(X0)). (2.3)

ecEy
Then the corresponding norm || - || is given by
lwll? == (w,wh = Y lw(e)Pii(e) = (m,w)®  (w € H (Xo)):

ecEy

By the discrete Hodge-Kodaira theorem (cf. [7, Lemma 5.2]), we may identify H'(Xo, R)
and H!(X,, Z) with H!(X,) and

n
{w € H'(Xo)| /w = Zw(ei) € Z for every closed path ¢ = (ey,...,e,) in Xo},
e =1

respectively. Using this identification, we obtain an inner product {:,-) on H'(X,,R).

We denote by 7 : X — X, the covering map, and by p : H;(Xp,Z) — T the surjective
homomorphism associated with the covering map w. We extend p to the surjective linear
map pg : Hi(Xop,R) = I' ® R. Then we may consider the injective linear map ’pg :
Hom(T, R} — H*(X,,R) by

tpr : w € Hom(T, R) = *og(w)(-) := w(pr(")) € H'(Xo, R),

where Hom(T, R) denotes the linear space of homomorphisms of ' into R. Using the
maps ‘pr and pg, we identify Hom(I', R) with the subspace Image(*pr) in H}(Xy, R) and
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I' ® R with the quotient linear subspace of H;(Xy,R). We denote *pgr(w) € H*(Xo,R)
by the same symbol w for brevity. We restrict the inner product (-,-) on H'(Xo,R) to
the subspace Hom(I',R), and then take up the dual inner product {, )4 on I' ® R. The
flat metric on I' ® R induced from this inner product is called the Albanese metric and is
denoted by go. This procedure is summarized in the following diagram:

(T ®R, go) — H,(Xo,R)
1 dual 1 dual
t
Hom (T, R) = H!(Xo,R) 2 (H!(Xo), ()
We write Alb" for (I' ® R/T ® Z, go), and call it the I-Albanese torus associated with

(X,T).
Now we realize X in I' ® R equipped with the Albanese metric go in a standard way.
A (piecewise linear) map ® : X — I' ® R is said to be a periodic realization of X if it
satisfies
P(oz) =d(z)+0®1 (ze X,o€l).
We may define a special periodic realization ®; : X — ' ® R by ®p(z.) = 0 for a fixed
base point z, € V and

Hom(T'R) (w, <I>0(x)>F®R = /x ja (w € Hom(T, R)), (2.4)

where & is the lift of w = *pr(w) € H}(X,,R) to X. Here

/:E=/CG :=iz:;§(ei)

for a path ¢ = (e, ...,e,) with o(e;) = z, and t(e,) = z. It should be noted that this
line integral does not depend on the choice of a path c.

One of the special properties of ®, is that it is a vector-valued modified-harmonic
function on X in the sense that

Lo(z) - Bo(z) = pu(7) (€ V). (2.5)

Indeed, for every w = *pg(w) € H*(X,, R), the modified harmonicity (2.2), -invariance
of the transitioh probability p and the identity (2.4) imply

Hom([‘,R)<w » L®o(z) — ‘1’0(95»1“@1& = Z p(e) Hom(T',R) (w, @o(t(e)) — q’o("(e)))mm

ecE,

= 3 ple)i(e)

e€E,

= > plewle)

e€(Ep)(z)
= —(8w)(m(z))

= (pw) = Hom(r,m)<vaR('Yp)>r®R (zeV).
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A periodic realization @ : X — I' ® R satisfying (2.5) is said to be modified harmonic.
Note that a modified harmonic realization is uniquely determined up to translation.

If we equip I' ® R with the Albanese metric go, then we call the map @5 : X — (I'®
R, go) the modified standard realization of X. We readily check that the piecewise linear
interpolation of ®, by line segments descends to a piecewise geodesic map ®o : Xo — AlbT.
We call ®, the Albanese map associated with (X,I'). Namely, standard realization is a
lift of the Albanese map.

In [12], Sunada presented the local central limit theorem (LCLT) for non-symmetric
random walk on crystal lattices stated as follows: Let

K :=g.cd.{n € N;p(n,x,x) # 0}
be the period of the random walk and V' = ]_[,{‘:01 Ay the K-partition of V.

Theorem 2.1 ([12]) Letz € A;,, y€ A;. If n=Kl+j—1,

2
Kvol(AlbY) (_|2o@-s0-nmon)],,
-1
p(n, z,y)m(y) NWc( = ).

Otherwise p(n, z,y) = 0, where vol(Albl) is the volume of AlbT with the Albanse metric
-

3 Asymptotic expansion of the transition probability

Recall that X = (V| E) is a crystal lattice in which covering transformation group I' is a
torsion free abelian group of rank d and torsion free. Let K be the period of the random
walk on X. We note that we can retake the covering transformation group so that the
period of the corresponding random walk on Xy has the same period K.

3.1 Twisted transition operators

We first review some basic results on the twisted transition operators studied in [3, 4, 8].
Let H,(Xo,Z) be the group of unitary characters of Hy(Xo,Z). We identify H,(X,,Z)
with the Jacobian torus
J(Xo) = HI(X(), R)/Hl(Xo, Z)
by the mapping
H!(Xo,R) 3w x, € Hi(Xo,2),

where

Xw(0) = exp (2#\/—_1/ w) (oc€l)
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and ¢, is a closed path in X satisfying p([c,]) = 0. We equip a flat metric on J(Xo)
induced by the metric (2.3) on H(X,, R)(2 H}(Xo)).

Let T be the group of unitary characters of the covering transformation group I'. By
the above mapping, we can also identify T with the I-Jacobian torus

Jacl := Hom(T', R)/Hom(T', Z).

The canonical surjective homomorphism p : H;(X,,Z) — T' gives rise to an injective
homomorphism Jac! into J(X,). We regard Jac™ as the flat torus with the metric induced
by that on J(X,). The tangent space 73T at the trivial character 1 coincides with {w €
HY(Xo,R)| xu € f}, and it is identified with Hom(I',R) (see Figure 2). Since the lattice

22

J(Xo) = H'(Xo, R)/H!(Xo, Z) = Hy(Xo, Z)

Figure 2: T C J(Xo) and Hom(T',R) C H!(Xo,R).

group '®Z in T' ® R and the lattice group Hom(I',Z) in Hom(T, R) are dual each other,
we observe that the I'-Albanese torus Alb" = (' ® R/T' ® Z, go) is the dual flat torus of
Jac, and hence vol(T') = vol(JacT) = vol(AIb")~1.

To analyze the n-step transition probability p(n,z,y) for the random walk on the
crystal lattice X = (V, E), we introduce the twisted transition operator L, for a unitary
character x € T. For each X € f, we consider the |Vp|-dimensional inner product space

& ={f:X—>C| f(oz) = x(0)f(z) for ¢ € T}

with the inner product

(f,9)x =D _ f(@)g(z),

zEF

where F C V is a fundamental domain of X for I. We note that the inner product is
independent of the choice of a fundamental domain F.
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As the transition operator L and its transpose ‘L preserve £2 (see [8]), we define the
twisted transition operator Ly : £2 — 2 and its transposed operator 'Ly : £2 — £2 by the
restriction of L and L, respectively. For the trivial character x = 1, (L1, £2) and (*Ly, £3)
are identified with (L, £2(X,)) and (*L, £*(Xo)), respectively. The family {Ly} .5 gives
rise to the direct integral decomposition

2 @ 2
(L. EC0) = [ (L G
where dy denotes the normalized Haar measure on T. Asin [8, Section 7], this decompo-
sition implies an integral expression of the n-step transition probability

sz = [(Lifpf)dx  (neM zyeV), (31)

where f, € £2 is the modified delta function defined by

F(2) = {X(a) if z=oz,

0 otherwise.

It follows from (Lny,fz>x =0 (z € A,y € A;,n # Kl + j — i) that p(n,z,y) = 0.
From this general viewpoint, let us see the case of the square lattice graph Z¢. In this
case, we note that X = I' = Z¢ and |Vp| = 1. Moreover,

N

I'= {x(o) = ™V~ g ¢ [0,1)%} ~ T

Then we obtain
Zi =6 = span{ez”‘/‘_l(a") }

and hence, for f € £2(X),
f(z) = / a(B)e> Y T0Dgp,
9eTd

which is nothing but the Fourier inversion formula.

By virtue of the Perron—Frobenius theorem for the random walk with period K, the
twisted transition operator L, has K-simple maximum eigenvalues po(x), ..., trx—1(x)
with eigenfunctions satisfying

Lydiy = (X)L = 1k () Vrxs

(¢Ic,x7 ¢Ic,x)x = (¢k,x,¢k,x>x =1

Then we note that
(2k1rz—1
=e K

po(1) =1, p(x) Jpio(x)



and, for z € A;,

2kuny/=T 2kamy/=T
K K

¢k,x(z) = el )¢0,x(x): ¢'k,x(93) = ¢l )"/)0,)((1’)- (3.2)

We also note that
Lyl <1 (Jue(x)] < 1),

Il =1ex=1 (uX)|=1ex=1)

and
& = & drx) + Vi

where || L, fv || < (1 — )|l fv]| for fv € V;. By (3.1), we obtain

= [ (Xm0 adalus) + Bl o) (64)
' k=0

Since L, preserves Vy, and ||Ly|y, || < 1 — ¢ for some ¢ > 0 uniformly in x € T (see [3]),
we have

| [(Est b fox| < o - (35)

for some positive constant C independent of z and y. Therefore substituting (3.2) into
(3.4), we obtain

K-1 k(n—1—7)1v/~1 [
plm,2,2) ~ [ 3 ) )y (i
k=0

If n = Kl + j — ¢, we conclude
pn,2,9) ~ K [ po(x)" (oo (36)
Using a unitary map ¢(Xo) with £ given by
[ su(@)f(@) = TR £ (),
we can rewrite ¢g, and g, as

¢0,xw(x) = Sw(z)¢w(x)7 1/}0,)(,.,(1:) = Sw(x)%(w),

where ¢,, and ¥, is the eigenfunction of the Harper operator H,, and its adjoint H} acting
on 2(X,) defined by

Hyf(zo) == Y ple)exp(2nv/=Tw(e)f(t(e)) (w0 € Vo),
e€(Ep)zq

Hif(zo):= Y p(e)exp(2rv/=1w(e))f(He)) (o € Vo),

e€(Eo)zq
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respectively. Putting uo(x) = e ), we obtain
Ho(Xw)" B0, (%) %05, ()
g r(a) Pl e (20T [ 5)

™M@ g (n(2))Puln (y))exp(—2‘ll'\/—_ (w, Po(y) —‘I>o(x)>) (3.7

for x € A,y € Aj,n = Kl + j — 1 and sufficiently small w € Hom(T',R). Substituting
(3.7) into (3.6), we have

p(n,z,y) = K /r Ho(X)" bo.x ()05 (y)dx

- K e“")‘(w)@,,(ﬂ( ))we( —2mv/~T{w, B0 (y)— ‘f’o(m)))_—
Hom(I',R)CH! (Xo) vol(Jach)
r
_ KVOI(;Mb )/ —n)\(\/—)d) (ﬂ'(x))'l/) (ﬂ'(y))e( 20V =1( 45, Bo(v)- <I>o(z)))dw
nz Hom(T',R)CH(Xo)

In order to obtain the desired long time asymptotics of p(n, z,y), we need derivatives
of AMw), @, and 1,,.

Lemma 3.1 For w € Hom(I',R), Let A(t) := A(tw). For any k € N, changing eigensec-
tions s, if necessary, for any 1 < i < k, the i-th derivatives \?)(0) are the i-th order real
coefficient homogeneous polynomials of /—1w. In particular,
A0) = 0,
N(0) = —2nvV-1{y,w),
X(0) = 4n( Y pleJwle)*mlofe)) - (1 w)?) = 4r[w]?,

e€Ep
AO0) = 8n°V=1 ) ple)w(e)*m(o(e)) — 24m*V=T|Jw|[*(ypsw) — 87V =T(yp, w)*
—6mv/=1|Vo|'* 3 p(e)w(e)des(e)m(o(e)),
e€Ey
AD0) = —16n* Z p(e)w(e)*m(o(e)) + 487*||w]|*

ecEy

+647 (15, w) ) p(e)w(e)*m(o(e)) — 967 (v, w)?|w]|* — 487* (y, w)*

e€Ep

~487° (Vo[ (5, ) D ple)w(e)ddy(e)m(o(e))

e€Eg

+2Ar |Vl 2 Y p(e)u(e)* (dh(2(e)) — D di(2)miz) )miofe))

e€Ey 2eVp

8/ "IV 3 ple)w(e)dd® (e)mlofe)).

e€Ep
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Remark 3.2 Differentiating both sides of H;v; = exp(—Au(t))¢: four timesint att =0,

we also obtain

A0) = 8ndv/-1 Z ple)w(e)®*m(o(e)) — 24/ =1||w||* (1p, w) — 873V =1 {7, w)?

e 3 ple)ule) T,
and 0
AD() = 16t 3 plefu(e) mlofe)) + bl
ot ) 3 ple)ule'm{ofe) = 96m 10l
—487* (7, )ee—o%vr"‘x/_ 1o (v w ZEP ()*%(o(e))
+32m° /=T |Vp| 72 g; zo(e)w(efWee 0
U S pce;u(ef( bole) = 3 ¥4 (2 m(o(e)))-

Lemma 3.3 Forw € Hom(I',R), let ¢4(z0) = ¢u(z)o and 1i(zo) = ¥ (z0). For any ke
N, changmg eigensections s, if necessary, for any 1 < i < k, the i-th denvatwesq&.(, (zo)
and ¢ are the i-th order real coefficient homogeneous polynomials of v/—1lw. In partic-
ular, '

o(@o) = [Vo| ™%, tbo(o) = |Vol*m(z0), h(z0) =0  (m0 € Vh).
Furthermore 1y is a purely imaginary-valued first order polynomial of w satisfying
(I = "L)i(ao) = 20/ =TVol "2 Zocioy, PEN(EImE(e))

—m(20) Coep, PEw(EIMK(e)))  (z0€ Vi)
Zzevo 1/)(/)(z) =0,

and ¢y and 1§ are real-valued second oder polynomials of w, satisfying
(I = L)g(@o) = ~4m*Vol 2 ( Loy, Pl (e)?

~ Teen PEw(ePmloe)) (a0 € Vo)
ZzeVo ¢ (Z) =0

26
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and
(I = *LW(0) = 473/ =T ( Ty, PEI(EUG(ELE)) + () 0))
47 ( Lee(oeg PE() 0 (2(e))
—m(20) ez, PO bo(t(e)) (@0 € V0)
Zzevow (2) = _|V0|Ezevo o(2)m(z),
respectively.

Applying the Fourier analysis, we conclude the following;:
Theorem 3.4 ([1], [2]) Letz € A, andy € Aj. Ifn=Kl+j—1,

(2mn)?p(n, z, y)m(y) ™

2
]éo(z)—i’o(y)—nom('w) |y
i - g0

~  Kvol(Alb)el- = ) (1 + i@,y ) asn— oo
Ifn# KL+ j —i, then p(n, z,y) = 0, where
ay (m(z), (y), i @o(y) — o(z) — nor(1p))
mirlu)” Z 3 (@ols) — Bo(z) ~ npa),

16 163 Z qn] (I>0 <I>0($) - npR('YP))] 871—2 an

1,j=1 =1

m(m(y))~!
3271'4 Z Qi%i55 — 1287\'4 Z Giigs — 15367‘!’6 Z Qi Q5kk

1,5,k=1

with some coefficients 4o = qo{n(z), 7(y); %) (@ = (oa,...,00) € {1,...,d}",r=1,...,4).
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