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Sharp interface limit for stochastically perturbed
mass conserving Allen-Cahn equation

Satoshi Yokoyama
(The University of Tokyo)
1 Introduction and the main results

We consider the solution u = u(¢, z) of the following stochastic partial differential equation
(1.1) in a bounded domain D in R™ having a smooth boundary dD:

e
88% = Auf + e~2 (f(ue) —f f(ue)) + ad"s(t), in D xRy,
’ D
1y { o
5 =0, on 8D x Ry,
ua(09 ) = gs(')v in D,

where £ > 0is a small parameter, & > 0, v is the inward normal vector on 8D, R, = [0, 00),

]{) f(uf) =ﬁ [ fast )iz,

g°¢ are continuous functions having the property
(1.2) lim ¢°(z) = X,
el0

where g is a smooth hypersurface in D without boundary with finitely many connected
components and it has the form vy = 8Dy with a smooth domain Dy such that Dy C D
and x,(z) = +1 or —1 according to the outside or inside of the hypersurface . The noise
we(t) is the derivative of w®(t) = w*(¢,w) € C*(R4) in t defined on a certain probability
space (2, F, P) such that w®(t) converges to a 1D standard Brownian motion w(t) ase { 0
in a suitable sense. We assume that the reaction term f € C*(R) is bistable and satisfies
the following three conditions:

: 1
O &) =0 rE) <0, [ fwdi=o,
-1 .
(ii) f has only three zeros + 1 and one another between 41,
(iil) there exists ¢ > 0 such that f'(u) < & for every u € R.

The equatibn (1.1) with @ = 0 and without the averaged reaction term is called the
Allen-Cahn equation. When a = 0, the mass of the solution u of (1.1) is conserved,
namely,

1 [ . .
(1.3) |—D—|‘/Du (t,z)dz = C,
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holds for some constant C' € R. For a mass conserving Allen-Cahn equation without noise
((1.1) with @ = 0), [3], [4] and [7] discuss the existence and uniqueness of solutions and [1]
studies its sharp interface limit.as € { 0. On the other hand, for a stochastic case without
the averaged reaction term, the sharp interface limit is discussed by [5], [6], [8] and [9].
Our goal is to show that the solution u®(t,z) of (1.1) converges as € | 0 to X+, (z)
with certain hypersurface 4 in D, if this holds for the initial data ¢° with a certain yp,
~and the time evolution of 4, is governed by

(1.4) V=k —][ K+ a|D| ow(t), te€][0,0],
Yt 2|7t|

up to a certain stopping time o > 0 (a.s.), where V is the inward normal velocity of +;,
k represents the mean curvature of ; multiplied by n — 1, j}ﬁ Kk = ]‘:—tl /. [, Kd3, w(t) is
the white noise process and o means the Stratonovich stochastic integral. When a = 0,
the equation (1.4) coincides with the limit of the mass conserving Allen-Cahn equation
studied in [1]. On the other hand, in the case where the fluctuation caused by aw®(t)
is added, the rigid mass conservation law is destroyed and in place of (1.3), we have the
conservation law in a stochastic sense

(L5) L / w(t,z)de = C + aws(t), teRy,
(Dl Jp

which implies that the total mass per volume behaves like a Brownian motion multiplied
by a as € tends to 0. For our equation, the comparison argument does not work, so that
to study the limit we adopt the asymptotic expansion method, which extends that for
deterministic equations used in [1].

Let K be an integer satisfying K > max(n + 2,6) and w® = w*(t) = w®(t,w),
0<e<1lteRy, we Q be a family of (F;)-adapted stochastic processes defined
on a probability space (2, F, P) equipped with the filtration (F;);>0, which satisfy that
we(0) =0, w(-) € C*°(R4) in t a:s. w and

(16) lim o — wleogory =0, s,
for every T' > 0 and some 8 € (0,3), where w(t) is an (F;)-Brownian motion satisfying
w(0) = 0 and

|u(?) —u(s)|

‘1.7 wll e = sup |u(t)]+ sup ———>—.
1.7) llullce o7y te[o%ll ! oss;g%q‘ |t sf®
s#t

Assumption 1.1. For every T > 0, there exists H. > 1,0 < ¢ < 1, such that

k
(1.8) swp [t (tw) < He k=12 m(K)+1,
te[0,T),wen @t
2n;1 (K)
. _ i e T
(1.9) lelﬂ)lHe =% lslftx)l loglog |loge|

where n1 (K) € N is the number determined from K by Proposition 6.1 below.
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Assumption 1.2. There ezist stopping times o° and o such that Vo (resp. V), the
solution of (2.2) below with v = a1 (resp. (1.4)), exists uniquely in [0,0°] (resp. [0,0]).
In addition, 0¢ > 0 and 0 >0 hold a.s. Furthermore, for everyT > 0 and m € N, the joint
variable (o°,d°(t A 0°)) € Ry x C([0,T],C™(D)) converges in this space to (o,d(t A o))
as € | 0 in a.s.-sense, where d°(t) (resp. d(t)) is the szgned distance determined by the
hypersurface ¥&° (resp. v;), which is negative inside Y¥ (resp. ).

We state the main results.

Theorem 1.1. Let vy be a smooth hypersurface in D without boundary with finitely many
connected components and it has the form vy = 8Dy with a smooth domain Dy such that
Do C D. Suppose that a local solution T = Up<t<o (7 X {t}) of (1.4) up to the stopping
time o > 0 (a.s.) satisfying vy C D for allt € [0,0) uniquely exists (a.s.). Furthermore, let
us assume three Assumptions 1.1, 1.2 and 5.1. Then, one can find a family of continuous

functions {g°(*)}ee(0,1) satisfying

(1.10) , i F(@) = Xo»

such that (0%,u*(t A 0° A 7,-)) converges to (0, Xynon (")) in Ry x C(Ry, L3(D)) ase 0
in a.s.-sense, where u is the solution of (1.1) with initial value ¢° and 7 = 7(w) > 0 is
that given Assumption 5.1.

Assumption 1.2 holds in law sense when the limit curve « stays convex. Indeed,

Theorem 1.2. Let D be o two-dimensional bounded domain and o be a closed convex
curve given such that y € D. Then, the dynamics (1.4) has a unique solution for0 <t < o
for some stopping time 0 > 0 (a.s.).

2 Signed distance from -; and parametrization of ~;

The expansion of the solution u®(¢,z) of (1.1) in € will be given only in ¢ appearing in
the reaction term and not that in the noise term. To make this clear, we consider the
following equation with an external force v(t), which is deterministic (non-random) such
that v € C®(Ry4):

£
?t =Auf+¢72 (f(ue)—][ f(ue)) +o(t), inDxRy,
D
2.1 s , '
( ) -a_l/ =0, on 8D x R+,
u®(,0) = g°(), in D.

Clearly, the solution of (1.1) is the same as that of (2.1) with v = a1i®. In addition, we
consider the hypersurface {7{} whose evolution is governed by

{ |D|
2.2 Vi=k—+4 K+ v(t),
@32) ~ 2/l ©

v
t
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where V? is the inward normal velocity of «f. Suppose that (2.2) has a unique solution
for ¢ < TV with some T > 0. Under these settings, we will first expand the solution
uf = u? of (2.1) in £ based on the solution y; = ¥ of (2.2). Next, we will estimate each
term appearing in the expansion by a suitable norm of v.

Let d = d¥(t,z) be the signed distance of z € D to the hypersurface v;, which is
negative inside ;. Let & C R™ be an oriented compact (n — 1)-dimensional submanifold
without boundary and with finitely many connected components being smoothly embed-
ded in R™. For each.s = (sl){‘=1 € &, except some singular points, s™ is represented by
other coordinates such that s = s"(s!,...,s""!) and thus we can take s = (s') as a
local coordinate of S. We parametrize ;,t € [0,T] as z = Xo(t,s) by s = (s)' € S
such that Xy € C*([0,T) x 8§,R"™) and the map Xo(¢,-) : S — ¥ is homeomorphic for
every t € [0,T]. In particular, (3)%’3’8) ey ag{;,',(ff )) forms a basis of the tangent space to
Y at £ = Xo(t,s) for each s € S.

~ We denote by n(t, s) the unit outer normal vector on 7 so that

(2.3) n(t, s) = Vd(t, Xo(t, )).

Let § > 0 be small enough such that the signed distance function d(¢,z) from -
is smooth in the 3é-neighborhood: of 7; and the distance between 7; and 8D is larger
than 36 for every t € [0,T%]. A local coordinate (r,s) € (—34,35) x S of z in a tubular
neighborhood of +; is defined by

(2:4) z = Xo(t,8) + rn(t,s) =: X(t,r,s).
Its inverse function is given by
r=d(t,z), s=8(tz)= (S t,x),...,8" (¢t 2)).

Changing coordinates from (¢, x) to (t,7, s) for a function ¢ = ¢(t, ), we associate another
function ¢ = ¢(t,r,s) as

o(t, 7, 8) = B(t, Xo(t, s) + rn(t, s)).
Then, we have
ag(t,z) = (VO, +0)d(t, d(t, ), S(t, 2)),

Vé(t, z) = (n(t,S(t,2))d, + VI)é(t,d(t,z), S(t, z)),
Ad(t,z) = (8% + Ad(t,z)d, + AT)(t, d(t, x), S(t, ),

where the superscripts I' mean the derivatives tangential to the hypersurface 4¥ seen under
the coordinate s € S:

n—1
atrég = (at + Z Séasi)g%

i=1

) n—1 —1
- V= (Z alsiasi,...,iansfasi) é,
=1 =1
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n—1 n—1

i=1 ij=1

and V-(t, s) is the inward normal velocity of the interface y; at Xo(t, s), namely,

(2.5) V(t,s) = B,d(t, Xo(t, 5)).
We denote by k1, , kn—1, 0 the eigenvalues of the Hessian D2d(t, z) with corresponding
normalized eigenvectors 71, ,Tn—1, Vd. Set
n—1
(2.6) k(t,8) = (n—1)Ry, = Z ki = Ad(t, Xo(t, s)),
: i=1

where R, is the mean curvature of y; at z = Xo(¢,s). Set

n—1
2.7 b(t,s) = —Vd - VAd(t, T)|z=x,(t,5) = Z KZ.

i=1
3 Formal expansion of the solution u°
The equation (2.1) is expressed as
(3.1) 0 = f(us(t; ) + £2(—Bus (t, T) + Auc(t, z) + v(t)) — eAe(t),
‘where
(3.2) Ae(t) == 5‘1][ Ff(t, ).

D

We define h.(t,s) by
(3.3) 4 ={z € D|u®(t,z) = 0} = {X(t,7,8) | r =€he(t,s),s € S},

and p = p°(t,z) by

d(t, z) — ehe(t,S(¢, 7))

Pt x) = e .

We denote by 4¢ = @(t, p, s) the function u* = u(t,z) viewed under the coordinate
(t, p, s) related by z = Xo(t,s) + e(p + he(t, s))n(t, s). In the following, we will write 4°
for u. Then we have
(3.4) 0=[0%u+ f(w)] +e[(-V(t,s) + Ad)d,u — Ac(t)]
+&?[(ATu — 8 u) + (8F he — ATh.)0,u]
. +&2[| VT he[202u — 2VF he - VI B,u] +€%0(2).
Suppose that u and h. have the inner asymptotic expansions:
’U,(t, Py S) = m(p) + EUO(t1 P, S) + €2u1(tv Py S) + ESUZ(t) P, 3) + - )

3.5 .
B chtys) = ehalty5) + e2halty5) + halts) 4 -, (t,pr8) € [0,T7] xR xS,
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where m is the standing wave solution determined by m” + f(m) =0 on R, m(£o0) =
+1, m(0) = 0. On the other hand, assume that ). and u* have the outer asymptotic
expansions:
(é 6 Ae(t) = Ao(t) + eAn(t) + 2 xo(t) +€3Ns(t) + -+,

) uE(t) = £1 +eud (t) + 2 (t) + SuF (@) +---, te0,T].

4 Inductive scheme to deterrhine coefficients

Set
(4.1) vk = (ugy hiy My if), k=0,1,..., K.

Then, v, will be inductively determined in such a manner that all k-th order terms (those
of order O(e*)) vanish when we substitute these expansions in (3.4), Indeed, we find

=v Ao(t)
(1)’

where 6; = 61(p) is a smooth function. Furthermore, uy and u,:f are determined by a
function A¥~1 = A*=1(Xg,u;, hi,0 < i < k — 1), by, and Ay, (see [2] for details). Set

(4'2) » UQ(t’ P 3) = _)\O(t)el(p)s ug:(t) :

’ k
(43) u(t,x) =m(p) + Y _ e Flui(t, p, S(t, 7)),
i=0 _
(4.4) ugt () =1+ ) e tluE(t),
=0

‘and define ug(t,z) by connecting (4.3) and (4.4) smoothly (see [2]).

5 Bounds for derivatives of Xy, 0™X, and S

Definition 5.1. Fork € Z,, T > 0 and g € C*(Ry.), we define |glx = |g|x,T as

k o).

(5.1) lgler =) sup

i=0 t€[0,T] dti

We take a class V of functions v € C® (]R;} and T > 0 satisfying that
(5.2) Cyr= maX(Cf}}, CS‘?}) < 00,
where

(53)  CYp= sup {|0™d( Xo(-9))loz, [0S, X(-,7,9))lors
vEV,SES,
re(—346,39) '

0™ Xo(-, 8)ors 1 <1< n—1, jm| < M} < o0,
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and

.5.4 c® .= A o t,s _1, Y71 < oo,
(5:4) VT vev,s:ggem{( (t9) 7 e} .

Here, in Cl(,l’%‘, M = M(K) € N denotes the maximal number of the degrees of spatial
derivatives taken over the terms appearing in AX, by and \;, O™ = ot -+ O, lm| =
Yoy my for m = (mq,--- ,my) € (Z4)™ and & > 0 is chosen as in Section 2. Moreover, in
2 .
C,
v,

a_(t,s) =a’(t,s) = inf
(&) (&) geRmL:¢|=1

(alt, 8)€, ),

where a(t, s) = (a4;(t, $))1<ij<n—1 is the matrix defined by a;; = V.S*-V.S7, and (-,-) and
| - | denote the inner product and the norm of R™!, respectively.

Assumption 5.1. There exist some N = N(K) € N, T = T(V) > 0 and C; =
Ci(Cyr,K,T) > 0 such that

(5.5) sup sup [0FO™ XS (-, 8)lor < Ci(1+ vln7)Y,
1<i<n s€S
(5.6) sup " sup |6f6mSi(~,X(~,r, Nor < C1(1+ IvIN,T)N,

1<i<n—1re(-34,38),3€S
fork=0,1,--- K, m| <M andveV.

Under the choice ¥V = V(w) = {a;0 < € < €3} for sufficiently small & > 0,
Assumption 5.1 determines 7(w) := T(V(w)), up to which two bounds (5.5) and (5.6)
hold. Indeed, Assumption 5.1 is true for some T' = 7(w) > 0 under a two-dimensional
setting as long as the limit curve 4; is convex (see [2]).

6 Estimates for u; and u,f

Under these settings, one can obtain estimates for u; and u,f.
Proposition 6.1. For every k=0,1,...,K,

(6.1) sup {lur(t, p, 5)|, lui (B)]} < (CoK2)?K2,
(t,0,8)€[0,T|XRXS

holds for some Cy = Ca(Cy.p,T) > 0 and
K = Ky(v) = em E)AHolny a0 EOTVD)
with some n; = ni(K) € N.

Corollary 6.2. We assume Assumptions 1.1, 1.2 and 5.1, and define G. > e%,0<e <1,
from H. appearing in Assumption 1.1 by the relation

(6.2) loglog Ge = H2m ()
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where ni(K) € N is the number determined by Proposition 6.1. Then, we have
, o G
6.3 lim G, = im——— =0.
(63) P [log e
Furthermore, ur and 'u,,::: determined from v(t) = ouif(t) as above satisfy

(6.4) s {ultp 9 EO) <G, 0SE<K,
(t,p,8)€[0,T(w)]xRXS

for every sufficiently small e > 0 and every w € Q, where T = T'(w) = infocecey 0° > 0.

7 Estimate for the difference between v} and «°

Set ) o
(7.1) ¥(e) = (log log log | loge|)ﬂ,

with 3 > 0 and let We(t),.e > 0 be the stopped process of w, that is, W.(t) = w(t A 7(¢)),
where 7(g) is the first exit time of w(t) from the interval I, = (—4(g),4(c)). We define
w®(t) by ‘

(7.2) we(t) = /Ooo W(e)(t — 8)We(s)ds, "711;(6)(3) = "/"(5)"7(¢(5)s)1

and 7 is a non-negative C'°°-function on R, whose support is contained in (0, 1), satisfying
Jrn(u)du = 1. We can show that the diverging speed of the noise is sufficiently slow in
such a way that Assumption 1.1 holds.

‘Lemma 7.1. For wé(t) defined by (7.2), we have
(7.3) [ lkr < Blnlk2p(©)F?, k€ 24
Furthermore, Assumption 1.1 holds for this w®(t) by taking H. = ny (K )|n|n1(K)+2¢(e)"1(K +2,

Set, , .
(1.4) 50 - [ (guito) - v(0))ds,
D
and let us set
t
(7.5) ~ @m@:@@@W%/QWM&OSkgK
A ;

In order to prove Theorem 1.1, we need to obtain the error estimate between v§, and u®.
We take initial data g¢ = g°(z) of (1.1) or (2.1) satisfying

o (&) = ui(0,2) + (),
(7.7) , "¢'€”‘L2(D) <Gy Pek,
(7.8) ~ L&@mfm

for sufficiently small € > 0, where C3 > 0 is a certain constant independent of €. Recall
that K > max(n + 2,6) is assumed. Then we have
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Lemma 7.2 ([1]). For a bounded domain D C R”, letp = min{%,.l}. Then there exists
Cn(D) > 0 such that for every R € H'(D) with [, R(z)dz =0,

(7.9) IRIZE ) < Ca(D) IRl ) I VRIZ2 ),

holds.

Theorem 7.3. Assume (7.6)—(7.8) for the initial data g°. Then, for suﬂicieﬁtly small
e>0

(7.10) sup [|v (t) — u*(t)l|2(py < Cye® Y loge|,
te(0,T)

holds for some constant Cyg > 0 independent of €.
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