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1. Introduction

We investigate the exact multiplicity of positive solutions and bifurcation diagrams of the semi‐

positone problem

\left\{\begin{array}{l}
u''(x)+ $\lambda$ f(u)=0, -1<x<1,\\
u(-1)=u(1)=0,
\end{array}\right. (1.1)

where  $\lambda$>0 is a bifurcation parameter. We say that f(u) is semipositone if f(0)<0.
Semipositone problems arise in many different areas of applied mathematics and physics,

such as the buckling of mechanical systems, the design of suspension bridges, chemical reactions

and population models with harvesting effort; see e.g. [3, 16, 23, 28, 29]. Note that it is possible
that (1.1) has non‐negative solutions with interior zeros (see [10]). In this paper we will only
consider the positive solutions of (1.1).

The study of semipositone problems was formally introduced by Castro and Shivaji in [10].
In general, studying positive solutions for semipositone problems is more difficult than that for

positone problems. The difficulty is due to the fact that in the semipositone case, solutions

have to live in regions where the nonlinear term is negative as well as positive. Due to its

importance, one dimensional semipositone problems have been widely studied by many authors;
see e.g. [1, 5, 8, 10, 15, 24, 31, 34]. For high dimensional results of semipositone problems; see

e.g. [2, 4, 6, 7, 9, 14].
In this paper, we assume that nonlinearity f \in  C[0, \infty ) \cap C^{2}(0, \infty) satisfies hypotheses

(\mathrm{H}1)-(\mathrm{H}3) as follows:

(H1) f(0) <0 (semipositone).

(H2) f is concave‐convex on (0, \infty) ; that is, f has a unique positive inflection point  $\gamma$ such that

 f''(u)\left\{\begin{array}{l}
<0 \mathrm{o}\mathrm{n} (0,  $\gamma$) ,\\
=0 \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} u= $\gamma$,\\
>0 \mathrm{o}\mathrm{n} ( $\gamma$, \infty) .
\end{array}\right. (1.2)

(H3) f is asymptotic superlinear; that is, \displaystyle \lim_{u\rightarrow\infty}(f(u)/u)=\infty.

In addition, we assume that f satisfies either one of the following two hypotheses:

(\mathrm{H}4\mathrm{a}) f has exactly one positive zero a.
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(\mathrm{H}4\mathrm{b}) f has three distinct positive zeros a<b<\mathrm{c}.

Possible graphs of f satisfying (\mathrm{H}1)-(\mathrm{H}3) and (\mathrm{H}4\mathrm{a}) (resp. (\mathrm{H}1)-(\mathrm{H}3) and (\mathrm{H}4\mathrm{b}) ) are illus‐

trated in Fig. 1 (resp. Fig. 2.) For the degenerate case that f has exactly two distinct positive
zeros a<b , the analysis for the exact multiplicity of positive solutions and bifurcation diagrams
of (1.1) is the same as that f has exactly three distinct positive zeros, and hence we omit it.

Fig. 1. Five possible graphs of f satisfying (\mathrm{H}1)-(\mathrm{H}3) and (\mathrm{H}4\mathrm{a}) .

(i) f( $\gamma$)>0, f'( $\gamma$) <0 . (ii) f( $\gamma$)>0, f'( $\gamma$)\geq 0 . (iii) f( $\gamma$)=0 . (iv) f( $\gamma$) <0, f'( $\gamma$)\geq 0 . (v)
f( $\gamma$)<0, f'( $\gamma$)<0.

Fig. 2. Three possible graphs of f satisfying (\mathrm{H}1)-(\mathrm{H}3) and (\mathrm{H}4\mathrm{b}) .

(i) F(b)>0 . (ii) F(b)=0 . (iii) F(b)<0.

Let F(u)=\displaystyle \int_{0}^{u}f(t)dt . We notice that:
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(I) If f satisfying (\mathrm{H}1)-(\mathrm{H}3) and (\mathrm{H}4\mathrm{a}) (resp. (\mathrm{H}1)-(\mathrm{H}3) , (\mathrm{H}4\mathrm{b}) and F(b)\leq 0), there exists

a unique  $\mu$\in (a, \infty) (resp.  $\mu$\in (c, \infty) ) such that

F(u)\left\{\begin{array}{ll}
\leq(\not\equiv) 0 & \mathrm{o}\mathrm{n} (0,  $\mu$) ,\\
=0 & \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} u= $\mu$,\\
>0 & \mathrm{o}\mathrm{n} ( $\mu$, \infty) .
\end{array}\right. (1.3)

(II) If f satisfying (\mathrm{H}1)-(\mathrm{H}3) , (\mathrm{H}4\mathrm{b}) and F(b) > 0 , there exist two numbers \overline{b} \in (a, b) and

\overline{c}\in(c, \infty) such that

F(u)\left\{\begin{array}{ll}
<0 & \mathrm{o}\mathrm{n} (0, \overline{b}) ,\\
=0 & \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} u=\overline{b},\\
>0 & \mathrm{o}\mathrm{n} (\overline{b}, b],\\
<F(b) & \mathrm{o}\mathrm{n} (b,\overline{c}) ,\\
=F(b) & \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} u=\overline{c},\\
>F(b) & \mathrm{o}\mathrm{n} (\overline{c}, \infty) .
\end{array}\right. (1.4)

We define the bifurcation diagram of (1.1)

 $\Sigma$= { ( $\lambda$, \Vert u_{ $\lambda$}\Vert_{\infty}) :  $\lambda$>0 and u_{ $\lambda$} is a positive solution of (1.1)}.

We say that, on the ( $\lambda$, ||u||_{\infty})‐plane, the bifurcation diagram  $\Sigma$ is reversed \mathrm{S}‐shaped (see Fig.
3) if  $\Sigma$ is a continuous curve and there exist  0 < $\lambda$_{*} < $\lambda$^{*} < \infty such that  $\Sigma$ has exactly two

turning points at some points ($\lambda$_{*}, ||u_{$\lambda$_{*}}\Vert_{\infty}) and ($\lambda$^{*}, \Vert u_{ $\lambda$}*\Vert_{\infty}) , and

(i) $\lambda$_{*}<$\lambda$^{*} and \Vert u_{$\lambda$_{*}}\Vert_{\infty} < \Vert u_{ $\lambda$}*\Vert_{\infty},

(ii) at ($\lambda$_{*}, \Vert u_{$\lambda$_{*}}\Vert_{\infty}) the curve turns to the right,

(iii) at ($\lambda$^{*}, \Vert u_{ $\lambda$}*\Vert_{\infty}) the curve turns to the lefl.

(i) (ü) (iii)

Fig. 3. Three possible reversed \mathrm{S}‐shaped bifurcation diagrams S.

(i) $\lambda$^{*}<\overline{ $\lambda$} . (ii). $\lambda$^{*}=\overline{ $\lambda$} . (iii) $\lambda$^{*}>\overline{ $\lambda$}.

Moreover, we say that, on the ( $\lambda$, ||u||_{\infty}) ‐plane, the bifurcation diagram  $\Sigma$ is broken reversed

\mathrm{S}‐shaped (see Fig. 4) if  $\Sigma$ has two connected branches such that

(i) the lower branch of  $\Sigma$ has exactly one turning point ($\lambda$_{*}, \Vert u_{$\lambda$_{*}}\Vert_{\infty}) where the curve turns

to the right,

65



(ii) the upper branch of  $\Sigma$ is a monotone decreasing curve.

Fig. 4. Broken reversed \mathrm{S}‐shaped bifurcation diagram S.

If the nonlinearity f \in  C^{2} is convex on [0, \infty), it is easy to check that the bifurcation

diagram  $\Sigma$ of semipositone problem (1.1) is a monotone decreasing curve on the ( $\lambda$, ||u||_{\infty})-
plane; see Castro and Shivaji [10] for the details. In [5, 8, 10, 34], semipositone problems with

concave nonlinearities have been extensively studied. More precisely, the bifurcation diagram  $\Sigma$

of semipositone problem (1.1) is either a \mathrm{c}‐shaped curve, a monotone decreasing curve, or an

empty set on the ( $\lambda$, ||u||_{\infty}) ‐plane. If the nonlinearity f\in C^{2} is convex‐concave on [0, \infty), the

exact multiplicity result of positive solutions and bifurcation diagram  $\Sigma$ of semipositone problem
(1.1) remain the same as those for concave nonlinearities  f\in C^{2} on [0, \infty); see Ouyang and Shi

[30].
It is well known in the literature that the study of positive solutions to semipositone problems

with concave‐convex nonlinearities is mathematically challenging. If  f \in  C^{2}[0, \infty ) satisfies

(\mathrm{H}1)-(\mathrm{H}3) , (\mathrm{H}4\mathrm{a}) and some suitable conditions, Castro and Shivaji [10, Theorem 1.1(\mathrm{C}) ] used

the quadrature method (time map method) to prove that (1.1) has at least three solutions for

positive  $\lambda$ in certain range. In the following Theorem 1.1, Shi and Shivaji [31, Theorem 3.1]
and Gadam and Iaia [15, Theorem 1] proved that the bifurcation diagram  $\Sigma$ of (1.1) is reversed

\mathrm{S}‐shaped on the ( $\lambda$, 1u||_{\infty})‐plane, respectively. If  f\in C^{2}[0, \infty ) satisfies (\mathrm{H}1)-(\mathrm{H}3) and (\mathrm{H}4\mathrm{b}) , in

the following Theorem 1.2, Shi and Shivaji [31, Theorem 4.1] proved that the bifurcation diagram
 $\Sigma$ of (1.1) is broken reversed \mathrm{S}‐shaped on the ( $\lambda$, ||u||_{\infty})‐plane. The approach in Shi and Shivaji
[31, Theorems 3.1 and 4.1] mainly used bifurcation theory of Crandall and Rabinowitz [12].
While the approach in Gadam and Iaia [15, Theorem 1] used some variational techniques with

respect to parameters and some time map techniques. For more researches about the exact

multiplicity of concave‐convex nonlinearity problem, see [11, 18, 19, 20, 21, 33, 35].
Define

 $\theta$(u)\equiv 2F(u)-uf(u) for u\geq 0 . (1.5)

Theorem 1.1 (See Fig. 1(\mathrm{i})-(\mathrm{i}\mathrm{i}) and Fig. 3). Consider (1.1). Assume that f \in  C^{2}[0, \infty )
satisfies (Hl)-(H3) , (H4a) ,

F( $\gamma$)>0 , (1.6)
and

 $\theta$( $\gamma$)\geq 0 . (1.7)

Then the bifurcation diagram  $\Sigma$ of (1.1) is reversed  S‐shaped on the ( $\lambda$, 1u||_{\infty}) ‐plane.
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Theorem 1.2 (See Fig. 2(i) and Fig. 4). Consider (1.1). Assume that  f\in C^{2}[0, \infty ) satis‐

fies (Hl)-(H3) and (H4b) , (1.6), (1.7) and

J(\overline{c})\leq 0 , (1.8)

where J(u) \equiv f^{2}(u)-F(u)f'(u) and \overline{c} is defined in (1.4): Then the bifurcation diagram  $\Sigma$ of

(1.1) is broken reversed  S‐shaped on the ( $\lambda$, ||u||_{\infty}) ‐plane.

In Theorem 2.1(i) stated below, we improve the results in Theorem 1.1; that is, we give
weaker conditions f( $\gamma$) > 0 , (C1), (C2) for (1.6), (1.7); see Theorem 2.1(i) and Remark 1 for

the details. For Theorem 1.2, Shi and Shivaji [31� p. 570, lines 1\sim-2\mathrm{J} conjectured that (1.8) is

not necessary. In Theorem 2.2(i) stated below, we prove this conjecture. Moreover, we give
weaker conditions F(b) > 0 , (C1�), (C2 ) for (1.6), (1.7); see Theorem 2.2(i) and Remark 2 for

the details.

In recent years, singular semipositone problems have been studied extensively in the literature

(see [17, 26, 27, 32, 36, 37] and the references therein). Our approaches used in this paper also

can be applied to this study. If f\in C^{2}(0, \infty) , \displaystyle \lim_{u\rightarrow 0+}f(u)=-\infty, F(u_{0}) >0 for some u_{0} >0,
and f satisfies hypotheses (H2) and (H3), under the same additional conditions in Theorems 2.1

and 2.2, we can prove that all the results still hold; see Remark 3 for the details.

In Section 3, we give two examples for Theorems 2.1 and 2.2. The first one is the semipositone
problem with cubic nonlinearity of the form

\left\{\begin{array}{l}
u''(x)+ $\lambda$(u^{3}-Au^{2}+Bu-C)=0, -1<x<1,\\
u(-1)=u(1)=0, A_{\}}B, C>0.
\end{array}\right. (1.9)

For (1.9), Shi and Shivaji [31, Section 5] proved Theorem 1.1 holds if

C\displaystyle \leq\frac{A^{3}}{54} , (1.10)

C< \displaystyle \frac{6AB-A^{3}}{36} , (1.11)

and either

A^{2}\leq 3B , (1.12)
or

A^{2}>3B, (9AB-2A^{3}-27C)^{2}-4(A^{2}-3B)^{3}>0 . (1.13)
In Theorem 3.1 stated below, we prove the same results for (1.9) under weaker condition

C\displaystyle \leq\frac{16}{729}A^{3}
for (1.10). Moreover,

(i) If A^{2}\leq 3B , we give weaker condition C< \displaystyle \frac{9AB-2A^{3}}{27} for (1.11).

(ii) If A^{2}>3B , we give weaker condition C< \displaystyle \frac{9AB-2A^{3}}{27}-\frac{2(A^{2}-3B)^{3/2}}{27} for (1.11) and (1.13).
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See Theorem 3.1 and Remark 5 stated below for the details.

Another example is the semipositone problem with cubic nonlinearity of the form

\left\{\begin{array}{l}
u''(x)+ $\lambda$(u-a)(u-b)(u-c)=0, -1<x<1,\\
u(-1)=u(1)=0, 0<a<b<c.
\end{array}\right. (1.14)

For problem (1.14), a subcase of problem (1.9), we are able to determine completely the exact

multiplicity of positive solutions and bifurcation diagrams of (1.14). In Theorem 3.2 stated

below, we prove that the bifurcation diagram  $\Sigma$ of (1.14) is broken reversed \mathrm{S}‐shaped on the

( $\lambda$, \Vert u\Vert_{\infty}) ‐plane (see Fig. 4) if 2b(a+c)>b^{2}+6ac ; while it is a monotone decreasing curve on

the ( $\lambda$, \Vert u\Vert_{\infty}) ‐plane (see Fig. 5) if 2b(a+c)\leq b^{2}+6ac . See Theorem 3.2 stated below depicted
below for the details.

(i) (i1)

Fig. 5. Two possible monotone decreasing bifurcation diagrams S.

2. Main results

The main results are next Theorems 2.1 and 2.2. We combine several different techniques
developed in the latest decade [13, 15, 22, 25] to prove Theorems 2.1 and 2.2. In Theorem 2.1(i),
we improve the results in Theorem 1.1; that is, we weaken conditions f( $\gamma$) > 0 , (C1), (C2)
for (1.6), (1.7). In Theorem 2.2(i), we improve the results in Theorem 1,2; that is, we weaken

conditions F(b) >0 , (C1�), (C2 ) for (1.6), (1.7).
We first recall the function  $\theta$(u)=2F(u)-uf(u) defined in (1.5) and the positive numbers

 $\mu$, \overline{b},\overline{c} defined in (1.3) and (1.4).

Theorem 2.1. Consider (1.1). Assume that f \in  C[0, \infty ) \cap C^{2}(0, \infty) satisfies (Hl)-(H3) and

(H4a) . Then the following assertions (i) and (ii) hold:

(i) (See Fig. 1 (\mathrm{i})-(\mathrm{i}i) and Fig. 3.) If f( $\gamma$) >0 and

(Cl) There exists \overline{ $\mu$}\in( $\mu$, \infty) such that  $\theta$(\overline{ $\mu$}) , $\theta$'(\overline{ $\mu$})\geq 0.

Also assume that one of the following conditions (C2)-(C4) holds:

(C2) \displaystyle \frac{u$\theta$'(u)}{ $\theta$(u)} is nonincreasing on ( $\mu$,  $\mu$

(C3) \displaystyle \frac{uf'(u)}{f(u)} is nonincreasing on ( $\mu$,  $\mu$
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(C4)  f''(u) <0 on ( $\mu$,\overline{ $\mu$}) .

Then the bifurcation diagram  $\Sigma$ of (1.1) is reversed  S‐shaped on the ( $\lambda$, ||u||_{\infty}) ‐plane.
Moreover, there exist $\lambda$^{*}>$\lambda$_{*}>0 and \overline{ $\lambda$}>$\lambda$_{*} such that:

Case 1: (See Fig. 3(i). ) If $\lambda$^{*} <\overline{ $\lambda$} , then (1.1) has exactly three positive solutions u_{ $\lambda$}, v_{ $\lambda$}, w_{ $\lambda$} with

u_{ $\lambda$} < v_{ $\lambda$} < w_{ $\lambda$} for $\lambda$_{*} <  $\lambda$ < $\lambda$^{*} , exactly two positive solutions (v_{ $\lambda$}, w_{ $\lambda$} with v_{ $\lambda$} < w_{ $\lambda$})
for  $\lambda$= $\lambda$_{*} and (u_{ $\lambda$}, v_{ $\lambda$} with u_{ $\lambda$} <v_{ $\lambda$}) for  $\lambda$= $\lambda$^{*} , exactly one positive solution (w_{ $\lambda$}) for

0< $\lambda$<$\lambda$_{*} and (u_{ $\lambda$}) for $\lambda$^{*}< $\lambda$\leq\overline{ $\lambda$} , and no positive solution for  $\lambda$>\overline{ $\lambda$}.

Case 2: (See Fig. 3(ii).) If $\lambda$^{*}=\overline{ $\lambda$} , then (1.1) has exactly three positive solutions u_{ $\lambda$}, v_{ $\lambda$}, w_{ $\lambda$} wvith

u_{ $\lambda$} < v_{ $\lambda$} < w_{ $\lambda$} for $\lambda$_{*} <  $\lambda$ < $\lambda$^{*}
, exactly two positive solutions (v_{ $\lambda$}, w_{ $\lambda$} with v_{ $\lambda$} < w_{ $\lambda$})

for  $\lambda$ = $\lambda$_{*} and (u_{ $\lambda$}, v_{ $\lambda$} With u_{ $\lambda$} < v_{ $\lambda$}) for  $\lambda$ = $\lambda$^{*} , exactly one positive solution w_{ $\lambda$} for

0< $\lambda$<$\lambda$_{*} , and no positive solution for  $\lambda$>$\lambda$^{*}.

Case 3: (See Fig. 3(iii).) If $\lambda$^{*}>\overline{ $\lambda$} , then (1.1) has exactly three positive solutions u_{ $\lambda$}, v_{ $\lambda$}, w_{ $\lambda$} With

u_{ $\lambda$} < v_{ $\lambda$} < w_{ $\lambda$} for $\lambda$_{*} <  $\lambda$ \leq \overline{ $\lambda$} , exactly two positive solutions v_{ $\lambda$}, w_{ $\lambda$} With v_{ $\lambda$} < w_{ $\lambda$} for

 $\lambda$=$\lambda$_{*} and \overline{ $\lambda$}< $\lambda$<$\lambda$^{*} , exactly one positive solution w_{ $\lambda$} for 0< $\lambda$<$\lambda$_{*} and  $\lambda$=$\lambda$^{*}
,

and

no positive solution for  $\lambda$>$\lambda$^{*}.

More precisely,

\displaystyle \lim_{ $\lambda$\rightarrow 0+}\Vert w_{ $\lambda$}\Vert_{\infty}=\infty and \displaystyle \lim_{ $\lambda$\rightarrow\overline{ $\lambda$}-}\Vert u_{ $\lambda$}\Vert_{\infty}=\Vert u_{\overline{ $\lambda$}}\Vert_{\infty}= $\mu$.

(ii) (See Fig. 1(iii)-(\mathrm{i}r) and Fig. 5(i). ) If f( $\gamma$)\leq 0 , then the bifurcation diagram  $\Sigma$ of (1.1) is

 a monotone decreasing curve o\mathrm{J}\mathrm{i} the ( $\lambda$, ||u||_{\infty}) ‐plane. Moreover, there exists \overline{ $\lambda$} > 0 such

that (1.1) has exactly one positive solution u_{ $\lambda$} for 0< $\lambda$\leq\overline{ $\lambda$} , and no positive solution for

 $\lambda$>\overline{ $\lambda$} . More precisely,

\displaystyle \lim_{ $\lambda$\rightarrow 0+}\Vert u_{ $\lambda$}\Vert_{\infty}=\infty and \displaystyle \lim_{ $\lambda$\rightarrow\overline{ $\lambda$}^{-}}\Vert u_{ $\lambda$}\Vert_{\infty}= \Vert u_{\overline{ $\lambda$}}\Vert_{\infty}= $\mu$.

Remark 1. Assume that  f\in C[0, \infty ) \cap C^{2}(0, \infty) satisfies (Hl)-(H3) and (H4a) . If (1.6) holds,
then f( $\gamma$) >0 and  $\gamma$> $\mu$ by (1.3); see Fig. 1 (i)-(\mathrm{i}i) . Let \overline{ $\mu$}= $\gamma$ , then (Cl) and (C4) hold by
(H2) and (1.7). We also note that (C3) and (C4) aie both sufficient conditions of (C2) by the

proof of Hung and Wang [22, Theorem 2.11; see also Lemma 3.2 stated below.  So ,
conditions

f( $\gamma$)>0 , (Cl) and (C2) are necessary conditions of (1.6) and (1.7). This implies that Theorem

2.1(i) is more general than Theorem 1.1.

Theorem 2.2. Consider (1.1). Assume that f \in  C[0, \infty ) \cap C^{2}(0, \infty) satisfies (Hl)-(H3) and

(H4\mathrm{b}) . Then the following assertions (i)-(iii) hold:

(i) (See Fig. 2(i) and Fig. 4.) If F(b) >0 and

(Cl�) There exists \hat{b}\in (\overline{b}, b] such that  $\theta$(\hat{b}), $\theta$'(\hat{b})\geq 0.

Also assume one of the following conditions (C?)-(C4') holds:

(C2�) \displaystyle \frac{\mathrm{u}$\theta$'(u)}{ $\theta$(u)} is nonincreasing on (\overline{b}, b

(C3�) \displaystyle \frac{uf'(u)}{f(\mathrm{u})} is nonincreasing on (\overline{b}, b
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(C4�) f''(u) <0 on (\overline{b}, b

Then the bifurcation diagrarn  $\Sigma$ of (1.1) is broken reversed  S‐shaped on the ( $\lambda$, ||u||_{\infty})-
plane. Moreover, there exist \overline{ $\lambda$}>$\lambda$_{*}>0 such that (1.1) has exactly three positive solutions

u_{ $\lambda$}, v_{ $\lambda$}, w_{ $\lambda$} with u_{ $\lambda$} <v_{ $\lambda$} <w_{ $\lambda$} for all $\lambda$_{*} <  $\lambda$ \leq \overline{ $\lambda$} , exactly two positive solutions v_{ $\lambda$}, w_{ $\lambda$}

with v_{ $\lambda$}<w_{ $\lambda$} for  $\lambda$=$\lambda$_{*} and  $\lambda$>\overline{ $\lambda$} , and exâctly one positiVe solution w_{ $\lambda$} for 0< $\lambda$<$\lambda$_{*}.
More precisely,

\displaystyle \lim_{ $\lambda$\rightarrow\overline{ $\lambda$}^{-}}\Vert u_{ $\lambda$}\Vert_{\infty}=\Vert u_{\overline{ $\lambda$}}\Vert_{\infty}=\overline{b}, \lim_{ $\lambda$\rightarrow\infty}\Vert v_{ $\lambda$}\Vert_{\infty}=b, \lim_{ $\lambda$\rightarrow 0+}\Vert w_{ $\lambda$}\Vert_{\infty}=\infty, \lim_{ $\lambda$\rightarrow\infty}\Vert w_{ $\lambda$}\Vert_{\infty}=\overline{c}.
(ii) (See Fig. 2(ii) and Fig. 5(ii).) If F(b) = 0 ,

then the bifurcation diagram  $\Sigma$ of (1.1) is

a monotone decreasing curve on the ( $\lambda$, ||u||_{\infty}) ‐plane. Moreover, (1.1) has exactly one

positive solution u_{ $\lambda$} for all  $\lambda$>0 . More precisely,

\displaystyle \lim_{ $\lambda$\rightarrow 0+} \Vert u_{ $\lambda$}\Vert_{\infty}=\infty and \displaystyle \lim_{ $\lambda$\rightarrow\infty} \Vert u_{ $\lambda$}\Vert_{\infty}= $\mu$.

(iii) (See Fig. 2(iii) and Fig. 5(i). ) If F(b) < 0 , then the bifurcation diagram  $\Sigma$ of (1.1) is

 a monotone decreasing curve on the ( $\lambda$, ||u||_{\infty}) ‐plane. MoreoVer, there exists \overline{ $\lambda$}>0 such

that (1.1) has exactly one positive solution u_{ $\lambda$} for 0< $\lambda$\leq\overline{ $\lambda$} , and no positive solution for

 $\lambda$>\overline{ $\lambda$} . More precisely,

\displaystyle \lim_{ $\lambda$\rightarrow 0+}\Vert u_{ $\lambda$}\Vert_{\infty}=\infty and \displaystyle \lim_{ $\lambda$\rightarrow\overline{ $\lambda$}^{-}}\Vert u_{ $\lambda$}\Vert_{\infty}= \Vert u_{\overline{ $\lambda$}}\Vert_{\infty}= $\mu$.

Remark 2. Assume that  f\in  C[0, \infty ) \cap C^{2}(0, \infty) satisfies (Hl)-(H3) and (H4b) . If (1.6) holds,
then F(b) > 0 and  $\gamma$ > \overline{b} u_{y} (1.4) ; see Fig. 2(i). Let \hat{b} =  $\gamma$ , then (Cl�) and (C4�) hold by
(H2) and (1.7). We also note that conditions (C3^{\{}) and (C4�) are both sufficient conditions of

(C2�) by the proof of Hung and Wang l22, Theorem 2.11; see also Lemma 3.2 stated below. So

conditions F(b) >0 , (Cl�) and (C2) are necessary conditions of (1.6) and (1.7). This implies
that Theorem 2.2(i) is more general than Theorem 1.2. In addition, we prove that condition

(1.8) is not necessary in Theorem 2.2(i), and thus we prove the conjecture in Shi and Shivaji
Ĩ31, p. 570, lines 1−2].

Remark 3. If f \in  C^{2}(0, \infty) satisfies all hypotheses Theorem 2.1 (resp. Theorem 2.2), With

(Hl) replaced by (Hl�):

(Hl�) \displaystyle \lim_{u\rightarrow 0+}f(u)=-\infty (singular semipositone)) and  F(u_{0})>0 for some u_{0}>0.

Then the same arguments in the proof of Theorem 2.1 (resp. Theorem 2.2) can apply to

prove the same results in Theorem 2.1 (resp. Theorem 2.2).

Remark 4. If  f\in C[0, \infty ) \cap C^{2}(0, \infty) satisfies all hypotheses in Theorem 2.1 (resp. Theorem

2. 2), with (H3) replaced by (H3^{\{}) :

(H3�) There exists a number p_{0} > 0 such that f(u)/u is strictly increasing on (p_{0}, \infty) and

\displaystyle \lim_{u\rightarrow\infty}(f(u)/u)=k\in(0, \infty) .

Then the same arguments in the proof of Theorem 2.1 (resp. Theorem 2.2) can apply to

determine the same shapes of bifurcation diagrams  $\Sigma$ of (1.1) and prove that  $\Sigma$ approaches
the line  $\lambda$= \displaystyle \frac{4$\pi$^{2}}{k} as \Vert u_{ $\lambda$}\Vert_{\infty} \rightarrow\infty . Thus  $\iota$ỷre are able to obtain the similar exact multiplicity of

positive solutions.
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3. Two examples

In this section, we give two examples for Theorems 2.1 and 2.2. In particular, we are able to

determine completely the exact multiplicity of positive solutions and bifurcation diagrams of

(1.14) in Theorem 3.2.

Theorem 3.1 (See Fig. 3). Consider problem (1.9)

\left\{\begin{array}{l}
u^{l/}(x)+ $\lambda$(u^{3}-Au^{2}+Bu-C)=0, -1<x<1,\\
u(-1)=u(1)=0, A, B, C>0.
\end{array}\right.
If

C\displaystyle \leq\frac{16}{729}A^{3} , (3.1)

and either

A^{2}\displaystyle \leq 3B, C<\frac{9AB-2A^{3}}{27} , (3.2)
or

3B<A^{2}<4B, C< \displaystyle \frac{9AB-2A^{3}}{27}-\frac{2(A^{2}-3B)^{3/2}}{27} . (3.3)

Then the bifurcation diagram  $\Sigma$ of (1.9) is reversed  S‐shaped on the ( $\lambda$, ||u||_{\infty}) ‐plane. Moreover,
there exist $\lambda$^{*}>$\lambda$_{*}>0 and \overline{ $\lambda$}>$\lambda$_{*} such that:

Case 1: (See Fig. 3(i). ) If $\lambda$^{*} <\overline{ $\lambda$} , then (1.9) has exactly three positive solutions u_{ $\lambda$}, v_{ $\lambda$}, w_{ $\lambda$} with

u_{ $\lambda$} < v_{ $\lambda$} < w_{ $\lambda$} for $\lambda$_{*} <  $\lambda$ < $\lambda$^{*} , exactly two positive solutions (v_{ $\lambda$}, w_{ $\lambda$} with v_{ $\lambda$} < w_{ $\lambda$})
for  $\lambda$= $\lambda$_{*} and (u_{ $\lambda$}, v_{ $\lambda$} with u_{ $\lambda$} < v_{ $\lambda$}) for  $\lambda$= $\lambda$^{*} , exactly one positive solution (w_{ $\lambda$}) for

0< $\lambda$<$\lambda$_{*} and (u_{ $\lambda$}) for $\lambda$^{*}< $\lambda$\leq\overline{ $\lambda$} , and no positive solution for  $\lambda$>\overline{ $\lambda$}.

Case 2: (See Fig. 3(ii).) If $\lambda$^{*}=\overline{ $\lambda$}
,

then (1.9) has exactly three positive solutions u_{ $\lambda$}, v_{ $\lambda$}, w_{ $\lambda$} with

u_{ $\lambda$} < v_{ $\lambda$} < w_{ $\lambda$} for $\lambda$_{*} <  $\lambda$ < $\lambda$^{*}
, exactly tWo positive solutions (v_{ $\lambda$},  w $\lambda$ With  v_{ $\lambda$} < w_{ $\lambda$})

for  $\lambda$ = $\lambda$_{*} and (u_{ $\lambda$}, v_{ $\lambda$} With u_{ $\lambda$} < v_{ $\lambda$}) for  $\lambda$ = $\lambda$^{*} , exactly one positive solution w_{ $\lambda$} for

0< $\lambda$<$\lambda$_{*} , and no positive solution for  $\lambda$>$\lambda$^{*}.

Case 3: (See Fig. 3(iii).) If $\lambda$^{*}>\overline{ $\lambda$} ; then (1.9) has exactly three positive solutions u_{ $\lambda$}, v_{ $\lambda$}, w_{ $\lambda$} with

u_{ $\lambda$} < v_{ $\lambda$} < w_{ $\lambda$} for $\lambda$_{*} <  $\lambda$ \leq \overline{ $\lambda$} , exactly two positive solutions v_{ $\lambda$}, w_{ $\lambda$} with v_{ $\lambda$} < w_{ $\lambda$} for

 $\lambda$=$\lambda$_{*} and \overline{ $\lambda$}< $\lambda$<$\lambda$^{*} , exactly one positive solution w_{ $\lambda$} for 0< $\lambda$<$\lambda$_{*} and  $\lambda$=$\lambda$^{*} , and

no positive solution for  $\lambda$>$\lambda$^{*}.

More precisely,

\mathrm{h}\mathrm{m}_{ $\lambda$\rightarrow 0+}\Vert w_{ $\lambda$}\Vert_{\infty}=\infty and \displaystyle \lim_{ $\lambda$\rightarrow\overline{ $\lambda$}^{-}} \Vert u_{ $\lambda$}\Vert_{\infty}=\Vert u_{\overline{ $\lambda$}}\Vert_{\infty}= $\mu$.

Remark 5. Comparing conditions (3.1) -(3.3) in Theorem 5.1 with conditions (1.10)‐(1.13) in

Shi and Shivaji [31, Section 51, we obtain that:

(i) (3.1) is weaker than (1.10).

(ii) If A^{2}\leq 3B , it is easy to check that condition C<\displaystyle \frac{9AB-2A^{3}}{27} is weaker than (1.11).

(iii) If 3B<A^{2}<4B , it is easy to check that condition C<\displaystyle \frac{9AB-2A^{3}}{27}-\frac{2(A^{2}-3B)^{3/2}}{27} is weaker

than (1.11) and (1.13).
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(iir) If A^{2}\geq 4B , it is easy to check that (1.11) and (1.13) can not hold together.

(1^{r}) By above part (i)-(i\mathrm{t}^{ $\gamma$}) , We obtain that conditions ((3.1), and either (3.2) or (3.3)) in

Theorem 5.1 are weaker than conditions ((1.10), (1.11), and either (1.12) or (1.13)) in Shi

and Shivaji I31 , Section 5].

Theorem 3.2. Consider problem (1.14)

\left\{\begin{array}{l}
u''(x)+ $\lambda$(u-a)(u-b)(u-c)=0, -1<x<1,\\
u(-1)=u(1)=0, 0<a<b<c.
\end{array}\right.
Then the following assertions (i)-(ii\mathrm{i}) hold:

(i) (See Fig. 4.) If 2b(a+c) >b^{2}+6ac , then the bifurcation diagram  $\Sigma$ of (1.14) is broken

reversed  S‐shaped on the ( $\lambda$, ||u||_{\infty}) ‐plane. Moreover, there exist \overline{ $\lambda$} > $\lambda$_{*} > 0 such that

(1.14) has exactly three positive solutions u_{ $\lambda$}, v_{ $\lambda$}, w_{ $\lambda$} wvith u_{ $\lambda$}<v_{ $\lambda$}<w_{ $\lambda$} for all $\lambda$_{*}< $\lambda$\leq\overline{ $\lambda$},
exactly two positive solutions v_{ $\lambda$}, w_{ $\lambda$} with v_{ $\lambda$}<w_{ $\lambda$} for  $\lambda$=$\lambda$_{*} and  $\lambda$>\overline{ $\lambda$} , and exactly one

positive solution w_{ $\lambda$} for 0< $\lambda$<$\lambda$_{*} . More precisely,

\displaystyle \lim_{ $\lambda$\rightarrow\overline{ $\lambda$}^{-}}\Vert u_{ $\lambda$}\Vert_{\infty}=\Vert u_{\overline{ $\lambda$}}\Vert_{\infty}=\overline{b}, \displaystyle \lim_{ $\lambda$\rightarrow\infty}\Vert v_{ $\lambda$}\Vert_{\infty}=b, \displaystyle \lim_{ $\lambda$\rightarrow 0+}\Vert w_{ $\lambda$}\Vert_{\infty}=\infty, \displaystyle \lim_{ $\lambda$\rightarrow\infty}\Vert w_{ $\lambda$}\Vert_{\infty}=\overline{c}.

(ii) (See Fig. 5(ii).) If 2b(a+\mathrm{c}) = b^{2}+6ac , then the bifurcation diagram  $\Sigma$ of (1.14) is

a monotone decreasing curve on the ( $\lambda$, ||u||_{\infty})‐plane. Moreover, (1.14) has exactly one

positive solution u_{ $\lambda$} for all  $\lambda$>0 . More precisely,

\displaystyle \lim_{ $\lambda$\rightarrow 0+}\Vert u_{ $\lambda$}\Vert_{\infty}=\infty and \displaystyle \lim_{ $\lambda$\rightarrow\infty}\Vert u_{ $\lambda$}\Vert_{\infty}= $\mu$.

(iii) (See Fig. 5(i). ) If 2b(a+c) < b^{2}+6ac , then the bifurcation diagram  $\Sigma$ of (1.14) is \mathrm{a}

monotone decreasing curve on the ( $\lambda$, ||u||_{\infty}) ‐plane. Moreover, there exists \overline{ $\lambda$} > 0 such

that (1.14) has exactly one positive solution u_{ $\lambda$} for 0< $\lambda$\leq\overline{ $\lambda$} , and no positive solution for

 $\lambda$>\overline{ $\lambda$} . More precisely,

\displaystyle \lim_{ $\lambda$\rightarrow 0+}\Vert u_{ $\lambda$}\Vert_{\infty}=\infty and \displaystyle \lim_{ $\lambda$\rightarrow\overline{ $\lambda$}-}\Vert u_{ $\lambda$}\Vert_{\infty}= \Vert u_{\overline{ $\lambda$}}\Vert_{\infty}= $\mu$.
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