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Abstract

We study a necessary and sufficient condition for complex symmetric
operator matrices to satisfy a‐Weyl�s theorem. Moreover, we also give the

conditions for such operator matrices to satisfy generalized a‐Weyl�s theorem

and generalized a‐Browder�s theorem, respectively. As some applications, we

provide various examples of such operator matrices which satisfy Weyl type
theorems.

1 Introduction

Let \mathcal{H} be an infinite dimensional separable Hilbert space and let \mathcal{L}(\mathcal{H}) denote

the algebra of bounded linear operators acting on \mathcal{H} . If T \in \mathcal{L}(\mathcal{H}) ,
we write

 $\sigma$(T) , $\sigma$_{p}(T) , $\sigma$_{s}(T) , and $\sigma$_{a}(T) for the spectrum, the point spectrum, the surjective
spectrum, and the approximate point spectrum of T

, respectively.
If T\in \mathcal{L}(\mathcal{H}) , we shall write N(T) and R(T) for the null space and the range of

T
, respectively. Also, let  $\alpha$(T):=dimN(T) and  $\beta$(T) :=dimN(T^{*}) , respectively.

For T \in \mathcal{L}(\mathcal{H}) , the smallest nonnegative integer p such that N(T^{p}) = N(T^{p+1})
is called the ascent of T and denoted by p(T) . If no such integer exists, we set

p(T) = \infty . The smallest nonnegative integer  q such that R(T^{q}) = R(T^{q+1}) is

called the descent of T and denoted by q(T) . If no such integer exists, we set

q(T)=\infty.
A conjugation on \mathcal{H} is an antilinear operator C : \mathcal{H} \rightarrow \mathcal{H} which satisfies

\{Cx, Cy\rangle = \langle y, x\} for all x, y \in \mathcal{H} and C^{2} = I . For any conjugation C , there
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is an orthonormal basis \{e_{n}\}_{n=0}^{\infty} for \mathcal{H} such that Ce_{n} = e_{n} for all n (see [7] for

more details). An operator T \in \mathcal{L}(\mathcal{H}) is said to be complex symmetric if there

exists a conjugation C on \mathcal{H} such that T=CT^{*}C . In this case, we say that T is

complex symmetric with conjugation C . This concept is due to the fact that T is a

complex symmetric operator if and only if it is unitarily equivalent to a symmetric
matrix with complex entries, regarded as an operator acting on an l^{2}‐space of

the appropriate dimension (see [7]). All normal operators, Hankel matrices, finite

Toeplitz matrices, all truncated Toeplitz operators, and some Volterra integration
operators are included in the class of complex symmetric operators. We refer the

reader to [7]-[9] for more details.

The Weyl type theorems for upper triangular operator matrices have been

studied by many authors. In general, even though Weyl type theorems hold for

entry operators T_{1} and T_{2} , neither \left(\begin{array}{ll}
T_{1} & 0\\
0 & T_{2}
\end{array}\right) nor \left(\begin{array}{ll}
T_{1} & T_{3}\\
0 & T_{2}
\end{array}\right) satisfies Weyl type

theorems (see [10], [11], [13], [14], [3], and ect So many authors have been studied

the relation between a diagonal matrix and an upper triangular operator matrix

of Weyl type theorems. Recently, in [17], they provide several forms of complex

symmetric operator matrices \left(\begin{array}{ll}
T_{1} & T_{2}\\
T_{3} & T_{4}
\end{array}\right) and have studied a‐Weyl�s theorem and

a‐Browder�s theorem for complex symmetric operator matrices \left(\begin{array}{ll}
A & B\\
0 & CA^{*}C
\end{array}\right) . We

now consider how Weyl type theorems hold for upper triangular operator matrices

when some entry operators are complex symmetric.

In this paper, we focus on the operator matrix \left(\begin{array}{ll}
A & B\\
0 & CA^{*}C
\end{array}\right) \in \mathcal{L}(\mathcal{H}\oplus \mathcal{H}) when

B is complex symmetric with the conjugation C . In this case, we are interested in

which the operator matrix \left(\begin{array}{ll}
A & B\\
0 & CA^{*}C
\end{array}\right) satisfies Weyl type theorems under what

behavior of the entry operator A . In particular, we give a necessary and sufficient

condition for this complex symmetric operator matrices to satisfy a‐Weyl�s theo‐

rem. Moreover, we also provide the conditions for such operator matrices to satisfy
generalized a‐Weyl�s theorem and generalized a‐Browder�s theorem, respectively.
As some applications, we give various examples of such operator matrices which

satisfy Weyl type theorems.

2 Preliminaries

An operator T \in \mathcal{L}(\mathcal{H}) is called upper semi‐Fredholm if it has closed range and

finite dimensional null space and is called lower semi‐Fredholm if it has closed range

and its range has finite co‐dimension. If T\in \mathcal{L}(\mathcal{H}) is either upper or lower semi‐

Fredholm, then T is called semi‐Fredholm, and index of a semi‐Fredholm operator
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T\in \mathcal{L}(\mathcal{H}) is defined by
i(T):= $\alpha$(T)- $\beta$(T) .

If both  $\alpha$(T) and  $\beta$(T) are finite, then T is called Fredholm. An operator T\in \mathcal{L}(\mathcal{H})
is called Weyl if it is Fredholm of index zero and Browder if it is Fredholm of

finite ascent and descent, respectively. The left essential spectrum $\sigma$_{SF+}(T) , the

right essential spectrum $\sigma$_{SF-}(T) , the essential spectrum $\sigma$_{e}(T) ,
the Weyl spectrum

$\sigma$_{w}(T) , and the Browder spectrum $\sigma$_{b}(T) of T\in \mathcal{L}(\mathcal{H}) are defined \Re follows;

$\sigma$_{SF+}(T) := {  $\lambda$\in \mathbb{C} :  T- $\lambda$ is not upper semi‐Fredholm},

 $\sigma$_{SF-}(T) := {  $\lambda$\in \mathbb{C} :  T- $\lambda$ is not lower semi‐Fredholm},

 $\sigma$_{e}(T) := {  $\lambda$\in \mathbb{C} :  T- $\lambda$ is not Fredholm},

 $\sigma$_{w}(T) := {  $\lambda$\in \mathbb{C} :  T- $\lambda$ is not Weyl},
and

 $\sigma$_{b}(T) := {  $\lambda$\in \mathbb{C} :  T- $\lambda$ is not Browder},

respectively. Evidently

 $\sigma$_{SF+}(T)\cup$\sigma$_{SF-}(T)=$\sigma$_{e}(T)\subseteq$\sigma$_{w}(T) \subseteq$\sigma$_{b}(T)=$\sigma$_{e}(T)\cup acc  $\sigma$(T) ,

where we write acc  $\Delta$ for the accumulation points of  $\Delta$\subseteq \mathbb{C} . If we write iso  $\Delta$=

 $\Delta$\backslash acc  $\Delta$
,

then we let

 $\pi$_{00}(T) := {  $\lambda$\in iso  $\sigma$(T) :  0< $\alpha$(T- $\lambda$)<\infty },

and  p_{00}(T) :=  $\sigma$(T)\backslash $\sigma$_{b}(T) . We say that Weyl�s theorem holds for T \in \mathcal{L}(\mathcal{H})
if  $\sigma$(T)\backslash $\sigma$_{w}(T) = $\pi$_{00}(T) , and that Browder�s theorem holds for T \in \mathcal{L}(\mathcal{H}) if

 $\sigma$(T)\backslash $\sigma$_{w}(T)=p_{00}(T) . We recall the definitions of some spectra;

$\sigma$_{ $\epsilon$ a}(T):=\cap\{$\sigma$_{a}(T+K):K\in \mathcal{K}(\mathcal{H})\}

is the essential approximate point spectrum, and

$\sigma$_{ab}(T) :=\cap {$\sigma$_{a}(T+K):TK=KT and K\in \mathcal{K}(\mathcal{H}) }

is the Browder essential approximate point spectrum. We put

$\pi$_{00}^{a}(T) := {  $\lambda$\in iso $\sigma$_{a}(T) :  0< $\alpha$(T- $\lambda$)<\infty }

and  p_{00}^{a}(T)=$\sigma$_{a}(T)\backslash $\sigma$_{ab}(T) .

Let T\in \mathcal{L}(\mathcal{H}) . We say that a‐Browder�s theorem holds for T if

$\sigma$_{a}(T)\backslash $\sigma$_{ea}(T)=p_{00}^{a}(T) ,
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and a‐ Weyl�s theorem holds for T if

$\sigma$_{a}(T)\backslash $\sigma$_{ea}(T)=$\pi$_{00}^{a}(T) .

It is known that

a‐Weyl�s theorem \vec{\frac{}{}} a‐Browder�s theorem \Rightarrow Browder�s theorem,

a‐Weyl�s theorem \Rightarrow \mathrm{W}\mathrm{e}\mathrm{y}\mathrm{l} �s theorem \vec{\frac{}{}} Browder�s theorem.

Let T_{n}=T|_{\mathrm{R}(T^{n})} for each nonnegative integer n| in particular, T_{0}=T . If T_{n} is

upper semi‐Fredholm for some nonnegative integer n , then T is called a upper semi‐

B‐Predholm operator. In this case, by [4], T_{m} is a upper semi‐Fredholm operator
and ind(T_{rn}) =ind(T_{n}) for each m \geq  n . Thus, we can consider the index of T

as the index of the semi‐Fredholm operator T_{n} . Similarly, we define lower semi‐B‐

Fredholm operators. We say that T\in \mathcal{L}(\mathcal{H}) is B‐Fredholm if it is both upper and

lower semi‐B‐Fredholm. Let SBF_{\overline{+}}(\mathcal{H}) be the class of all upper semi‐B‐Fredholm

operators such that ind(T)\leq 0 , and let

$\sigma$_{\mathcal{S}BF_{+}^{-}}(T):=\{ $\lambda$\in \mathbb{C}:T- $\lambda$\not\in SBF_{+}^{-}(\mathcal{H})\}.
An operator T \in \mathcal{L}(\mathcal{H}) is called B‐ Weyl if it is B‐Fredholm of index zero. The

B‐ Weyl spectrum $\sigma$_{BW}(T) of T is defined by

$\sigma$_{BW}(T) := {  $\lambda$\in \mathbb{C} :  T- $\lambda$ is not a  B‐Weyl operator}.

In addition, we state two spectra as follows;

$\sigma$_{LD}(T)=\{ $\lambda$\in \mathbb{C}|T- $\lambda$\not\in LD(\mathcal{H})\},

$\sigma$_{RD}(T)=\{ $\lambda$\in \mathbb{C}|T- $\lambda$\not\in RD(\mathcal{H})\},
where LD(\mathcal{H}) = {T \in \mathcal{H}| p(T) < \infty and  R(\mathcal{I}^{ $\varphi$(T)+1}) is closed}, and RD(\mathcal{H}) =

{  T\in \mathcal{H}| q(T) < \infty and  R(T^{q(T)}) is closed}. The notation p_{0}(T) (respectively,
p_{0}^{a}(T)) denotes the set of all poles (respectively, left poles) of T , while $\pi$_{0}(T) (re‐
spectively, $\pi$_{0}^{a}(T) ) is the set of all eigenvalues of T which is an isolated point in

 $\sigma$(T) (respectively, $\sigma$_{a}(T) ).
Let T\in \mathcal{L}(\mathcal{H}) . We say that

(i) T satisfies generalized Browder�s theorem if  $\sigma$(T)\backslash $\sigma$_{BW}(T)=p_{0}(T) ;

(ii) T satisfies generalized a‐Browder�s theorem if $\sigma$_{a}(T)\backslash $\sigma$_{SBF_{+}^{-}}(T)=p_{0}^{a}(T) ;

(iii) T satisfies generalized Weyl�s theorem if  $\sigma$(T)\backslash $\sigma$_{BW}(T)=$\pi$_{0}(T) ;

(iv) T satisfies generalized a‐ Weyl�s theorem if $\sigma$_{a}(T)\backslash $\sigma$_{SBF_{+}^{-}}(T)=$\pi$_{0}^{a}(T) .

It is known that

generalized a‐Weyl�s theorem \Rightarrow generalized Weyl�s theorem
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\Downarrow \Downarrow

generalized  a‐Browder�s theorem \Rightarrow generalized Browder�s theorem.

An operator  T\in \mathcal{L}(\mathcal{H}) has the single‐valued extension property at $\lambda$_{0} \in \mathbb{C} if

for every open neighborhood U of $\lambda$_{0} the only analytic function f : U \rightarrow \mathcal{H}
which satisfies the equation (T- $\lambda$)f( $\lambda$)=0 is the constant function f\equiv 0 on U.

The operator T is said to have the single‐valued extension property if T has the

single‐valued extension property at every $\lambda$_{0}\in \mathbb{C}.

3 Wyel Type Theorem

In this section, we study Weyl type theorems for complex symmetric operator
matrices. In [17], they provide several forms of complex symmetric operator ma‐

trices \left(\begin{array}{ll}
T_{\mathrm{l}} & T_{2}\\
T_{3} & T_{4}
\end{array}\right) . Indeed, if C is a conjugation on \mathcal{H} , then \left(\begin{array}{ll}
T_{\mathrm{l}} & T_{2}\\
T_{3} & T_{4}
\end{array}\right) is complex

symmetric with \left(\begin{array}{ll}
C & 0\\
0 & C
\end{array}\right) if and only if T_{2} and T3 are complex symmetric with a

conjugation C and T_{4} = CT_{1}^{*}C . For example, the complex symmetric operator

matrix \left(\begin{array}{ll}
s* & 0\\
0 & S
\end{array}\right) does not satisfy Weyl�s theorem where S is the unilateral shift on

\mathcal{H} . They also have studied a‐Weyl�s theorem and a‐Browder�s theorem for complex

symmetric operator matrices \left(\begin{array}{ll}
T_{1} & T_{2}\\
0 & CT_{\mathrm{l}}^{*}C
\end{array}\right) . In this paper, we study generalized

Weyl theorem and generalized a‐Weyl theorem for complex symmetric operator

matrices \left(\begin{array}{ll}
T_{\mathrm{l}} & T_{2}\\
T_{3} & CT_{1}^{*}C
\end{array}\right) where C is a conjugation on \mathcal{H} . Put $\Delta$^{*} := \{\overline{z}: z\in  $\Delta$\}
for any set  $\Delta$ in \mathbb{C} . For our study, we start with the following lemmas.

Lemma 3.1 ([17]) If C\dot{u} a conjugation on \mathcal{H} and A\in \mathcal{L}(\mathcal{H}) , then the following
identities hold:

(i)  $\sigma$(A)^{*} =  $\sigma$(CAC) , $\sigma$_{p}(A)^{*} = $\sigma$_{p}(CAC) , $\sigma$_{a}(A)^{*} = $\sigma$_{a}(CAC) , and $\sigma$_{s}(A) =

$\sigma$_{s}(CAC)^{*}.
(ii) $\sigma$_{e}(A)^{*}=$\sigma$_{e}(CAC) , and $\sigma$_{w}(A)^{*}=$\sigma$_{w}(CAC) .

Remark that if S is a complex symmetric operator with the conjugation C , then

it is known from [16, Lemma 3.5] that S has the single‐valued extension property
if and only if S^{*} has. With the similar proof of [16], we have the following lemma.

Lemma 3.2 Let C be a conjugation on \mathcal{H} and S\in \mathcal{L}(\mathcal{H}) . Then S has the single‐
valued extension property if and only if CSC has.
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Lemma 3.3 If C is a conjugation on \mathcal{H} and A\in \mathcal{L}(\mathcal{H}) , then the following iden‐

tities hold:

(i) $\sigma$_{b}(A)^{*}=$\sigma$_{b}(CAC) and $\sigma$_{D}(A)^{*}=$\sigma$_{D} (CAC).
(ii) $\sigma$_{LD}(A)^{*}=$\sigma$_{LD} (CAC) and $\sigma$_{RD}(A)=$\sigma$_{RD}(CAC)^{*}.
(iii) $\sigma$_{BF}(A)^{*}=$\sigma$_{BF} (CAC) and $\sigma$_{BW}(A)^{*}=$\sigma$_{BW} (CAC).

Throughout this paper, for operators A, B\in \mathcal{L}(\mathcal{H}) and a conjugation C on \mathcal{H},

put M(A, B) = \{ \left(\begin{array}{ll}
A & B\\
0 & CA^{*}C
\end{array}\right) \in \mathcal{L}(\mathcal{H}\oplus \mathcal{H}) : B is complex symmetric with the

conjugation C}. We study a‐Weyl theorem and generalized a‐Weyl theorem for

complex symmetric operator matrices in M(A, B) .

Theorem 3.4 Let T\in M(A, B) . Suppose that A is complex symmetric which has

the single‐valued extension property.
(a) Then the following statements are equivalent;

(i) A satisfies Weylfs theorem.

(ii) A satisfies a‐Weyl�s theorem.

(iii) T satisfies Weyl�s theorem.

(iv) T satisfies a‐Weyl�s theorem.

(b) Then the following statements are equivalent;
(i) A satisfies generalized Weylfs theorem.

(ii) A satisfies generalized a‐Weyl�s theorem.

(iii) T satisfies generalized Weyl theorem.

(vi) T satisfies generalized a‐Weyl theorem.

Let us recall that the Hilbert Hardy space, denoted by H^{2}
,

consists of all

analytic functions f on the open unit disk \mathrm{D} with the power series representation

f(z)=\displaystyle \sum_{n=0}^{\infty}a_{n}z^{n} where \displaystyle \sum_{n=0}^{\infty}|a_{n}|^{2}<\infty.
It is clear that H^{2}=\overline{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{z^{n}:n=0,1,2,3,\cdots\}}.

For any  $\varphi$\in L^{\infty} , the Toeplitz operator T_{ $\varphi$} : H^{2}\rightarrow H^{2} is defined by the formula

T_{ $\varphi$}f=P( $\varphi$ f)

for f\in H^{2} where P denotes the orthogonal projection of L^{2} onto H^{2} . Let C_{1} and

C_{2} be the conjugations on H^{2} given by

(C_{1}f)(z)=\overline{f(\overline{z})} and (C_{2}f)(z)=\overline{f}(-\overline{z})

for all f\in H^{2} , respectively.
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Corollary 3.5 Let C_{1} and C_{2} be the conjugations on H^{2} given by (C_{1}f)(z)=\overline{f(\overline{z})}
and (C_{2}f)(z)=f(-\overline{z}) for all f\in H^{2} . Suppose that

T= (^{$\tau$_{0}} $\varphi$  c_{1}$\tau$_{ $\varphi$}$\tau$_{ $\psi$}*c_{1}) or T= \left(\begin{array}{ll}
T_{ $\psi$} & T_{ $\varphi$}\\
0 & C_{2}T_{ $\psi$}^{*}C_{2}
\end{array}\right)
are in \mathcal{L}(H^{2}\oplus H^{2}) where

\left\{\begin{array}{l}
 $\varphi$(z)=$\varphi$_{0}+2\sum_{k=1}^{\infty}\hat{ $\varphi$}(2k)Re\{z^{2k}\}+2i\sum_{k=1}^{\infty}\hat{ $\varphi$}(2k-1)Im\{z^{2k-1}\}\\
 $\psi$(z)=$\psi$_{0}+2\sum_{n=1}^{\infty}\hat{ $\psi$}(n)Re\{z^{n}\}.
\end{array}\right. (1)

If T_{ $\varphi$} or T_{ $\psi$} have the single‐valued extension property, then T satisfies a‐Weyl�s
theorem.

Example 3.6 Let C be a conjugation on l^{2}(\mathbb{Z}) given by Cx=\overline{x} for all x and

let U_{1} and U_{2} are bilateral shifts on l^{2}(\mathbb{Z}) . Then \left(\begin{array}{ll}
U_{1} & U_{2}\\
0 & CU_{\mathrm{l}}^{*}C
\end{array}\right) \in \mathcal{L}(l^{2}(\mathbb{Z})\oplus l^{2}(\mathbb{Z}))
satisfies a‐Weyl�s theorem from Theorem 3.4.

Corollary 3.7 Let T\in M(N, B) where N is normal and B=CB^{*}C for a con‐

jugation C. Then T satisfies generalized a‐ Weyl theorem.

From the similar way with the proof of Theorem 3.4 and [18, Theorem 4.6], we

get the following corollary.

Corollary 3.8 Let T\in M(A, B) . If A is complex symmetric which has the single‐
valued extension property, then the following statements are equivalent;
(i) A satisfies Browder�s theorem.

(ii) A satisfies a‐Browder�s theorem.

(iii) A satisfies generalized Browder�s theorem.

(iv) A satisfies generalized a‐Browder�s theorem.

(v) T satisfies Browder�s theorem.

(vi) T satisfies a‐Browderfs theorem.

(vii) T satisfies generalized Browder�s theorem.

(viii) T satisfies generalized a‐Browder�s theorem.

Recall that an operator T \in \mathcal{L}(\mathcal{H}) is said to be isoloid if every  $\lambda$ \in \mathrm{i}\mathrm{s}\mathrm{o} $\sigma$(T)
is an eigenvalue of T . In [17], they proved that if T \in  M(A, B) where A and

A^{*} are isoloid operators with the single‐valued extension property and if Weyl�s
theorem holds for both A and A^{*}

, then a‐Weyl�s theorem holds for T . Finally, we

consider complex symmetric operator matrices where main diagonal operators are

not complex symmetric.
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Theorem 3.9 Let T\in M(A, B) where A and A^{*} have the single‐valued extension

property. Then the following statements hold:

(a) If A satisfies generalized Weyl theorem, then T satisfies generalized a‐Weyl
theorem.

(b) If A is isoloid, then the following statements are equivalent;
(i) A satisfies generalized Weyl theorem.

(ii) A satisfies generalized a‐ Weyl theorem.

(iii) T satisfies generalized Weyl theorem.

(iv) T satisfies generalized a‐Weyl theorem.

(c) If A \dot{u} isoloid, then the following statements are equivalent;
(i) A and A^{*} satisfies Weyl�s theorem.

(ii) T satisfies Weyl�s theorem.

(iii) T satisfies a‐Weyl theorem.

Corollary 3.10 Let T\in M(A, N) where A is decomposable and N is normal or

nilpotent of order 2 with N=CN^{*}C . If A satisfies generalized Weyl�s theorem,
then T satisfies generalized a ‐Weyl�s theorem.

Example 3.11 For x\in \mathbb{C}^{n} , define C^{j}(\displaystyle \sum_{i=1}^{n}$\alpha$_{i}e_{i})=\sum_{i=1}^{n}\overline{$\alpha$_{i}}e_{n-i+1} . Put C=\oplus C^{j}.
Then \mathcal{C} is a conjugation on \mathcal{H} where dim\mathcal{H} = \aleph_{0} . Suppose that S is written as

S=\oplus_{j=1}^{\infty}S_{j} where

S_{j}= \left(\begin{array}{lllll}
0 & $\lambda$_{\mathrm{l}}^{(j)} & 0 & \cdots & 0\\
0 & 0 & $\lambda$_{2}^{(j)} & \cdots & 0\\
\cdots & 0 & 0 & \ddots & 0\\
 & 0 & 0 & 0 & $\lambda$_{n_{j}-\mathrm{l}}^{(j)}\\
 & 0 & 0 & 0 & 0
\end{array}\right)
with respect to an orthonormal basis of S_{j} with |$\lambda$_{k}^{(j)}| = |$\lambda$_{n_{j}-k}^{(j)}| for all 1 \leq  k \leq

 n_{j}-1 . Then S is complex symmetric with C from [23, Theorem 3.1]. Let W be a

weighted shift on \mathcal{H} defined by

W= (x_{1}, x_{2}, x_{3}, \displaystyle \cdot \cdot ):=(\frac{1}{2}x_{2}, \frac{1}{3}x_{3}, \frac{1}{4}x_{4}, \cdot \cdot ) .

If T= \left(\begin{array}{ll}
W^{*} & S\\
0 & CWC
\end{array}\right) \in \mathcal{L}(\mathcal{H}\oplus \mathcal{H}) . Then T satisfies generalized a‐Weyl�s theorem.

Indeed, since  $\sigma$(W^{*}) = $\sigma$_{BW}(W^{*}) = \{0\} and $\pi$_{0}(W^{*}) = \emptyset , it follows that  W^{*}

satisfies generalized Weyl�s theorem. Moreover, in this case, W and W^{*} have

the single‐valued extension property. Hence T satisfies the generalized a‐Weyl�s
theorem from Theorem 3.9.
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