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Abstract

In this paper, we study properties of  $\lambda$‐commuting operators. We give
spectral and local spectral relations between \mathrm{A}‐commuting operators. More‐

over, we show that the operators \mathrm{A}‐commuting with a unilateral shift are

representable as weighted composition operators. We also provide the polar
decomposition of the product of ( $\lambda$,  $\mu$) ‐commuting operators where  $\lambda$ and

 $\mu$ are real numbers with  $\lambda \mu$ > 0 . Finally, we find the restriction of  $\mu$ for

the product of ( $\lambda$,  $\mu$)‐commuting quasihyponormal operators to be quasihy‐
ponormal.

1 Introduction

This paper is part of a paper submitted for possible publication in some journal.
Let \mathcal{H} be a separable complex Hilbert space and let \mathcal{L}(\mathcal{H}) denote the algebra of

all bounded linear operators on \mathcal{H} . For T\in \mathcal{L}(\mathcal{H}) , we write  $\sigma$(T) , $\sigma$_{p}(T) , $\sigma$_{ap}(T) ,

$\sigma$_{le}(T) , and r(T) for the spectrum, the point spectrum, the approximate point
spectrum, the left essential spectrum, and the spectral radius of T

, respectively.
We say that operators S and T in \mathcal{L}(\mathcal{H}) are  $\lambda$ ‐commuting if  ST= $\lambda$ TS , where

 $\lambda$ is a complex number. In [3], S. Brown showed that every operator  $\lambda$‐commuting
with a nonzero compact operator has a nontrivial hyperinvariant subspace, as one

of the generalizations of the famous Lomonosov�s theorem (see [10]). Since then,
many mathematicians have been interested in  $\lambda$‐commuting operators.

Different classes of operators can be specified depending on the restriction on

 $\lambda$ (see [11]). An operator  T\in \mathcal{L}(\mathcal{H}) is called normal if T^{*}T=TT^{*} . We say that

T\in \mathcal{L}(\mathcal{H}) is hyponormal if T^{*}T\geq TT^{*} . In [12], J. Yang and H. Du showed that if

S and T are  $\lambda$‐commuting normal operators with  ST\neq 0 , then | $\lambda$|=1 . Moreover,
M. Cho, J. Lee, and T. Yamazaki proved in [4] that if S and T are  $\lambda$‐commuting
operators s.uch that both  S^{*} and T are hyponormal and ST\neq 0 ,

then | $\lambda$| \leq 1.
For  $\lambda$,  $\mu$\in \mathbb{C} , operators S, T\in \mathcal{L}(\mathcal{H}) are said to be ( $\lambda$,  $\mu$) ‐commuting if ST=

 $\lambda$ TS and S^{*}T= $\mu$ TS^{*} . By Fuglede‐Putnam Theorem, if A, B\in \mathcal{L}(\mathcal{H}) are normal

and AX=XB for some  X\in \mathcal{L}(\mathcal{H}) , then A^{*}X=XB^{*} (see [7]). Hence, if S is
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normal and  $\lambda$‐commuting with  T , then S and T are ( $\lambda$,\overline{ $\lambda$})‐commuting. For a simple
example, given any fixed complex constant  $\lambda$ with | $\lambda$|\leq 1 , suppose D is a diagonal
operator given by De_{n}=$\lambda$^{n}e_{n} for n\geq 0 , where \{e_{n}\}_{n=0}^{\infty} is an orthonormal basis for

\mathcal{H} . Then, every weighted shift W on \mathcal{H} given by We_{n}=$\alpha$_{n}e_{n+1} for n\geq 0 satisfies

DW= $\lambda$ WD . Since D is normal, the operators D and W are ( $\lambda$,\overline{ $\lambda$}) ‐commuting by
Fuglede‐Putnam Theorem; we also observe that W and D are ($\lambda$^{-1},  $\lambda$)‐commuting.

For another example, the 2\times 2 matrices S= \left(\begin{array}{ll}
0 & 0\\
2 & 0
\end{array}\right) and T= \left(\begin{array}{ll}
1 & 0\\
0 & 3
\end{array}\right) are (\displaystyle \frac{1}{3},3)-
commuting.

In this paper, we study properties of  $\lambda$‐commuting operators. We give spec‐

tral and local spectral relations between  $\lambda$‐commuting operators. Moreover, we

show that the operators  $\lambda$‐commuting with a unilateral shift are representable
as weighted composition operators. We also provide the polar decomposition of

the product of ( $\lambda$,  $\mu$)‐commuting operators where  $\lambda$ and  $\mu$ are real numbers with

 $\lambda \mu$>0 . Finally, we find the restriction of  $\mu$ for the product of ( $\lambda$,  $\mu$) ‐commuting
quasihyponormal operators to be quasihyponormal.

2 Preliminaries

An operator T \in \mathcal{L}(\mathcal{H}) is said to have the single‐valued extension property (or
SVEP) if for every open set G in \mathbb{C} and every analytic function f : G\rightarrow \mathcal{H} with

(T-z)f(z) \equiv 0 on G ,
we have f(z) \equiv 0 on G . For an operator  T\in \mathcal{L}(\mathcal{H}) and

a vector x \in \mathcal{H} , the set $\rho$_{T}(x) , called the local resolvent of T at x , consists of

elements z_{0} in \mathbb{C} such that there exists an \mathcal{H}‐valued analytic function f(z) defined

in a neighborhood of z_{0} which verifies (T-z)f(z)\equiv x . The local spectrum of T at

x is given by $\sigma$_{T}(x) :=\mathbb{C}\backslash $\rho$_{T}(x) . Moreover, we define the local spectral subspace
of T as H_{T}(F) := \{x\in \mathcal{H} : $\sigma$_{T}(x) \subset F\} ,

where F is a subset of \mathbb{C} . An operator

T\in \mathcal{L}(\mathcal{H}) is said to have Dunford�s property (C) if H_{T}(F) is closed for each closed

subset F of \mathbb{C} . We say that T\in \mathcal{L}(\mathcal{H}) is said to have Bishop�s property (  $\beta$ ) if for

every open subset  G of \mathbb{C} and every sequence f_{n} : G\rightarrow \mathcal{H} of \mathcal{H}‐valued analytic
functions such that (T-z)f_{n}(z) converges uniformly to 0 in norm on compact
subsets of G , then f_{n}(z) converges uniformly to 0 in norm on compact subsets of

G . The following implications are well known (see [2], [5], or [9] for more details):

Bishop�s property (  $\beta$ ) \Rightarrow Dunford�s property (C)\Rightarrow SVEP.
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3 Main results

In this section, we give several properties of  $\lambda$‐commuting operators. We first con‐

sider the product of  $\lambda$‐commuting operators. We say that  T\in \mathcal{L}(\mathcal{H}) is quasinilpo‐
tent if  $\sigma$(T)=\{0\}.

Theorem 3.1. Let S and T be operators in \mathcal{L}(\mathcal{H}) such that ST= $\lambda$ TS for some

 $\lambda$\in \mathbb{C} . Then the following statements hold:

(i) r(ST)\leq r(S)r(T) and r(TS)\leq r(S)r(T) .

(ii) If | $\lambda$|\neq 1 , then ST and TS are quasinilpotent.

Recall that an operator T in \mathcal{L}(\mathcal{H}) is called normaloid if \Vert T\Vert = r(T) . An

operator T \in \mathcal{L}(\mathcal{H}) is said to belong to class A if |T^{2}| \geq |T|^{2} . Every operator
which belongs to class A is normaloid, and hyponormal operators belong to class

A (see [6]).

Corollary 3.2. Let S and T be operators in \mathcal{L}(\mathcal{H}) such that ST= $\lambda$ TS for some

 $\lambda$\in \mathbb{C} and ST belongs to class A . If S or T is quasinilpotent, then ST=TS=0.

We next provide spectral properties of  $\lambda$‐commuting operators.

Theorem 3.3. Suppose that  S, T\in L(\mathcal{H}) satisfy ST= $\lambda$ TS for some  $\lambda$\in \mathbb{C} . For

$\sigma$_{ $\Delta$}\in\{$\sigma$_{p}, $\sigma$_{ap}, $\sigma$_{le}\} , the following assertions hold:

(i) either 0\in$\sigma$_{ $\Delta$}(T) or else  $\lambda \sigma$_{ $\Delta$}(S)\subset$\sigma$_{ $\Delta$}(S) ;

(ii) either 0\in$\sigma$_{ $\Delta$}(S) or else $\sigma$_{ $\Delta$}(T)\subset $\lambda \sigma$_{ $\Delta$}(T) .

Remark. One can derive that Tker (S- $\mu$) \subset \mathrm{k}\mathrm{e}\mathrm{r}(S- $\lambda \mu$) and Sker (T- $\mu$) \subset

\mathrm{k}\mathrm{e}\mathrm{r}( $\lambda$ T- $\mu$) for each  $\mu$ \in C. Hence, \mathrm{k}\mathrm{e}\mathrm{r}(S) and \mathrm{k}\mathrm{e}\mathrm{r}(T) are common invariant

subspaces for S and T.

Corollary 3.4. Let S and T be operators in \mathcal{L}(\mathcal{H}) such that ST= $\lambda$ TS for some

 $\lambda$\in \mathbb{C} . Then the following assertions hold:

(i) If 0\not\in$\sigma$_{ap}(T) ,
then $\sigma$_{ap}(S)=\{0\} or | $\lambda$|\leq 1.

(ii) If 0\not\in$\sigma$_{ap}(S) ,
then $\sigma$_{ap}(T)=\{0\} or | $\lambda$| \geq 1.

Hence, if 0\not\in$\sigma$_{ap}(S)\cup$\sigma$_{ap}(T) , then | $\lambda$|=1.

When  $\lambda$ is a root of unity, the inclusions in Theorem 3.3 become equalities, as

follows:

Corollary 3.5. Let  S, T \in \mathcal{L}(\mathcal{H}) satisfy that ST =  $\lambda$ TS where  $\lambda$ is a root of

unity. Then the following statements hold for  $\sigma$_{ $\Delta$}\in\{$\sigma$_{p}, $\sigma$_{ap}, $\sigma$_{l\mathrm{e}}\} :

(i) If 0\not\in$\sigma$_{ $\Delta$}(T) ,
then $\sigma$_{ $\Delta$}(S)= $\lambda \sigma$_{ $\Delta$}(S) ;

(ii) If 0\not\in$\sigma$_{ $\Delta$}(S) ,
then $\sigma$_{ $\Delta$}(T)= $\lambda \sigma$_{ $\Delta$}(T) .
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Recall that T\in \mathcal{L}(\mathcal{H}) is said to be an m‐isometry if \displaystyle \sum_{j=0}^{m}(-1)^{j}(_{j}^{m}) T^{*j}T^{j}=0,
where m is a positive integer. In [1], it turned out that every m‐isometry has

approximate point spectrum contained in the unit circle.

Corollary 3.6. Suppose that S and T are operators in L(\mathcal{H}) such that ST= $\lambda$ TS

for some  $\lambda$\in C. If | $\lambda$| \neq  1 and S is an m‐isometry for some positive integer m,

then 0\in$\sigma$_{p}(T) .

We now consider local spectral properties of  $\lambda$‐commuting operators.

Proposition 3.7. Let  S, T \in \mathcal{L}(\mathcal{H}) . If ST =  $\lambda$ TS for some  $\lambda$ \in \mathbb{C} , then the

following statements hold:

(i) $\sigma$_{S}(Tx)\subset $\lambda \sigma$_{S}(x) and  $\lambda \sigma$_{T}(Sx)\subset$\sigma$_{T}(x) for all x\in \mathcal{H}.

(ii) TH_{S}(F)\subset H_{\mathcal{S}}( $\lambda$ F) for any subset F of \mathbb{C}.

(iii) If  $\lambda$\neq 0 , then SH_{T}( $\lambda$ F)\subset H_{T}(F) for any subset F of \mathbb{C}.

Corollary 3.8. Suppose that S, T \in \mathcal{L}(\mathcal{H}) are  $\lambda$‐commuting where  $\lambda$ is a root

of unity with order  k . If  $\lambda$ is a root of unity with order  k and S has Dunford�s

property (C) , then H_{S}(F) is a common invariant subspace of S and T^{k} , where F

is any closed subset of \mathbb{C}.

Combining Corollary 3.8 with [12], we obtain the following corollary.

Corollary 3.9. Assume that S, T \in \mathcal{L}(\mathcal{H}) are  $\lambda$‐commuting. If  S \in \mathcal{L}(\mathcal{H}) is

hyponormal and  $\sigma$(ST) consists of k distinct nonzero elements, then H_{S}(F) is a

common invariant subspace of S and T^{k}.

For an operator T \in \mathcal{L}(\mathcal{H}) , we define the quasinilpotent part of T
,

denoted

by H_{0}(T) ,
as H_{0}(T) :=\displaystyle \{x \in \mathcal{H} : \lim_{n\rightarrow\infty}\Vert T^{n}x\Vert^{\frac{1}{n}} =0\} (see [2] and [9] for more

details).

Proposition 3.10. Let S, T\in \mathcal{L}(\mathcal{H}) . If ST= $\lambda$ TS for some  $\lambda$\in \mathbb{C}\backslash \{0\} , then

H_{0}(S) is invariant for T.

Let H^{2}=H^{2}(\mathrm{D}) be the canonical Hardy space of the open unit disk \mathrm{D} , and let

H^{\infty} be the space of bounded functions in H^{2} . For an analytic map  $\varphi$ from \mathrm{D} into

itself and u\in \mathrm{D} ,
the weighted composition operator W_{f, $\varphi$} : H^{2}\rightarrow H^{2} is defined by

W_{u, $\varphi$}h=u\cdot(h\mathrm{o} $\varphi$) . In particular, C_{ $\varphi$} :=W_{1, $\varphi$} is said to be a composition operator.
In the following theorem, we assert that \mathrm{i}\mathrm{f}| $\lambda$|=1 , then the operators  $\lambda$‐commuting
with the unilateral shift  U on H^{2} given by (Uf)(z)=zf(z) are representable as

weighted composition operators.
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Theorem 3.11. Let U be the unilateral shift on H^{2} given by (Uf)(z) = zf(z) .

Assume that S\in \mathcal{L}(H^{2}) and  $\lambda$\in\partial \mathrm{D} . Then SU= $\lambda$ US if and only if S=W_{u, $\lambda$ z}
for some u\in H^{\infty}.

For a bounded sequence \{$\alpha$_{n}\}_{n=0}^{\infty} in \mathbb{C} , a weighted shifl on \mathcal{H} with weights \{a_{n}\}
is an operator T such that Te_{n} = $\alpha$_{n}e_{n+1} for n \geq  0 , where \{e_{n}\}_{n=0}^{\infty} denotes an

orthonormal basis for \mathcal{H}.

Proposition 3.12. Let S and T be weighted shifts in \mathcal{L}(\mathcal{H}) with weights \{$\alpha$_{n}\} and

\{$\beta$_{n}\} , respectively, and let  $\lambda$\in \mathbb{C} . Then ST= $\lambda$ TS if and only if $\alpha$_{n+1}$\beta$_{n}= $\lambda \beta$_{n+1}$\alpha$_{n}
for all n.

In the following example, we consider the case when S is the Bergman shift
determined by the weights \{\sqrt{\frac{n+1}{n+2}}\}_{n=0}^{\infty}.
Example 3.13. If S is the Bergman shift, then its weights form an increasing
sequence. Then S is hyponormal. Suppose that T is any weighted shift with

positive weights \{$\beta$_{n}\} and  $\lambda$\in \mathbb{C}\backslash \{0\} . By Proposition 3.12, it follows that ST=

 $\lambda$ TS if and only if $\beta$_{n+1}=\displaystyle \frac{n+2}{ $\lambda$\sqrt{(n+1)(n+3)}}$\beta$_{n} for n\geq 0 , that is, $\beta$_{n}=\displaystyle \frac{1}{$\lambda$^{n}}\sqrt{\frac{2(n+1)}{n+2}}$\beta$_{0} for

n\geq 0.

For a positive integer n>1 , define J_{r} and J_{l} on \oplus_{1}^{n}\mathcal{H} by

J_{\mathrm{r}}= (_{:}^{0}0I0 0I00: .\cdot.\cdot. I000 0_{/}000^{\backslash }:

and J_{l}= \left(\begin{array}{llll}
0 & I & 0 & 0\\
0 & 0 & I & 0\\
0 & 0 & 0 & I\\
0 & 0 & 0 & 0
\end{array}\right)
Proposition 3.14. Let T \in \mathcal{L}(\oplus_{1}^{n}\mathcal{H}) .

statements hold:

(i) TJ_{r}= $\lambda$ J_{r}T if and only if

For a complex number  $\lambda$ , the following

 T= (T_{n-1}:T_{n}T_{3}T_{2}T_{1}  $\lambda$ T_{n-1} $\lambda$ T_{n-2} $\lambda$ T_{2} $\lambda$ T_{1}0 $\lambda$^{2}.T_{1} .\cdot.\cdot. $\lambda$^{n-2}T_{2}$\lambda$^{n-2}T_{1}00:. $\lambda$^{n-1}T_{1}000:)
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where \{T_{j}\}_{j=1}^{n}\subset \mathcal{L}(\mathcal{H}) .

(ii) TJ_{l}= $\lambda$ J_{l}T if and only if

T= (0:00 $\lambda$^{n-2_{:}}T_{n-1}$\lambda$^{n_{0}}-.2T_{n}00
where \{T_{j}\}_{j=1}^{n}\subset \mathcal{L}(\mathcal{H}) .

. . .

\cdots  $\lambda$ T_{n-1} $\lambda$ T_{n} $\lambda$ T_{3} $\lambda$ T_{2}0: $\tau$_{T_{n}}$\tau$_{n-1}^{n-2}$\tau$_{2}^{1} $\tau$:)\cdots

. . .

We next consider ( $\lambda$,  $\mu$)‐commuting operators. To obtain the polar decompo‐
sition of the product of ( $\lambda$,  $\mu$) ‐commuting operators, we show that their partial
isometric parts and positive parts satisfy the following extended commuting rela‐

tionships.

Lemma 3.15. Let S, T\in \mathcal{L}(\mathcal{H}) be ( $\lambda$,  $\mu$) ‐commuting where  $\lambda$ and  $\mu$ are real num‐

bers with  $\lambda \mu$>0 . If S=U_{S}|S| and T=U_{T}|T| denote the polar decompositions,
then the following statements hold:

(i) |T|S=($\lambda$^{-1} $\mu$)^{\frac{1}{2}}S|T| and |S|T=( $\lambda \mu$)^{\frac{1}{2}}T|S| ;

(ii) |S|U_{T}=( $\lambda \mu$)^{\frac{1}{2}}U_{T}|S| and |T|U_{\mathcal{S}}=($\lambda$^{-1} $\mu$)^{\frac{1}{2}}U_{S}|T| ;

(iii) |S||T|=|T||S|, |S^{*}||T|=|T||S^{*}| , and |S||T^{*}|=|T^{*}|S| ;

(iv) U_{S}U_{T}=U_{T}U_{S} and U_{S}^{*}U_{T}=U_{T}U_{S}^{*} if  $\lambda$ and  $\mu$ are positive, and  U_{S}U_{T}=-U_{T}U_{S}
and U_{S}^{*}U_{T}=-U_{T}U_{S}^{*} if  $\lambda$ and  $\mu$ are negative.

Theorem 3.16. Assume that  S, T\in \mathcal{L}(\mathcal{H}) are ( $\lambda$,  $\mu$) ‐commuting where  $\lambda$ and  $\mu$

are real numbers with  $\lambda \mu$>0 . If ST=U_{ST}|ST| is the polar decomposition, then

U_{ST}=U_{S}U_{T} and |ST|=( $\lambda \mu$)^{\frac{l}{2}}|S||T|.
In addition, if TS=U_{TS}|TS| is the polar decomposition, then

U_{TS}=U_{T}U_{S} and |TS|=($\lambda$^{-1} $\mu$)^{\frac{1}{2}}|S||T|.

For an −operator T \in \mathcal{L}(\mathcal{H}) −with polar decomposition T= U|T| ,
the Aluthge

transform T of T is defined by T=|T|^{\frac{1}{2}}U|T|^{1}\vec{2} . In [8], the authors showed several

connections between operators and their Aluthge transforms.

Corollary 3.17. If S, T \in \mathcal{L}(\mathcal{H}) are ( $\lambda$,  $\mu$) ‐commuting operators where  $\lambda$ and  $\mu$

are real nu‐mbers with  $\lambda \mu$>0 , then \mathrm{t}\mathrm{h}\underline{\mathrm{e}\mathrm{f}}11\mathrm{i}_{ $\xi$}\underline{\mathrm{s}}\underline{\mathrm{t}}atements hold:

(i) \overline{S} and T are ( $\lambda$,  $\mu$) ‐commuting and ST=| $\mu$|\overline{2}ST= $\lambda$| $\mu$|^{\frac{1}{2}}\overline{T}\overline{S}.
(ii) \overline{S} and T are ( $\lambda$,  $\mu$) ‐commuting.

(iii) S and \overline{T} are ( $\lambda$,  $\mu$) ‐commuting.
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Corollary 3.18. Let S, T\in \mathcal{L}(\mathcal{H}) be  $\lambda$‐commuting for some nonzero real number

 $\lambda$ . If \overline{S} is hyponormal and T is normal, then the following statements are equiva‐
lent:

(i) ST is hyponormal.
(ii)  $\sigma$(ST)\neq\{0\}.
(iii)  $\lambda$=\pm 1.

Recall that an operator T\in L(\mathcal{H}) is said to be quasinormal if T^{*}T commutes

with T.

Corollary 3.19. Let S, T \in \mathcal{L}(\mathcal{H}) be ( $\lambda$,  $\mu$)‐commuting quasinormal operators
such that ST \neq  0 , where  $\lambda$ and  $\mu$ are real numbers with  $\lambda \mu$ > 0 . Then ST is

quasinormal if and only if  $\mu$=\pm 1 . In particular, if ST is quasinormal and one of

S and T is normal, then  $\lambda$= $\mu$=\pm 1.

An operator T \in \mathcal{L}(\mathcal{H}) is called quasihyponormal if T^{*}(T^{*}T-TT^{*})T \geq  0,
or \Vert T^{2}x\Vert \geq \Vert T^{*}Tx\Vert for all  x \in \mathcal{H} . In the following theorem, we show that if

| $\mu$| \leq 1 , then the product of two ( $\lambda$,  $\mu$) ‐commuting quasihyponormal operators is

again quasihyponormal.

Theorem 3.20. Let S and T be quasihyponormal operators in \mathcal{L}(\mathcal{H}) that are

( $\lambda$,  $\mu$) ‐commuting. If | $\mu$| \geq 1 , then ST is quasihyponormal. Furthermore, if  $\lambda$\neq 0
and | $\mu$|\geq 1 , then TS is quasihyponormal.

An operator T in \mathcal{L}(\mathcal{H}) is said to be nilpotent if T^{n}=0 for some positive integer
n ; in this case, the smallest positive integer n with T^{n} =0 is referred to as the

order of T.

Corollary 3.21. Let S and T be quasihyponormal operators in \mathcal{L}(\mathcal{H}) that are

( $\lambda,\ \mu$)‐commuting and ST \neq  0 . If | $\lambda$| \neq  1 and | $\mu$| \geq  1 , then ST is nilpotent of

order 2 and one of S and T has a nontrivial invariant subspace.

Corollary 3.22. Let S \in \mathcal{L}(\mathcal{H}) be normal and T \in \mathcal{L}(\mathcal{H}) be quasihyponormal
with ST\neq 0 . If ST= $\lambda$ TS for some | $\lambda$| \geq  1 , then both ST and TS are quasi‐
hyponormal; in particular, if | $\lambda$| > 1 , then ST and TS are nilpotent of order

2.
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