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Abstract: The two-component Camassa-Holm (CH2) equation models the propagation of nonlinear
surface gravity waves on shallow water. It has several remarkable features. Among them, it is a completely
integrable system. By employing a direct method in soliton theory, we develop a systematic procedure
for constructing multisoliton solutions of the CH2 equation, and explore their properties. Then, we
show that the two integrable reductions are possible for the CH2 equation by means of appropriate
scaling limits, leading to the CH and two component Hunter-Saxton equations. The reduced form of
multisoliton solutions is presented for both equations.

1. Introduction

We consider the following two-component generalization of the Camassa-Holm (CH) equation (CH2
equation hereafter)
mg + umg + 2mug + ppz =0,  pr + (pu)s = 0. (1.1)

Here, u = u(x,t),p = p(z,t) and m'= m(x,t) = u — Uy + > are real-valued functions of time ¢t and a
spatial variable z, and the subscripts « and ¢ appended to v and p denote partial differentiation. The
parameter « in the expression of m is assumed to be a non-negative real number. In the physical context,
the CH2 system arises as a model equation for shallow-water waves. Actually, it was derived from the
Green-Naghdi equations by using an asymptotic analysis, where u is the leading order approximation of
the horizontal velocity whereas p is related to the depth of the fluid at the leading order [1]. The same
system was also derived from the basic Euler system for an incompressible fluid with a constant vorticity
[2].

One remarkable feature of the CH2 equation is that it is a completely integrable system. Indeed, it
has the Lax representation given by [1, 2]

1 1 U,
U, = (—A2p2 +Am+ Z) U, U= (EX - u) U, + ?"\Il (1.2)
Various reductions are possible for the CH2 equation while preserving its integrability. Specifically, if
one puts p = 0, then the system reduces to the CH equation [3]

s + 262Uy — Uggs + Uy = QUgUee + Ulggs. ) (1.3)

Another reduction is the two-component Hunter-Saxton (HS2) equation which can be derived by the
short-wave liémit of the CH2 equation [1]. It has the same form as Eq. (1.1) with the variable m replaced
by —Ugg + K°.

In this paper, we develop a systematic procedure for constructing the multisoliton solutions of the CH2
equation, and explore their properties. The reduction procedure is performed for the soliton solutions of
the CH2 equation to obtain the corresponding solutions of the CH and HS2 equations. Here, we describe
only the main results, and the details will be reported elsewhere.

2. Exact method of solution

There exist several exact methods of solution for solving nonlinear evolution equations. Among them,
we employ the direct method which has been initiated by Hirota [4, 5]. This method is particularly
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useful in obtaining soliton solutions. The method works effectively if one reduces the CH2 equation to a
more tractable form by a reciprocal transformation. Following the standard procedure, the parametric
representation of the N soliton solution will be constructed, where N is an arbitrary positive integer.

2.1. Reciprocal transformation
First of all, we introduce the reciprocal transformation (z,t) — (y, T) according to
dy = pdz — pudt, dr=dt. (2.1a)
Then, the = and ¢ derivatives transform as
8 8 a 9 d

f_, 2 2_9<9_,Z. 2.1b
Oz ”ay’ ot or Way (2.15)
Applying the transformation (2.1) to Eq. (1.1), we obtain the system of PDEs for « and p
m
(P) +oy,=0, pr+p°u,=0. (2.2a,b)
.
It then follows from (2.1b) that the variable z = z(y, 7) obeys a system of linear PDEs
Ty = l, T, =u. (2.3a,b)
P
The system of equations (2.3) is integrable since its compatibility condition %, = z,, is assured by virtue

of (2.2b).
Now, the quantity m = u — uz; + k2 in (1.1) can be rewritten in the new coordinate system as

m = u+ p(ln p)ry + K2, (2.4)

where we have used (2.2b) to replace u, by —p,/p%.
Let us introduce the new dependent variable Y = Y (y, 7) by the relation

2
m K
m_E_y. 2.5
P @5)

Subsituting (2.5) into (2.2a) and then integrating the resultant expression by y under the boundary
conditions ¥; — 0 and p — po (> 0) as |y| — oo, we obtain

p=po—Yr. (2.6)
The following proposition is the starting point in the present analysis.
Proposition 2.1. The variables z and Y satisfy the system of PDEs
Zy(po — Y7) =1, (2.7)

(po —Y7) < + Y;;) = 2,8y — [(Po — Y7 )Zry]y + ’izﬁy- (2.8)

2.2. Bilinearization

In applying the direct method to the given nonlinear equations, the first step is to transform the
equations into the bilinear equations, which we shall now demonstrate. To this end, we introduce the
dependent variable transformations

e=Yimitd v=imd (2.9)
Po f 9



168

where f, f,g and § are tau-functions and d is an arbitrary constant. Then, we establish the following
proposition.

Proposition 2.2. Consider the following system of bilinear equations for f, f,g and §:

. 1~
Dyf-f+ %(ff —-3g9) =0, (2.10)
iD,§- g+ po(ff —g9) =0, (2.11)
, ) L i
DTDyf-f+p—D,f-f+n2Dyf-f=0, (2.12)
0
. (KE . .
D;Dyg-g—i 3 D.g-g+ipoDyg-g =0, (2.13)
0

where the bilinear operaters are defined by
DyDEf g = (8, = 8,)™ (B = 0)" Fu, V9 Mymprmrs  (mn=0,1,2,.).  (214)
Then, the solutions of this system of equations solve the equations (2.7) and (2.8).

2.3. Parametric representations of the solutions

Theorem 2.1. The two-component CH equation (1.1) admits the parametric representations of the
solutions

u(y,7) = (ln %) > Py, 7) =po—1i <ln g)T ) (2.15a)
Y omd
z(y,7) = ” +In 7 +d. (2.15b)

Remark 2.1. The parametric representations of 1/p and m/p? in terms of the tau-functions are also
available from (2.3a), (2.5) and (2.9). Explicitly, they read

i , i
-1 (wi), ﬂ2=”_2+i<1n2) . (2.16)
P po ), P m 9/,

2.4. N-soliton solution

Theorem 2.2. The tau-functions f, f,g and § constituting the N -soliton solution of the system of bilinear
equations (2.10)-(2.18) are given by the expressions

f= Z €xp Zlh &+ + Z wimvit| s (2.17a)
u=0,1 i=1 1<5<ISN
~ N T
F=3 e X m@G-)+ Y mmvl, (2.17b)
pu=0,1 j=1 1<j<I<N ]
N -
9= D e | pm &G+ D mmval, (2.184)
u=0,1 j=1 1< <IKN
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N
G= D exp | &G -+ Y. wimvi|, (2.180)
4=0,1 =1 1<G<IKN
where

& =ki(y—ciT—yj), (G=12,..,N), (2.19a)

T ke —ro? . (£ ~ivoks) ¢ + 23
e % = %, e Wi = - , ({=1,2,..,N), (2.19b)

(1+ pokj)cj — pok (%0— + ipokj) ¢j + pi

K2(c; — 1) — po(k; — ki)ejei(esk; — cikr)

fcz(cj —¢)? - po(kj + k[)Cjcl(Cjkj + Clkl),
and c; is the velocity of jth soliton in the (y,T) coordinate system which is given by the solution of the -
quadratic equation

e’th =

Gl=12.,Nij#0),  (21%)

(1 - p§k3)c3 — 2pokPe; —p5 =0, (j=1,2,...,N). (2.20)

Here, k; and y;o are arbitrary complex parameters satisfying the conditions k; # k; for j # l. The notation
El‘:O,l implies the summation over all possible combinations of uy1 = 0,1, u2 =0,1,...,uny =0, 1.

The parametric representation of the N-soliton solution given by (2.15) with the tau-functions (2.17)
and (2.18) is characterized by the 2N complex parameters k; and yjo (j = 1,2...., N). The parameters
k; determine the amplitude and the velocity of the solitons, whereas the parameters y;o determine
the position (or phase) of the solitons. If we impose the conditions f=fandg= g* where the
asterisk denotes complex conjugate, then the solutions become real functions of z and ¢. Note, however
that they would yield multi-valued functions unless certain conditions are imposed on the parameters
k;j(j =1,2,..,,N). The same situation has been encountered in investigating the structure of the soliton
solutions of the CH and modified CH equations [6-8]. We will address this point in the nest section where
the detailed analysis of the soliton solutions will be done.

Before proceeding, we investigate the characteristics of the velocity of the soliton. The quadratic
equation (2.20) has two roots

e = Po
71— (pok;)?

dj =e€jq /6t +pg - pﬁk]?, (e ==%1, j=1,2,..,N). (2.21b)

To assure the reality of c;, one must impose the condition for the parameter pok;, where k; (j =
1,2,...,N) are assumed to be positive real numbers. Actually, It must lie in the interval

4 2 -
—V'“p*""’, (G =1,2,...,N). (2.22)
0

3
(K +dj) = E”“—z, (G =1,2,...,N), (2.21a)

where

0< pokj <

Figure 1 plots the velocities ¢} = ¢j{e; = +1) and c_ = cj(e; = —1) as a function of pok = pok;.

The velocity cy is positive for 0 < pok < 1 and negative for 1 < pok < 1/k*+ poi/po. It exhibits the
singularity at pok = 1. Specifically,

po(K® + /6% + p§ < ey < 00, (0 < pok < 1), (2.23a)

3
—00 < ey < —%, (1 < pok < 4/K4 +pg/po) . (2.23b)
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Figure 1. The velocity ¢ = c+ of the soliton as a function of pgk for po = 1 and x = 1: ¢, (solid curve),
c—(dashed curve).

On the other hand, the velocity c_ is a continuous function of pok and takes negative values in the interval
(2.23), as indicated by the inequality

—p—°<c_ < —po(y/Kt+ p§ — K2), (O<pok< n4+p§/p0). (2.24)

In particular, c_ = —p3/(2x3) at pok = 1. It turns out that the soliton with the velocity c_ always
propagates to the left whereas the soliton with the velocity c4+ propagates to the right and left depending
on the value of ppk. Thus, the two-soliton solution exhibits both the overtaking and head-on collisions.
Using (2.21), the expressions (2.19b) become
e85 _ (L= poks)e; — por?| _ {(1 — poks)e; — pos®}sgn G ity — K2¢; + p§ — ipgkjc; (2.25)

pov/k g po/Kd+ 0 VeE+alel
where the symbol sgn denotes the sign function. In view of the relation d? — df = pg(—k? + kf) which
follows from (2.21b), the expression (2.19¢) becomes
g (45— i) + pi(k; — k0)®
(dj — di)* + pi(k; + ku)?

(2.26)

3. Properties of soliton solutions

In this section, we first explore the propertiés of the one-soliton solution in detail and then perform
an asymptotic analysis of the general N-soliton solution. Consequently, the formula for the phase shift
of each soliton will be derived. The two-soliton case is discussed shortly.

8.1. One-soliton solution

The tau-functions corresponding to the one-soliton solution are given by (2.17) and (2.18) with N =1
f=1+et, f=1+e9, 3.1)

g=1+e", g=1+e&, (3.2)
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with

3
Py
=k(y—cr— , c=cy= 3.3a
3 (y %) + /e p2—p4k2—n2’ (3.30)
; 2
R 1 — pok)c — por?| JREV c—|—p0 ipgkc (3.35)

pov/kt+p% Ve +E |l

where we have put £ = &,k =ky,c=c1,¢ = ¢1,% = 9, and yo = y10 for simplicity.
The parametric representation of the one-soliton solution is obtained by introducing (3.1) and (3.2)
with (3.3) into (2.15). It can be written in the form

ke sinh ¢ ke sin ¢

_ o resmY 3.4a
cosh £ + cosh ¢’ P p0+cosh§+cos1/1’ (3.4a)
5 ¢ 1 —tanh £ tanh§
X=z—8—zp= —— +In—mnt 2 A5 3.4b
®" pok "1+ tanh £ tanh§ (3.49)
with
2,2 :
sinh ¢ — Kkl cosh 6= 1|1+ k2%c pike _K’e+p} (3.40)

VEEY . R Y g YT A

where & = ¢/pp is the velocity of the soliton in the (z,t) coordinate system, zo = o/~ and the constant
d in (2.15b) has been chosen such that £ = 0 corresponds to X = 0. Let us now describe some important
properties of the solution.

(a) Smoothness of the solution

We compute the y derivative of z from (3.4b) to obtain

1 k sinh ¢
Ty = po cosh & +cosh ¢ (35)

Since k£ > 0 and ¢ > 0, z, > zy|¢—o. Using (3.3b) for ¢ gives
Tyle=o = 1 (1 — pok tanh ?) —( + Kt — Kk2). (3.6)
Po 2) e

Thus, if ¢ is finite, then z, > 0 , and the map (2.1) becomes one-to-one, assuring that the solution is
smooth and nonsingular. Actually, one can show that the derivatives du/dX and dp/dX are finite for
arbitrary X € R.

(b) Amplitude-velocity relation

The amplitude-velocity relation of the soliton is an important characteristic of the wave. It can be
derived simply from the explicit form of the solution. To this end, let A, be the amplitude of the wave
measured from the constant level p = pp and A, be that of the fluid velocity, namely 4, = p(X =

0) — po, Ay = [u(X = 0)|. It follows from (3.3) and (3.4) that
= IE—E2I_ \/54+pg ’

Ap= (\/"4'{'/’(2) |5!—I€2&—pg) /po; A

where &= ¢/pg. Note from (3.3b) and (3.4a) that

0= S _(1i_ .2 / 2 =
u(X—O)—kctanh§—<|c—n|— k*+ pf ) sgné.

3.7)
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Figure 2. One-soliton solution. u: thin solid curve, p: bold solid curve. a: kK = 1, gy = Lk=04,¢=
&, =281, bik=1,p=1,k=10,6=6, =—125¢c: k=1,pp =1,k =14,8=¢&_ = —0.83.

Invoking the expression of the velocity ¢ from (3.3a), we can see that A, > 0 for arbitrary ¢ = c4
whereas u(X = 0) > 0 for ¢ > 0 and u(X = 0) < 0 for ¢ < 0. These results show that the profile of p is
always of bright type, but that of u depends on the propagation direction of the soliton. Actually, if ¢ is
positive (negative), then u is curved upward (downward).

Figure 2 depicts the typical profile of u and p for the right-going soliton (a), and the left-going soliton
(b) and (c), respectively.

8.2. N-soliton solution

Here, we investigate the asymptotic behavior of the N-soliton solution for large time. Let é,(=
en/po (n=1,2,...,N) be the velocity of the nthe soliton in the (z,t) coordinate system, and order them
in accordance with the relation éy < éy-1 < ... < &. We take the limit £ — —oo with the phase variable
&, of the nth soliton being fixed. Then, the other phase variables behave like &;, &, ..., -1 — +00, and
&n+1,€n+2y o €N — —00. Performing an asymptotic analysis for the tau-functions (2.17) and (2.18) and
substituting the leading-order approximations for them into (2.15), we obtain the asymptotic form of u,
pand z

kncyp, sinh kncy, sin
n (_) ¢n , p ~ pO + ¢n (3.8)
cosh ({n + én ) + cosh ¢,

u~ ,
cosh (ﬁn + 6,(._)) + cos Y,
(=)
1 — tanh %,4 tanh LE"L;"—z nl

X én
T — &t — Tpo ~ + = =2 %5 (3.9)
pokn 1+ tanh %4 tanh L—M;" =1
where L L )
s s dy, — d;)? + pd(kn — k;)?
(S(-) = ;= In [( n J (AN J ] . 3.10
n ; Ynj ; (dn — d;)? + pg(kn + k;)? (3.10)

In the limit £ — 400, on the other hand, we see that &;,&s,...,{n—1 — —00, and €p41,8n42, - N —
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+00. Applying the similar analysis yields the asymptotic forms corresponding to (3.8) and (3.9)
kncy, sinh ¢, kncp sin ¥,

un~ y P~pot ; (3.11)
cosh (5,, + 6$,+)) + cosh ¢, cosh (fn + 6,(z+)) + cos ¥,

i £n 1 tanh % taph (t20)  no
T — &t — Tno ~ "> +In v -2 "¢ (3.12)

' " 1+tanh%tanh£—2" e j=1

where N N .
dn = d;)? + pl(kn — y)?

5P — i = 1 [( n_ P P 3.13
W= 2w 2 |G il T ¢13)

j=n+1 j=n+1

These results show that as ¢ — oo, the N-soliton solution is a superposition of N independent

solitons each of which has the form given by (3.4). The net effect of the collision of solitons appears as a

phase shift. To see this, let ,,. be the center position of the nth soliton. It then follows from (3.9) and
(3.12) that the trajectory of z,. is given by

(=) a1 +)

., & .4 u
Tpe ~ Ent — —— =23 ¢j, (t——00), Tpc~Ent————2 Y ¢, (t—+oc0). (3.14)
pokn” 1S pokn S

We define the phase shift of the nth soliton which propagates to the right by AF = z,.(t — +00)~Zn(t —
—00), and that propagates to the left by AL = z,.(t - —00) — Tnc(t — +00). Using (2.19b), (3.10),
(3.13) and (3.14), we find that

AR = 1 I:rilln[(dn—dj)z)"’/’g(kn_kj‘)z:l_ i In [(dn—dj)2+/’3(kn_kj)2]:|

I = L L LCR
SR LA I N [LET T o5
oy LA+ mk)g — w2 & L+ pok))E - K2 :

The expression of AL is equal to —~AZ.
8.3. Two-soliton solution

The two-soliton solution is the most fundamental element in understanding the dynamics of solitons
since each soliton exhibits pair-wise interactions with every other soliton. There exist two types of
interactions for the CH2 equation, i.e., the overtaking and head-on collisions.

The tau-functions for the two-soliton solution are given by (2.17), (2.18) and (2.19) with N = 2. They
read

f=1+ ef1to1  ofatéz 4 5651+€2+¢1+¢2’ f"' =1+4e87% pefad2 4 gelitia—tr1—d2 (3.16)
g=1+ efrtivn | ofativn | 5e£1+52+i¢1+i¢2’ =1+ ef1mivn | ofa—ivh2 | s olitla—ity —i%, (3.17)

where
§j = kj (y —CT — ij) ’ (J =1, 2)1 . (3.18&)
ene = (41— 8)? + pi(ks — ks)?

5 = = )
(di — d2)? + p§ (k1 + k2)?

(3.18b)
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Figure 3. The overtaking collision of two solitons. w: thin solid curve, p: bold solid curve. K =1, pg =
1,ky = 0.8,k = 0.7,é14 = 6.02,é24 = 4.37.

52 _ 5 N e 2
ot — [ (L= poks)es —por? iy, (5 —iook;) es + 48

- Vei — por2’ - , (1=12). (3.18¢)
(L+ poki)es = por (?‘Z + lpokj) ci+ P

Recall from (2.21) that the velocity of jth soliton in (z,t) coodinate system is given by

2

. I )

& =cj/po = T_Q"ga dj = € /K* + 0§ — pok3, (1 =1,2). (3.19)
7

Substituting (3.16) and (3.17) into (2.15), we obtain the parametric representation of the two-soliton
solution. As seen from Figure 1, this solution describes both the overtaking and headon collisions, which
are treated separately.

(a) Overtaking collision

We consider the case ¢; = ¢;,0 < pok; < 1so that 0 < &4 < &4. Figure 3 illustrates the overtaking
collision of two solution for four distinct values of ¢. The solitonic feature of the solution is obvious from
the figure which confirms an asymptotic analysis presented in §3.1. The phase shift of each soliton is
given by (3.15). Explicitly,

1 (dr = d2)* + p3 (ks — kz)z] {(1 — poka)és — 52]
A=k : 2
poks = [(dl — da)? + pi(k1 + k2)? 1+ poka)ez — k2 (3-20a)
1 (d1 — d2)* + ph (k1 — k2)2] [(1 — pok1)é1 — fcz]
A= m 1 —In |[FZ——" 1, 3.20b
27 poke [(dl — d2)2 + p(k1 + k2)? In (1 + pok1)ér — K2 ( )

with

b= \Jot+ B = ok, dy = it 7 — 3. (3.200)
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Figure 4. The head-on collision of two solitons. u: thin solid curve, p: bold solid curve. kK = 1,pp =
1,k; = 0.8, ks = 0.7, 14 = 6.02, 654 = —1.25

(b) Head-on collision

An example of the head-on collision is shown in Figure 4, where the velocity of each soliton is chosen
as cg+ < 0 < ¢14. The formula of the phase shift for the right-running soliton is the same as (3.20a)
whereas that of the left-running soliton is given by A% = —Af.

4. Reductions to the Camassa-Holm and two-component Hunter-Saxton equations

In this section, we first show that the CH2 equation and its N-soliton solution reduce to those of the
CH equation by means of an appropriate limiting procedure. Then, we demonstrate that the short-wave
limit of the CH2 equation yields the two-component Hunter-Saxton equation.

4.1. Reduction to the Camassa-Holm equation

The CH equation (1.3) is derived simply from the CH2 equation by putting p = 0. In this setting, one
must impose the boundary condition pp = 0. The N-soliton solution of the CH equation is reduced from
that of the CH2 equation by taking the limit po — 0. To show this, we introduce tha followmg scaling
variables _

u=ﬁal’=l’oﬁ,m=m,$=f,y=p—ﬂ t-1T=T-!d=d!

K
K7 Po Po . ,
kj = %kj’ ¢ =2 yjo = o, §=12,..,N). (4.1)
Then, the leading-order asymptotics of ¢; from (2.21) and ¢;,; and ~y;; from (2.19b, ¢) are found to be
2p0k>
cj~ — (0 - 5 (G=12,..,N), (4.2a)
45, L= Fks =e b e o1-iP% (j=
e 1+nk: e %, e 1-i - kj, (=12,..,N), (4.2b)
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Vit E] - El ? — Vil ; ]
elit = m =e'”, (Jyl =12, "'7N;.7 #l)‘ (4.26)
7

We note that a limiting form & ~ —p2/(2x) which arises from (2.21) with ¢; = —1(j = 1,2) is not
relevant since this expression degenerates to zero as pp — 0.
The asymptotics of the tau-functions f and f from (2.17) and g and § from (2.18) become

f~ E exp [Z 122 (&] + ¢J Z :u']ﬂl"hl} = fa (4.30)

u=0,1 1<G<ISN

N i}
Fo ) exp lz pEG—d)+ > Mjuﬁjl} =/, (4.3b)
 u=on =1 1<i<ISN
9=fo+i2 fO,y +0(pd), §g=fo—i— fO,y +O0(pp), (44)

where

N
fo= 3 e [Z wi&i+ wufm} ) (4.5a)

4=0,1 j=1 1<G<ISN
E =k (-7 —7F g = — 2 j = N 4.5b
&= j(y_ch_yj0)7 cj_l——(—li—z:;—z-’ (i=1,2,..,N). (4.5b)
Introducing (4.3) and (4.4) into (2.15), we obtain the limiting forms of u, p and =

_ 7 2 )
g2=|In 7)o P 1-— (lﬁfo)gr = pod, (4.6a)
z=2imisd (4.6b)

K !

The parametric representation of the N-soliton solution given by (4.6) with the tau-functions (4.3)
coincides perfectly with that of the CH equation presented in [6]. In particular, the one-soliton solution
(3.4) reduces to

2kck?
= = = = 4.
u 1+ k2k2 + (1 — K2k2) cosh £’ (47a)
o oz - 3 (1 —kk)ef +1+xk
X= ——+In 4.7b
SRR e S g S s (4.76)
with
E=FG—or—50) = —2 F—g/k (4.7¢)
= kY Yo —l"(h‘j{':)2, = 3 o

reproducing the one-soliton solution of the CH equation. :
The limiting form of the phase shift which is denoted by AR can be obtained by applying the scalings
(4.1) to (3.15) and using (4.1) and (4.2a), resulting in

=. [El (: @) _Fi:: m(:LZ)]

+1
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N 1-kk:\2 2 /1 kk\?2
In 2} =3 'In 73, =1,2,..,N). 4.8
+ (i) -xe(EE) - e - (a8)

This coincides with the formula for the phase shift of the nth soliton which has been derive for the
N-soliton solution of the CH equation [6].

Remark 4.1.

If we put 7 = & — 2(Info)gr, then )
m=7, p=ri/k (4.9)

The reciprocal transformation (2.1a) reproduces the corresponding one for the CH equation
dy = 7dz — rudt, dr = dt. (4.10)

The bilinear equations (2.10)-(2.12) reduce, in the scaling limit, to the bilinear equations

«Dyf - F+FF-F2=0, (4.11)
D:Dyfo- fo+r(ff - J3) =0, (4.12)
KD:Dyf - f+Drf - f+K*Dyf - F=0, (4.13)

whereas the scaling limit of (2.13) is shown to coincide with (4.11). One can show that the tau-functions
f and f from (4.3) and fi, from (4.5) solve the above bilinear equations.

4.2. Reduction to the two-component Hunter-Sazton equation

The two-component Hunter-Saxton (HS2) equation stems from the short-wave limit of the CH2 equa-
tion. To show this, we introduce the scaling variables

u=€d, p=€p, m=m, s =€k, y=€4, t=-, 7= (4.14)

(LN
o

Rescaling the CH2 equation (1.1) by (4.14) and taking the limit ¢ — 0, we obtain the HS2 equation

where i = —{iz3 + k2. The N-soliton solution of the HS2 equation can be reduced from that of the CH2
equation by means of a limiting procedure. Th appropriate scaling variable are found to be

~

k; R _ . . 3
kj = 6_;’ ¢ = eacjv Yjo = €2ij’ (=12, --',N)’ po = €po, d = ed. (416)
In the limit € — 0, the soliton parameters corresponding to those given by (4.2) have the leading-order
asymptotics s
€ 5 s i )
¢~ —;30? (K*+dj), dj=¢jq/rt— pek2, (1=1,2,..,N), (4.17a)
' 7
N k2 sat \a ~2
A . & —ipok; ) & + g "
e~ 1+ek%, eV~ (”: - f) L P e (j=1,2,..,N), (4.17b)
K (:—u + 1pokj) & + pE
i —d 54 (k. — k)2 N
gt o (G = d0) + Bo(k; — ks)” e, (j,1=1,2,..,N;j #1). (4.17¢)

(d; — di) + pi(k; + k;)?
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The tau-functions (2.17) and (2.18) have the leading-order asymptotics

f~f+n—€2fh fo—%f+, (4.18)

N
g~ Y exp [Z i (é; +i¢j) + > Mjm’rjt} =4, (4.19a)

£#=0,1 j=1 1<G<ISN

4=0,1 j=1 1<j<ISN

N
G~ Y exp lz i (ﬁj - i¢j) + ) Njul’?jll =9, (4.190)
where : ’
A N
f= Z exp Zl‘jfj + Z Bt | (4.20a)
p#=0,1 Jj=1 1<j<ISN
L R 1 — )
& =ki(@— &7 —Fj0), &= N (K + ey /64— pRk2), (1=1,2,..,N), (4.200)
ofj

The parametric representation for the N-soliton solution of the HS2 equation follows by introducing

(4.18) and (4.19) into (2.15) and taking the limit ¢ — 0. Explicitly, it is given by

2 s . 2.1
i=-=nf)w, p=p-5i (%), (4.21a)
L_ 9 2. 2 3
b=s 3 (In f)7 +d. (4.21b)
The limiting forms of 1/p and m/p? from (2.16) read
1 1 2, . m K2 §
TZA———III 24y T=T+1 - . 4.22
P o 2 W = 2 (y>g (4.22)
We write the one-soliton solution for reference:
N 1 (k)2 1
= _W_—}Qi’ =T T T (4.23a)
cosh” 3 Po mcosh’ §-
. £ ké 3
X=%-ct—%o=—+— 5 .
T —c¢t—dp 3 + 2 tanh 3 (4.23b)

with ’ .
E=k(—ér —do), é=-—— (nz + /K% — k2 ) , &=2¢&/po. (4.23¢)
Pok?

Note that the velovity & from (4.23c) is always negative so that the soliton propagates to the left as
opposed to the propagation characteristic of the CH2 solitons.
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Remark 4.2.

Under the scaling (4.14), the reciprocal transformation (2.1) and equations (2.2)-(2.5) remain the
same form. The bilinear equations (2.10), (2.11) and (2.13) reduce respectively to

2
T
D+D@f‘f—ﬁ—2(f2—99)=0a (4.24)
0
1D+ §+ fo (f* — §3) =0, (4.25)
2
2 . WK 2 A aa 2 A
D+Dgg-g—1Fng-g+1pngg-g=0, (4.26)
0

whereas the bilinear equation (2.12) rduces to (4.24) when coupled with (2.10).

5. Discussion

We have constructed the multisoliton solutions of the CH2 equation by a direct method combined
with the reciprocal transformation. Subsequently, we have shown that the mulitisoliton solutions of the
CH and HS2 equations are reduced from those of the CH2 equation by means of appropriate scaling
limits. We note that the CH2 equation does not exhibit peakons as opposed to the CH equation. This
fact can be confirmed by taking the zero dispersion limit x — 0 for the one-soliton solution (3.4). On
the other-hand, the one-soliton solution (4.7) of the.CH equation yields the peakon solution in the limit
k£ — 0 [9, 10]. It has also been pointed out that the HS2 equation (4.15) does not support peakons when
x =0 and py # 0. Nevertheless, if one imposes the boundary condition p — 0 as |z| — oo, then the HS2
eqaution has multipeakon solutions [1]. It is an interesting problem for the HS2 equation to recover the
peakon solutions from the smooth soliton solutions.
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