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A common stabilization of diagrams of a knot

Shosaku Matsuzaki and Kouki Taniyama,
School of Education, Waseda University

An oriented knot is an oriented circle smoothly embedded in the space R3. We
consider oriented knots up to ambient isotopy in R3. We do not distinguish a knot
and its ambient isotopy class so long as no confusion occurs. Let 7 : R® — R? be
a natural projection defined by 7 (z,y,2) = (z,y). Let K be an oriented knot in
R3. Suppose that the multiple points of the restriction of 7 to K are only finitely
many transverse double points. Then the image 7(K) together with over/under

-information at each double point is called a knot diagram of K. A double point of
a knot diagram is called a crossing point. We do not distinguish a knot diagram
and its ambient isotopy class in R? so long as no confusion occurs.

The Reidemeister moves are local moves on knot diagram illustrated in Figure 1.
Let n be a positive integer. A sequence of knot diagrams Dy, - - , D, on R? is said
to be a Reidemeister sequence if D;y; is obtained from D; by an application of one
of the Reidemeister moves for each 7 with 1 < 7 < n — 1. It is well-known that two
knot diagrams of the same knot are transformed into each other by a finite number
of applications of Reidemeister moves. Namely for any two diagrams D and E of
a knot K there is a Reidemeister sequence Ds,--- , D, with D = Dy and D,, = E.
Then we say that D,,---,D, is a Reidemeister sequence from D to E. We denote
the number of crossings of a knot diagram D by ¢(D).
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FIGURE 1. Reidemeister moves

It is also well-known that there are a knot K and two diagrams D and E of
K such that for any Reidemeister sequence D1, .-, D, from D to E, there exists
i € {2,--- ,n — 1} such that ¢(D;) > max{c(D),c(E)}. For example, let Ko be a
knot that bounds a disk in R®, D Goeritz’s unknot illustrated in Figure 2 and E a
unit circle on the plane. Goeritz’s unknot is a knot diagram of Ky [2]. Note that it
has no loops and triangles, and each 2-gon of it has alternating crossings. Therefore



we can only apply R1+ or R2+ to it among other Reidemeister moves. Therefore
if Dy,---, Dy, is a Reidemeister sequence from D to E, then ¢(D3) = ¢(Dy) + 1 or
¢(D2) = ¢(D1) + 2 and therefore ¢(D2) > ¢(D1) = ¢(D) = max{c(D), c(E)}.
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FIGURE 2. Goeritz’s unknot

However it is known that there is a function f(z) such that for any diagram D
of the knot Ky, there exists a Reidemeister sequence D, - -- , D, from D to a unit
circle E with max{c(D;)|i € {1,--- ,n}} < f(c(D)). See [3] and [4].

A knot diagram E is said to be a stabilization (resp. strong stabilization) of a
knot diagram D if there exists a Reidemeister sequence Dq,--- ,D, withn > 1
from D to E such that ¢(D1) < --- < ¢(Dy) (vesp. ¢(D1) < --- < ¢(Dy)). By
definition D is a strong stabilization of D itself. Note that Goeritz’s unknot is
not a stabilization of a unit circle. Let Dy,---,D,, be knot diagrams. A knot
diagram D is said to be a common stabilization (resp. common strong stabilization)
of Dy, -+ ,Dp, if D is a stabilization (resp. strong stabilization) of D; for each
te{l,---,m}.

Theorem 1. (Alexander Coward 2006 [1]) Let K be a knot and D and E diagrams
of K. Then there is a Reidemeister sequence from D to E such that the sequence is
composed of a sequence of applications of R1+, followed by a sequence of applica-
tions of R2+, followed by a sequence of applications of R3, followed by a sequence
of applications of R2—.

Corollary 2. Let K be a knot and D and E diagrams of K. Then there exists a
diagram F of K such that F' is a stabilization of D and F is a strong stabilization
of E.

Corollary 3. Let K be a knot and D-,--- ,D,, dz'dgmms of K. Then there exists
a diagram D of K such that D is a common stabilization of D1,--- ,Dp,.

Example 4. Let D and E be knot diagrams illustrated in Figure 3. Note that D is
a diagram of the knot 31#31#31#3} and F is a diagram of the knot 3, #37#31#3]
where 3; denotes the right-handed trefoil knot, 3] denotes the left-handed trefoil
knot and J#K denotes the connected sum of two knots J and K. Since connected
sum operation is commutative we have 31#31#31#3] = 31#3]#31#3]. Therefore
D and E are diagrams of the same knot. By pulling one of 3} tight and sliding it
along one of 3; we have a Reidemeister sequence from D to E through diagrams at
most 14 crossings. However the corresponding sequence of crossing numbers cannot
be divided into a weakly increasing sequence and a subsequent weakly decreasing
sequence. Let F' be a knot diagram illustrated in Figure 3. Note that E is obtained
from F' by 12 times applications of R2— and D is obtained from F' by 54 times
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applications of R3 followed by 12 times applications of R2—. Therefore F' is a
strong stabilization of E and F is a stabilization of D.

FIGURE 3. F is a common stabilization of D and F

We note that Corollary 2 is best possible. Namely we have the following results.
A knot diagram D is said to be (R1,R2)-reduced if D has no loops and each 2-gon
of D has alternating crossings. Then the following theorem is a paraphrase of a
result in [8, Theorem 3.2] where not only knot diagrams but also link diagrams are
considered. We note that a closely related result is shown in [5, Theorem 2.2 (3)].
-See also [6] and [7].

Theorem 5. Let K be a knot and D and E (R1,R2)-reduced diagmms of K.
Suppose that D and E have a common strong stabilization. Then D and E are
ambient isotopic on R? as oriented knot diagrams, or both D and E are simple
closed curves with opposite orientations.

Corollary 6. For any knot K, there are diagrams D and E of K that have no
common strong stabilizations.

Proof. It is clear that K has at least one (R1,R2)-reduced diagram D. Let E be
a diagram-connected sum of D and a Goeritz’s unknot. Then FE is also a (R1, R2)-
reduced diagram of K. Since D and E are not ambient isotopic on R?, Theorem 5
implies that they have no common strong stabilizations. [

Two knot diagrams D and E are said to be R1-R2-equivalent if there exists a
Reidemeister sequence Di,---, D, with D = D; and D,, = E such that D;,; is
obtained from D; by an application of one of R1+4, R1—, R2+ and R2- for each ¢
with 1 < ¢ <n — 1. The following is an immediate consequence of Theorem 5.

Theorem 7. Let K be a knot and D and E diagrams of K. Let D' and E' be
(R1,R2)-reduced diagrams obtained from D and E respectively by applications of
R1— and R2—. Then the following conditions are equivalent.

(1) Two diagrams D and E are R1-R2-equivalent.
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(2) Two diagrams D' and E' are ambient isotopic on R? as oriented knot dia-

grams, or both D' and E' are simple closed curves with opposite orientations.

Proof. Suppose that D’ and E’ are ambient isotopic on R? as oriented knot
diagrams. Then D and E are R1-R2-equivalent. Suppose that both D’ and E’ are
simple closed curves with opposite orientations. It is easy to see that D’ and E’ are
R1-R2-equivalent. Therefore D and F are R1-R2-equivalent. Thus we have shown
that the condition (2) implies the condition (1).

Suppose that D and F are R1-R2-equivalent. Let Dy, --- , D, be a Reidemeister

sequence with D = D; and D,, = E such that D;;; is obtained from D; by an
application of one of R14+, R1—, R2+ and R2— for each ¢ with 1 <i<n —1. Let
D! be an (R1, R2)-reduced diagram obtained from D; by applications of R1- and
R2— for each i with2 <i<n—1. Let D] = D' and D), = E’. Then D; or Dy, is
a common strong stabilization of D} and D; , for each i with 1 <4 <n = 1. Then
by Theorem 5 Dj and D;_; are amblent isotopic on R? as oriented knot diagrams,
or both D} and D’ 41 are simple closed curves with opposite orientations for each 1
with 1 <4 < n— 1. Therefore D' = D] and E’ = D/, are ambient isotopic on R? as
oriented knot diagrams, or both D’ and E’ are simple closed curves with opposite
orientations. Thus we have shown that the condition (1) implies the condition (2).
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