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1 Introduction

This article is of survey character. Our aim is to present certain algebraic
approaches what we recently developed to describe maps that can be called

generalized isometries on the set of all positive defimite complex matrices. In

this paper isometries ( \mathrm{i}.\mathrm{e}.
, distance preserving maps) and generalized isometries

are assumed to be surjective.
The study of symmetries of mathematical structures of any kinds is one of

the most classical general problems in mathematics. In algebra a lot of work is

done on the automorphism groups of algebraic structures while in geometry, if a

given object is endowed with a sort of distance measure, one naturally considers

transformations which leave that measure invariant.

Below we will see that sometimes those two types of transformations (\mathrm{i}.\mathrm{e}.,
automorphisms and isometries) are \mathrm{r}\mathrm{a}\grave{\mathrm{t}} her closely related. In fact, this phe‐
\mathrm{n}\mathrm{o}\grave{\mathrm{m}}enon was not noticed only recently. We recall the following well‐known

results. Let X, \mathrm{Y} be compact Hausdorff topological spaces and let C(X) , C(Y)
denote the corresponding algebras of all continuous real valued functions on X

and \mathrm{Y}
, respectively. The algebra isomorphisms of C(X) onto C(\mathrm{Y}) are known
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to be exactly the maps of the form  f\mapsto f\circ $\varphi$ , where  $\varphi$ : \mathrm{Y}\rightarrow X is a homeo‐

morphism, while, by the famous Banach‐Stone theorem, the isometries of C(X)
onto C(\mathrm{Y}) (with respect to the distance coming from the supremum norm)
which send 0 to 0 (a harmless assumption) are of the form  f\mapsto $\tau$\cdot f\circ $\varphi$ ,

where

 $\varphi$ is as above and  $\tau$ \in  C(X) is some given fùnction with values in \{-1, 1\}.
Therefore, one can see that in the case of those function algebras any algebra
isomorphism is an isometry and, conversely, any isometry is

�

almost�� an algebra
isomorphism.

We point out that nowadays Banach‐Stone theorem is usually formulated

for linear isometries. But in the case of normed real linear spaces concerning
isometries which send 0 to 0 we get the linearity for free. This is the consequence
of the famous Mazur‐Ulam theorem [11] which will play an important role in

what follows.

Theorem 1 (Mazur‐Ulam (1932)) Let X, \mathrm{Y} be normed real linear spaces.
Then every isometry  $\phi$ :  X\rightarrow \mathrm{Y} is affine, i.e., respects the operation of convex

combinations. Consequently, if  $\phi$ is assumed to send  0 to 0, then it is real linear.

This is a very nice result but if we would like to determine the precise struc‐

ture of the isometries between given normed linear spaces, it does not help
much. We mean that there are

�
too many�� linear transformations on a real lin‐

ear space, so it is nonsense to say that what we have to do in order to determine

the isometries is that we simply select those bijective linear transformations

which are isometries. Indeed, for example, in Banach‐Stone theorem not the

linearity plays the key role but something else which is more purely algebraic in

nature: namely, the fact that the extreme points of the unit ball are exactly the

functions whose square is identically 1 and that extremes points are mapped
onto extreme point. Although Mazur‐Ulam theorem does not do the main job
in the descriptions of isometries in the setting of normed linear spaces, we will

see below that that type of results can be of fundamental help in describing the

isometries of certain noncommutative structures.

In what follows we are interested� in the determination of the structure of

maps on the set of all positive definite matrices which preserve certain sffcalled

generalized distance measures. We also call these maps generalized isometries

and again we emphasize that we always assume that they are surjective trans‐

formations.
Let us fix the notation. In what follows \ovalbox{\tt\small REJECT}_{n} denotes the space of all n\times n

complex matrices, n\geq 2, \mathbb{H}_{n} stands for the space of all Hermitian elements of

\mathrm{M}1_{n} and \mathbb{P}_{n} denotes the cone of all positive definite n\times n complex matrices.

Below we consider several norms on \mathrm{N}\mathrm{I}_{n} . In particular, denotes the spec‐
tral norm (in another words operator norm, i.e., the one which equals the largest
singular value of a matrix), \Vert.\Vert_{2} stands for the Frobenius norm (in another words

Hilbert‐Schmidt norm, i.e., the l_{2} ‐norm of the singular values) and \Vert_{1} denotes

the trace norm (i.e., the l_{1} ‐norm of the singular values).
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2 Generalized Mazur‐Ulam theorems, divergence
preservers I

In this part of the article we are mainly concerned with the description of the

structure of isometries and generalized isometries corresponding to certain rron‐

Euclidean geometries on the cone of positive definite matrices. In the solutions

abstract Mazur‐Ulam type results play a fundamental role. Below we explain
how and why.

In the paper [14] we determined the structure of all Thompson isometries

of the positive definite cone of the full operator algebra over a complex Hilbert

space. The Thompson metric is very important for the role it plays in several

areas e.g., in the theory of nonlinear matrix equations, optimization and control,
etc.

Since in the present article would like to keep the presentation at an easily
accessible level, hence we do not want to treat infinite dimensions, we restrict

our considerations to the finite dimensional case of matrices. The Thompson
metric (which is usually defined in a much more general setting, see e.g. [4]) on

\mathbb{P}_{n} is given by the formula

d_{T}(A, B)=\Vert\log A^{-1/2}BA^{-1/2}\Vert_{?} A, B\in \mathbb{P}_{n} . (1)

(A few more comments regarding this metric will be given below.) Our aim was

to describe the corresponding isometries of \mathbb{P}_{n} . The key step of the proof in [14]
was the following interesting observation. Adapting the arguments in the very

nice proof of Mazur‐Ulam theorem due to Väisälä [23], we proved that every

Thompson isometry preserves the geometric mean, i.e., it is an automorphism
of \mathbb{P}_{n} under the operation

A\# B=A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}, A, B\in \mathbb{P}_{n} . (2)

Recall that in the original version of Mazur‐Ulam theorem, the point is that the

isometries between normed real linear spaces.preserve the arithmetic mean which

operation is connected to the additive structure. We see in the formula (1) above

that the Thompson metric on \mathbb{P}_{n} is in close connection with multiplication, so

one can indeed expect that the Thompson isometries may show some features

of respecting the multiplicative structure. We mention that we had to be very
careful in [14] when adapting the proof of Mazur‐Ulam theorem: the additive

structure of a normed real linear space is commutative while multiplication is

highly noncommutative.

So it turned out that the Thompson isometries are geometric mean pre‐
servers. But the geometric mean is a rather complicated operation. How can

we go further? One could try to determine that sort of preservers directly (we
mention that this had previously been done on the positive semidefinite cone

in [13]) but better to observe the following. By Anderson‐Trapp theorem (for
original source, see [2]), the geometric mean A#B is the unique solution X of

the equation XA^{-1}X=B in \mathbb{P}_{n} . It then easily follows that any map which re‐

spects the geometric mean necessarily respects the operation AB^{-1}A
,

too. We
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call this latter object the inverted Jordan triple product of A and B . Therefore,
we had that any Thompson isometry on \mathbb{P}_{n} is an automorphism under that

product. In [14], applying former results we determined those automorphims
and found that all of them were actually Thompson isometries. This gave the

solution of our problem.
Since the inverted Jordan triple product can be defined in any group (this

does not hold for the geometric mean, have a look at (2)), what we have dis‐

cussed above gave us the idea to try to deduce general Mazur‐Ulam theorems

in general groups or even more general algebraic structures. In the joint work

[7] with Hatori, Hirasawa, Miura we presented our first such result and some

applications.
Later we got to an even higher level of generality and in what follows we

exhibit the presently most general (to our knowledge) such result in the setting
of secalled pomint‐reflection geometries. This concept is due to Manara and

Marchi [10] and its defimition is as follows.

Definition 2 Let X be a set equipped with a binary operation 0 which satisfies
the following conditions:

(al) a \mathrm{o}a=a holds for every a\in X ;

(a2) a  $\theta$ (a \mathrm{o}b)=b holds for any a, b\in X ;

(a3) the equation x\langle\succ a=b has a unique solution x\in X for any given a, b\in X.

In this case the pair (X, (or X itself) is called a point‐reflection geometry.

The trivial example of a point‐reflection geometry is, of course, the Euclidean

plane with the operation a $\theta$ b being the reỉlection of the point b with respect to

the one a . Apparently, this can be extended to any linear space X by defining
aob=2a-b, a, b\in X.

Now, a highly nontrivial example is \mathbb{P}_{n} equipped with the operation A \mathrm{o}B=

AB^{-1}A for any A, B \in \mathbb{P}_{n} . Indeed, the conditions (a1), (a2) above are trivial

to check. As for (a3), it is just the consequence of the Anderson‐Trapp theorem

what we already mentioned.

We make one further step in generality, our Mazur‐Ulam type result is for‐

mulated not only for metrics but for a much more general notion defined as

follows.

Definition 3 Given an arbitrary set X
, the function d : X\times X \rightarrow [0, \infty[ is

called a generalized distance measure if it has the properfy that for an arbitrary
pair x, y\in X of points we have d(x, y)=0 if and only if x=y.

Generalized distance measures are also called divergences. One may think

that such a general notion, so far more general than that of a metric, is artificial

and not useful. But this thought is completely false. We recall that, for example,
in quantum information theory that kind of distinguishability measures between

states (e.g., the many different notions of relative entropy) play a very important
role.

And now, our general Mazur‐Ulam theorem reads as follows [17].
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Theorem 4 Let X, Y be sets equipped with binary operations 0, \star
, respectively,

with which they form point‐reflection geometnes. Let  d : X \times  X \rightarrow [0, \infty[,
 $\rho$ : \mathrm{Y}\times \mathrm{Y}\rightarrow[0, \infty[ be generalized distance measures. Pick a, b\in X ,

set

L_{a,b}=\{x\in X : d(a, x)=d(x, bo a)=d(a, b)\}

and assume the following:

(b1) d( c\mathrm{o}x , co x' ) =d(x', x) holds for all c, x, x'\in X ;

(b1�)  $\rho$(d\star y, d\star y')= $\rho$(y', y) holds for all d, y, y'\in \mathrm{Y} ;

(b2) \displaystyle \sup\{d(x, b) : x\in L_{a,b}\}<\infty ;

(b3) there exists a constant  K > 1 such that d(x, b\mathrm{o}x) \geq  Kd(x, b) holds for
every x\in L_{a,b}.

Let  $\phi$ :  X\rightarrow \mathrm{Y} be a surjective map such that

 $\rho$( $\phi$(x),  $\phi$(x'))=d(x, x x, x'\in X.

Then we have

 $\phi$(b\circ a)= $\phi$(b)\star $\phi$(a).

The proof of this general result is based on extensions of the ideas of Väisälä

[23] that appeared in his proof of the original
\cdot

Mazur‐Ulam theorem.

Two remarks should certainly be made here. First, observe that the above

result is� local� in the sense that it guarantees that  $\phi$ respects the operations  0, \star

only for a given pair  a, b of elements having particular properties. Fortunately,
in practice we can show in many cases that either the related conditions are

satisfied for all pairs of elements or from the local respectfulness we can somehow

deduce that the maps under considerations (\mathrm{i}.\mathrm{e}. , the generalized isometries in

question) respect the operations globally. Therefore, in those cases we can show

that the generalized isometries are necessarily isomorphisms with respect to the

pair 0, \star of operations.
The other simple but important remark is that the above result trivially

includes the original Mazur‐Ulam theorem. To see this, take normed real linear

spaces  X, \mathrm{Y} and an isometry  $\phi$ :  X\rightarrow \mathrm{Y} . Define the operation 0 on X by

x\mathrm{o}x'=2x-x', x, x'\in X

and the operation \star on \mathrm{Y} similarly. Let d,  $\rho$ be the metrics corresponding to the

norms on  X and Y. Selecting any pair a, b of points in X
, it is apparent that

all conditions in the theorem are fulfilled and hence we have

 $\phi$(2b-a)=2 $\phi$(b)- $\phi$(a) .

It easily implies that  $\phi$ respects the operation of the arithmetic mean from

which it follows that  $\phi$ respects all dyadic convex combinations and finally, by
the continuity of  $\phi$ ,

we conclude that  $\phi$ is affine.
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After these let us now see how Mazur‐Ulam theorems help in the practice to

determine certain generalized isometries. The general scheme of our approach
is the following.

Assuming the conditions in Theorem 4 are fulfilled, by our Mazur‐Ulam type
result we deduce that the generalized isometries, the structure of which we are

interested in, are in fact automorphisms of certain algebraic structures. Next,
we try to determine the structure of those automorphisms. Clearly, this may
be a highly nontrivial task but there we face an algebraic problem. This means

that we can �compute� which has many advantages over considering distances.

If, in the fortunate case, the automorphisms in question are described, we finally
try to select those ones which are true generalized isometries.

Again, we emphasize that this scheme is not functioning in all cases, as we

have seen it is basically useless when normed spaces and their corresponding
isometries are studied. However, we will see below that in certain cases (highly
noncommutative ones) this approach do work really fine.

Our main objects are metrical structures on the set \mathbb{P}_{n}\mathrm{o}\mathrm{f}\cdot \mathrm{a}\mathrm{I}\mathrm{l} positive definite

n\times n matrices. We introduce a large collection of generalized distance measures

on \mathbb{P}_{n} as follows. Apparently, for any norm N on \mathrm{M}1_{n} and continuous function

f:]0, \infty[\rightarrow \mathbb{R} with the property that f(y) =0 holds if and only if y= 1
,

the

formula

d_{N,f}(A, B)=N(f(A^{-1/2}BA^{-1/2})) , A, B\in \mathbb{P}_{n} , (3)
defines a generalized distance measure. Of course, in most cases d_{N,f} is not a

true metric.

The above collection of distance measures has elements which are connected

to important Finsler‐type differential geometrical structures on \mathbb{P}_{n} . The positive
definite cone \mathbb{P}_{n} is a differentiable manifold in \mathbb{H}_{n} , the tangent space at any point
of \mathbb{P}_{n} can be identified with \mathbb{H}_{n} . Let N be a unitarily invariant norm on \mathrm{M}_{n}.
For each A\in \mathbb{P}_{n} we define

N(X)_{A}=N(A^{-1/2}XA^{-1/2}) , X\in \mathbb{H}_{n}
and obtain a Finsler‐type structure on \mathbb{P}_{n} , see [5]. It turned out in [5] that the

shortest path distance d_{N}(A, B) between A, B \in \mathbb{P}_{n} can be computed by the

formula

d_{N,\log}(A, B)=N(\log A^{-1/.2}BA^{-1/2}) , A, B\in \mathbb{P}_{n}.
The probably most important case is the one where N equals the Frobenius

norm \Vert.\Vert_{2} . Then we are given a Riemannian geometry on \mathbb{P}_{n} which has a lot of

applications, see, e.g., Chapter 6 in [3]. Observe that when N equals the spec‐
tral norm we in fact obtain the Thompson metric mentioned above. Clearly,
these metrics belong to the class defined in (3). But there are additional impor‐
tant elements of that class. A new interesting metric was recently introduced

by Sra [22]. In fact, his aim was to find a substitute for the above mentioned

Riemannian shortest path distance which is similarly useful but much less com‐

putation demanding. In order to define Sra�s metric we need the following other

notions. For any pair A, B\in \mathbb{P}_{n} , the Stein�s loss l(A, B) is defined by

l(A, B)=\mathrm{T}\mathrm{r}(AB^{-1})-\log\det(AB^{-1})-n.
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This plays a very important role e.g. in multivariate analysis. The Jensen‐

Shannon symmetrization of l(A, B) is the quantity

S_{JS}(A, B)^{-}=\displaystyle \frac{1}{2}(l(A, \frac{A+B}{2})+l(B, \frac{A+B}{2}))
which is called symmetric Stein divergence. It is easy to see that

S_{JS}(A, B)=\displaystyle \log\det(\frac{A+B}{2}) -\frac{1}{2}\log\det(AB) , A, B\in \mathbb{P}_{n}.
In [22] Sra proved the very interesting and nice fact that

$\delta$_{S}(A, B)=\sqrt{S_{JS}(A,B)}, A, B.\in \mathbb{P}_{n},
is a true metric on \mathbb{P}_{n} . Now, one can see that

$\delta$_{S}(A, B)^{2}=S_{JS}(A, B)=\mathrm{T}\mathrm{r}\log(\mathrm{Y}+I)(2\mathrm{Y}^{1/2})^{-1}=\Vert\log(\mathrm{Y}+I)(2\mathrm{Y}^{1/2})^{-1}\Vert_{1}
holds with Y=A^{-1/2}BA^{-1/2} where, as before, \Vert.\Vert_{1} denotes the trace‐norm on

\mathrm{B}A_{n} . Therefore, we have $\delta$_{S}^{2}=d_{N,f} with N= \Vert.\Vert_{1} and f(y)=\log((y+1)/(2\sqrt{y})) ,

y>0 meaning that the square of Sra�s metric also belongs to our class (3).
The above distance measures are true metrics. It is easy to verify that the

next theorem can bé applied for them and for many other generalized distance

measures, too. In particular, we mention Stein�s loss, Jeffrey�s Kullback‐Leibler

divergence, \log‐determinant  $\alpha$‐divergence, etc, see [19].

Theorem 5 Let  N be a unitarily invariant norm on \mathrm{M}\mathrm{I}_{n} . Assume that f: ] 0, \infty[\rightarrow
\mathbb{R} is a continuous function such that

(c1) f(y)=0 holds if and only if y=1 ;

(c2) there exists a number K>1 such that

|f(y^{2})|\geq K|f(y)|, y\in]0, \infty[.

If  $\phi$:\mathbb{P}_{n}\rightarrow \mathbb{P}_{n} is a surjective map which satisfies

d_{N,f}( $\phi$(A),  $\phi$(B))=d_{N,f}(A, B) , A, B\in \mathbb{P}_{n} , (4)

then there exist an invertible matrix T\in \mathrm{N}\mathrm{I}_{n} and a real number c\neq-1/n such

that  $\phi$ is of one of the following forms

(1)  $\phi$(A)=(\det A)^{\mathrm{c}}TAT^{*}, A\in \mathbb{P}_{n} ;

(2)  $\phi$(A)=(\det A)^{c}TA^{-1}T^{*}, A\in \mathbb{P}_{n} ;

(3)  $\phi$(A)=(\det A)^{c}TA^{t}T^{*}, A\in \mathbb{P}_{n} ;

(4)  $\phi$(A)=(\det A)^{c}TA^{t-1}T^{*}, A\in \mathbb{P}_{n}.
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The idea of the proof of this result is simple, we sketch it in what follows.

For details see [19]. We equip \mathbb{P}_{n} with the point‐reflection geometrical structure

A\mathrm{o}B=AB^{-1}A, A, B\in \mathbb{P}_{n}

and apply our general Mazur‐Ulam result, Theorem 4. We obtain that the

generalized isometries under considerations are inverted Jordan triple automor‐

phisms of \mathbb{P}_{n} . With some efforts, using the properties of f and the fact that

any two norms on \mathrm{M}_{n} are equivalent, we can also show that the fact that  $\phi$
preserves the distance measure  d_{N,f} implies that it is continuous with respect
to the operator norm. We next see that  $\psi$ :  A \mapsto  $\phi$(I)^{-1/2} $\phi$(A) $\phi$(I)^{-1/2} is

a continuous inverted Jordan triple automorphism of \mathbb{P}_{n} which also satisfies

 $\psi$(I) =I . Easy computation gives us that  $\psi$ is a Jordan,triple automorphism
of \mathbb{P}_{n} , i.e., a bijective map which respects the product ABA.

The next step of the proof of Theorem 5 is to determine the structure of

those automorphisms. This was done in [16], also see [21]. In fact, there we

described not only the corresponding automorphisms but all continuous Jordan

triple endomorphisms, too.

Theorem 6 Assume n\geq 2 . Let  $\phi$ : \mathbb{P}_{n}\rightarrow \mathbb{P}_{n} be a continuous map which is a

Jordan triple endomorphism, i. e.,  $\phi$ is a continuous map which satisfies

42(ABA) = $\phi$(A) $\phi$(B) $\phi$(A) , A, B\in \mathbb{P}_{n} . (5)

Then there exist a unitary matrix U\in \mathrm{N}\mathrm{I}_{n} , a real number c
,

a set \{P_{1}, . . . , P_{n}\}
of mutually orthogonal rank‐one projections in \mathrm{N}\mathrm{I}_{n} , and a set \{c_{1}, . . . , c_{n}\} of
real numbers such that  $\phi$ is of one of the following forms

(1)  $\phi$(A)=(\det A)^{\mathrm{c}}UAU^{*}, A\in \mathbb{P}_{n} ;

(2)  $\phi$(A)=(\det A)^{c}UA^{-1}U^{*}, A\in \mathbb{P}_{n} ;

(3)  $\phi$(A)=(\det A)^{c}UA^{t}U^{*}, A\in \mathbb{P}_{n} ;

(4)  $\phi$(A)=(\det A)^{c}UA^{t-1}U^{*}, A\in \mathbb{P}_{n} ;

(5)  $\phi$(A)=\displaystyle \sum_{j=1}^{n}(\det A)^{\mathrm{c}_{j}}P_{j}, A\in \mathbb{P}_{n}.

The main steps of the proof of this result in the case where n\geq 3 were the

following, for details see [16]. First we could show that  $\phi$ is a Lipschitz map

in a neighbourhood of  I . Then, using this property and the multiplicativity
of  $\phi$ in the sense of (5) we proved that the map  F : \mathbb{H}_{n} \rightarrow \mathbb{H}_{n} defined by
F(A) =\log $\phi$(e^{A}) ,

A \in \mathbb{H}_{n} is linear and preserves the commutativity meaning
that it maps commuting matrices to commuting ones. Next we applied an old

result on the structure of those important linear preservers and concluded the

proof.
Obviously, we immediately have the corollary that the continuous Jordan

triple automorphisms of \mathbb{P}_{n} are of one of the forms (1) -(4) right above. Putting
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all the information together one can easily fimish the proof of Theorem 5 for the

case n\geq 3.
In the argument above we have assumed n\geq 3 . The reason for this is the

use of a structural result on linear commutativity preservers on \mathbb{H}_{n} which is

available only under that condition. But what happens if n = 2? Using a

rather different, totally 2‐dimensional approach, we proved that the conclusions

in Theorem 6 are valid also in that case. This was done in [21]. Therefore, we

have that the conclusion in Theorem 5 holds for n=2 , too.

Let us next present a serious application of the just mentioned result in [21].
This is the description of the endomorphism semigroup of the Einstein velocity
addition which is a fundamental operation in the special theory of relativity.
That operation is defined in the following way. Let \mathrm{B} = \{u \in \mathbb{R}^{3} : \Vert u\Vert. < 1\}
be the open unit ball in the 3‐dimensional Euclidean space (in physics they
consider the radius equal to c

,
the speed of light, but in mathematics we can

use that simple normalization). The velocity addition (or relativistic sum) on

\mathrm{B} is given by

\oplus:\mathrm{B}\times \mathrm{B}\rightarrow \mathrm{B} ; (u, v)\mapsto u\oplus v :=\displaystyle \frac{1}{1+\{u,v\}}(u+\frac{1}{$\gamma$_{u}}v+\frac{$\gamma$_{u}}{1+$\gamma$_{u}}\langle u, v\}u)
where $\gamma$_{u} = (1- \Vert u\Vert^{2})^{-\frac{1}{2}} is the so‐called Lorentz factor. . Our result in [20]
describing the structure of all continuous endomorphisms of this structure reads

as follows.

Theorem 7 Let  $\beta$ : \mathrm{B}\rightarrow \mathrm{B} be a continuous endomorphism with respect to the

operation \oplus . Then it is either identically zero or there is an orthogonal matrix

 O\in \mathrm{F}A_{3}(\mathbb{R}) such that

 $\beta$(v)=Ov, v\in \mathrm{B}.

Let us go back to our original problem on generalized isometries. We em‐

phasize that Theorem 5 tells that every considered generalized isometry must

be of one of some particular forms, but it is not a precise result. Indeed, it does

not assert that the maps of those forms are all generalized isometries. Clearly,
one cannot even expect such an

� if and only if� statement due to the generality
of the norm N and the function f . If the function f is the logarithmic function,
we can have a slightly more precise result which is still not of�if and only if�

type due to the generality of the norm N . It was published in [16] and reads as

follows.

Theorem 8 Suppose  n\geq  2 . Let N be a unitarily invariant norm on \mathrm{P}A_{n} and

 $\phi$ : \mathbb{P}_{n}\rightarrow \mathbb{P}_{n} a surjective isometry relative to the metric d_{N,\log} . Assume  n\geq  3

and N is not a scalar multiple of the Frobenius norm. If n\neq 4 , then there exists

an invertible matrix T\in \mathbb{N}\mathrm{I}_{n} such that  $\phi$ is of one of the following forms

(1)  $\phi$(A)=TAT^{*}, A\in \mathbb{P}_{n} ;

(2)  $\phi$(A)=TA^{-1}T^{*}, A\in \mathbb{P}_{n} ;
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(3)  $\phi$(A)=TA^{t}T^{*}, A\in \mathbb{P}_{n} ;

(4)  $\phi$(A)=TA^{t-1}T^{*}, A\in \mathbb{P}_{n}.

If n=4 , then beside (1)‐(4) the following additional possibilities can occur

(5)  $\phi$(A)=(\det A)^{-2\'{I} n}TAT^{*}, A\in \mathbb{P}_{n} ;

(  $\theta$)  $\phi$(A)=(\det A)^{2/n}TA^{-1}T^{*}, A\in \mathbb{P}_{n} ;

(7)  $\phi$(A)=(\det A)^{-2/n}TA^{t}T^{*}, A\in \mathbb{P}_{n} ;

(8)  $\phi$(A)=(\det A)^{2/n}TA^{t-1}T^{*}, A\in \mathbb{P}_{n}.

In the case where n\geq 3 and N is a scalar multiple of the Frobenius norm,  $\phi$ is

of one of the forms (1)-(8) . Finally, if n=2 , then  $\phi$ can be written in one of
the forms (1)‐(4).

We close this section with a precise result concerning Sra�s metric [16].

Theorem 9 Assume  n \geq  2 . Let  $\phi$ : \mathbb{P}_{n} \rightarrow \mathbb{P}_{n} be a surjective map. It is an

isometry relative to the metric $\delta$_{S} if and only if there is a nonsingular matrix

T\in \mathrm{M}\mathrm{I}_{n} such that  $\phi$ is of one of the following forms

(1)  $\phi$(A)=TAT^{*}, A\in \mathbb{P}_{n} ;

(2)  $\phi$(A)=TA^{-1}T^{*}, A\in \mathbb{P}_{n} ;

(3)  $\phi$(A)=TA^{t}T^{*}, A\in \mathbb{P}_{n} ;

(4)  $\phi$(A)=TA^{t-1}T^{*}, A\in \mathbb{P}_{n}.

Further specific precise results on the structures of particular generalized
distance measures can be found in [19]. We remark that related infinite dimen‐

sional results (concerning operator algebras) were given in [8], [17], see also [9].
We also call the attention to another approach to general Mazur‐Ulam theorems

based on the concept of generalized gyrovector spaces that was developed in [1].

3 Order automorphisms, divergence preservers

II

In the present and closing section we consider some other types of divergences
and the corresponding generalized isometries. We first recall the definition of

the so‐called Bregman divergences.

Definition 10 For a differentiable strictly convex function f : ] 0, \infty[\rightarrow \mathbb{R} , the

Bregman f‐divergence on \mathbb{P}_{n} is defined by

H_{f}(A, B)=\mathrm{T}\mathrm{r}(f(A)-f(B)-f'(B)(A-B)) , A, B\in \mathbb{P}_{n}.
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The next concept we consider here is that of the Jensen divergences.

Definition 11 For a strictly convex function f : ] 0, \infty[\rightarrow \mathbb{R} and for a given
number  $\lambda$\in ]  0 , 1[, the Jensen  $\lambda$-f ‐divergence on \mathbb{P}_{n} is defined by

J_{f, $\lambda$}(A, B)=\mathrm{T}\mathrm{r}( $\lambda$ f(A)+(1- $\lambda$)f(B)-f( $\lambda$ A+(1- $\lambda$)B)) , A, B\in \mathbb{P}_{n}.

The reason for assuming above that f is not only convex but strictly convex

is that in that case H_{f} and J_{f, $\lambda$} are generalized distance measures in the sense

of Definition 3 meaning that they are nonnegative and take the value 0 only at

equal variables.

The probably most important examples of the above divergences are the

following.

\bullet The Bregman divergences corresponding to the generating functions  x\mapsto

xlogx and  x \mapsto -\log x are called Umegaki relative entropy and Stein�s

loss, respectively. This latter one is also an example of the. divergences of

the form (3).

\bullet The Jensen divergence with parameter  $\lambda$.= 1/2 and generating function

x \mapsto -\log x is called the symmetric Stein divergence. In general, for

any -1 \leq  $\alpha$ \leq  1
, the Jensen divergence with parameter  $\lambda$ = (1- $\alpha$)/2

and the same generating function x \mapsto -\log x is called \log‐determinant

 $\alpha$‐divergence which is also a divergence of the form (3), see [19].

Hence, as we can see, there are overlaps between these sorts of divergences
and the class of generalized distance measures which appeared in the second

section of the article. In fact, it was proved that the �intersection� of the

collection of Bregman divergences (resp. Jensen divergences) and that of the

ones of the form  d_{N,f} in (3) contains only functions of the form x\mapsto a\log x+
bx+c ,

where a, b, c are reals, see [18].
Now, the natural question we are interested in is the following. What are

the surjective maps of \mathbb{P}_{n} which preserve the Bregman or Jensen divergences? It

is easy to see that transformations of the forms A\mapsto UAU^{*} or A\mapsto UA^{t}U^{*}
with unitary U\in \mathrm{F}\mathrm{M}_{n} have‐that property. In [18] we proved that under certain

conditions on the function f ,
the converse statements are also true. Namely, we

obtained the following.

Theorem 12 Let f be a differentiable convex function on ] 0, \infty[ with the fol‐
lowing conditions: f^{J} is bounded from below and unbounded from above. Let

 $\phi$ : \mathbb{P}_{n}\rightarrow \mathbb{P}_{n} be a bijective map which satisfies

H_{f}( $\phi$(A),  $\phi$(B))=H_{f}(A, B) , A^{\cdot}, B\in \mathbb{P}_{n}.

Then there exists a unitary matrix U\in \mathrm{B}\mathrm{f}\mathrm{f}\mathrm{i}_{n} such that  $\phi$ is of one of the following
forms

(1)  $\phi$(A)=UAU^{*}, A\in \mathbb{P}_{n} ;
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(2)  $\phi$(A)=UA^{t}U^{*}, A\in \mathbb{P}_{n}.

The corresponding result concerning Jensen divergences reads as follows.

Theorem 13 Let f be a strictly convex function on ] 0, \infty[ with the following
conditions: \displaystyle \lim_{x\rightarrow 0+}f(x) exists and finite, f is differentiable and f' is un‐

bounded from above. Pick  $\lambda$ \in ]  0 , 1[. If  $\phi$ : \mathbb{P}_{n} \rightarrow \mathbb{P}_{n} is a surjective map which

satisfies

J_{f, $\lambda$}( $\phi$(A),  $\phi$(B))=J_{f, $\lambda$}(A, B) , A, B\in \mathbb{P}_{n},
then there exists a unitary matrix U\in \mathrm{R}\mathrm{f}\mathrm{f}\mathrm{i}_{n} such that  $\phi$ is of one of the following
forms

(1)  $\phi$(A)=UAU^{*}, A\in \mathbb{P}_{n} ;

(2)  $\phi$(A)=UA^{t}U^{*}, A\in \mathbb{P}_{n}.

As for the proofs of the above results we note the following. Similarly to the

case of divergences of the form d_{N,f} in (3) considered in the previous section

of the paper, the proofs here also heavily rely on the structure of certain auto‐

morphisms of \mathbb{P}_{n} . Namely, this time those are the order automorphisms. By
order we mean the usual partial order coming from positive semidefiniteness.

I.e., for A, B\in \mathbb{H}_{n} we write A\leq B if and only if the matrix B-A is positive
semidefinite. The next result appeared in [15], cf. [12].

Theorem 14 Let  $\phi$ : \mathbb{P}_{n} \rightarrow \mathbb{P}_{n} be a bijective map which is an order auto‐

morphism, i. e.
, assume that for any A, B \in \mathbb{P}_{n} we have  A\leq  B if and only if

 $\phi$(A)\leq $\phi$(B) . Then there exists a nonsingular matrix T\in \mathrm{h}A_{n} such that  $\phi$ is of
one of the following forms

(1)  $\phi$(A)=TAT^{*}, A\in \mathbb{P}_{n} ;

(2)  $\phi$(A)=TA^{t}T^{*}, A\in \mathbb{P}_{n}.

Now the proof of Theorem 12 (and also that of Theorem 13) is essentially
based on a characterization of the order \leq on \mathbb{P}_{n} expressed by the divergences
in question. Namely, one can verify that for any given B, C\in \mathbb{P}_{n} , the set

\{H_{f}(B, A)-H_{f}(C, A)|A\in \mathbb{P}_{n}\}

of real numbers is bounded from below if and only if B \leq  C . Having this

characterization in mind, it is apparent that the transformation  $\phi$ in Theorem

12 is an order automorphism of \mathbb{P}_{n} . One can apply Theorem 14 and then prove
that T is necessarily unitary.

Unfortunately, because of its conditions, Theorem 12 does not cover the

cases of the important convex functions x\mapsto x\log x-x and x\mapsto-\log x . As we

have learned, the former function gives rise to the Umegaki relative entropy, the

latter one to the Stein;s loss. But it was also noted above that Steín;s loss is a

member of the collection of generalized distance measures defined in (3), so the
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corresponding preservers are described due to the results given in the previous
section. As for the Umegaki relative entropy, the corresponding generalized
ismetries can still be described by using order automorphisms, see [18].

As for Theorem 13, it does not cover the case of the function x\mapsto-\log x,
i.e., where the Jensen divergence is the symmetric Stein divergence, or, more

generally a \log‐determinant a‐divergence. Again, we can point out that those

divergences belong to the class considered in the previous section of the paper

and therefore their preservers can be determined using the results presented
there.

We finish the paper mentioning that the structural result Theorem 14 on

the order automorphisms of \mathbb{P}_{n} was used in the descriptions of the preservers of

further divergences, too. For example, in our very recent paper [6] in a similar

manner we.determined the bijective maps of \mathbb{P}_{n} which preserve the quantum
Rényi divergences.
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