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1. INTRODUCTION AND MAIN RESULTS

The aim of this survey is to introduce our recent work [7], [8] on oscillations of Fourier

coefficients of cusp forms over primes twisted with additive functions.

Sums concerning prime numbers are important problems in analytic number theory.
Hence, number theorists are interested in sums of type

\displaystyle \sum_{n\leq x} $\Lambda$(n)a_{n}e(n^{k} $\theta$) and \displaystyle \sum_{n\leq x} $\mu$(n)a_{n}e(n^{k} $\theta$) , (1.1)

where A= (a_{n}) is an arithmetic sequence of complex numbers. Here, as usual,  $\Lambda$(n)
and  $\mu$(n) are the von Mangoldt function and the Möbius function.

The problem that a_{n}\equiv 1 was first considered by Davenport [2] for k=1 . He showed,
by Vmogradov�s ingenious method on estimating exponential sums over primes, that

\displaystyle \sum_{n\leq x} $\mu$(n)e(n $\theta$)\ll A\frac{x}{\log^{A}x} (1.2)

for any A\geq 0 , where the implied constant depends only on A . For the nonlinear case

k\geq 2 , by applying the techniques introduced by Hua [4, Theorem 10], one can show

that

\displaystyle \sum_{n\leq x} $\mu$(n)e(n^{k} $\theta$)\ll A,k\frac{x}{\log^{A}x} (1.3)

for any A\geq 0 , where the implied constant depends only on A and k.

Following Fouvry and Ganguly [3], two sequences (x_{n}) and (y_{n}) of complex numbers

are strong asymptotically orthogonal if

\displaystyle \sum_{1\leq n\leq N}x_{n}y_{n}=O_{A}((\log N)^{-A}\sum_{n\leq N}|x_{n}y_{n}|)
for every A\geq 0 , uniformly for N\geq 2 . Hence Davenport�s result means that uniformly
for all real numbers  $\alpha$ , the sequences \{ $\mu$(n)\} and \{e(n^{k} $\alpha$)\} are strong asymptotically
orthogonal.

Recently, when k = 1 and a_{n} = a_{F}(n) , where a_{F}(n) are the normalized Fourier

coefficients of holomorphic or Maass cusp forms F for SL(2, \mathbb{Z}) , Fouvry and Ganguly [3]
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proved that

\displaystyle \sum_{n\leq x} $\Lambda$(n)a_{F}(n)e(n $\theta$)\ll F,cx\exp(-c\sqrt{\log x}) (1.4)

for some constant c>0 . In fact, this is a classical problem, see e.g. Perelli [10]. They
also derived the corresponding result

\displaystyle \sum_{n\leq x} $\mu$(n)a_{F}(n)e(n $\theta$)\ll_{F,c}x\exp(-c\sqrt{\log x}) . (1.5)

This can be regarded as one GL(2) analogue of Davenport�s theorem. It is also closely
related to the the Möbius randomness law, which recently appeals to many authors.

Recently, Hou and Lü [7] and Hou, Jiang and Lü [8] were able to generalize the result

of Fouvry and Ganguly to the following cases.

Theorem 1.1. Let  N\geq  2 and F be a primitive holomorphic or Maass cusp form
for the group SL(2, \mathbb{Z}) . Let a_{F}(n) denote the nth normalized Fourier coefficient of the

form F. Then there exists an effective absolute c_{1} >0 such that, for any  $\alpha$\in \mathbb{R} and

any quadratic polynomial g(n) with integral coefficients,

\displaystyle \sum_{n\leq N} $\Lambda$(n)a_{F}(n)e(g(n) $\alpha$)\ll N\exp(-c_{1}\sqrt{\log N}) .

where the implied constant depends only on the form F.

Theorem 1.2. Let N\geq 2 and L(s, F) be the L‐function associated to a Hecke‐Maass

form F for SL(3, \mathbb{Z}) . Let A_{F}(n, 1) denote the nth coefficient of the Dirichlet series for
L(s, F) . Then for any  $\alpha$\in \mathbb{R} there evists an effective constant c_{2}>0_{f} such that

\displaystyle \sum_{n\leq N} $\Lambda$(n)A_{F}(n, 1)e(n $\alpha$)\ll N\exp(-c_{Q}\sqrt{\log N}) ,

where the implied constant depends only on the form F.

Theorem 1.1 shows that for a Hecke‐Maass form F for SL(2, \mathbb{Z}) , the sequences

\{ $\Lambda$(n)\} and \{a_{F}(n)e(n^{2} $\alpha$)\} are strong asymptotically orthogonal. Furthermore The‐

orem 1.2 gives that for a Hecke‐Maass form F for SL(3, \mathbb{Z}) , the sequences \{ $\Lambda$(n)\} and

\{A_{F}(n, 1)e(n $\theta$)\} are strong asymptotically orthogonal.
We applied the theory of automorphic L-‐fucntions, the Vaughan identity, the esti‐

mation of exponential sum, and the strong orthogonality between Fourier coefficients

and the additive characters to establish Theorems 1.1 and 1.2. In Section 2, we shall

use Theorem 1.2 an example to illustrate our main arguments. In Section 3, we shall

talk about some related results.
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2. MAIN STEPS IN THE PROOF

By Dirichlet�s theorem on rational approximations, for any  $\alpha$ \in \mathbb{R} and any given
Q\geq 1 , there exist two integers l and q such that

| $\alpha$-\displaystyle \frac{l}{q}|\leq\frac{1}{qQ} , 1\leq q\leq Q, (l,q)=1 . (2.1)

Furthermore, we parameterize Q by setting

Q=N\exp(-C_{0}\sqrt{\log N}) (2.2)

for some positive constant C_{0} to be determined later. From the point of view of the

circle method, one may split a into two pieces:  $\alpha$ belongs to the major arcs when  q

is quite small (precisely q \leq \exp(c_{0^{\mathrm{o}}}\ovalbox{\tt\small REJECT} \mathrm{g}N) , and the minor arcs otherwise, where

\exp(C_{0}\sqrt{})<q\leq N\exp(-C_{0}\sqrt{\mathrm{o}\mathrm{g}N}) .

2.1. The major arcs. The Godement‐Jacquet L-‐function, defined for \Re s>1 by

L(s, F)=\displaystyle \sum_{n=1}^{\infty}\frac{A_{F}(n,1)}{n^{s}} , (2.3)

has an analytic continuation to the whole complex plane and satisfies the following
functional equation

G_{ $\nu$}(s)L(s, F)=\overline{G}_{ $\nu$}(1-s)L(1-s, F (2.4)

where

G_{ $\nu$}(s)=$\pi$^{-\yen} $\Gamma$(\displaystyle \frac{s+1-2$\nu$_{1}-\mathrm{v}_{2}}{2}) $\Gamma$(\frac{s+$\nu$_{1}-$\nu$_{2}}{2}) $\Gamma$(\frac{s-1+$\nu$_{1}+2$\nu$_{2}}{2}) ,

\displaystyle \overline{G}_{ $\nu$}(s)=$\pi$^{-\frac{3 $\epsilon$}{2}} $\Gamma$(\frac{s+1-$\nu$_{1}-2$\nu$_{2}}{2}) $\Gamma$(\frac{s-$\nu$_{1}+$\nu$_{2}}{2}) $\Gamma$(\frac{s-1+2$\nu$_{1}+$\nu$_{2}}{2}) ,

and \overline{F} is the dual Maass form of F.

We firstly proved the so‐called Prime Number Theorem for the coefficients of L(s, F)
with multiplicative twists.

Lemma 2.1. Let N\geq 2 and F be a Hecke‐Maass form for SL(3, \mathbb{Z}) . Let  $\chi$ be any

Dirichlet character modulo  q . Suppose that  $\alpha$ belongs to the major arcs. Then there

exists a constant  c>0 such that

\displaystyle \sum_{n\leq N} $\Lambda$(n)A_{F}(n, 1) $\chi$(n)\ll q^{\frac{3}{2}}N\exp(-c\sqrt{\log N}) , (2.5)

where the implied constant only depends on the form F.
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To this aim, we need various analytic properties of the twisted ‐function L(s, F\times $\chi$) .

In particular, the zero‐free region of L(s, F\times $\chi$) plays an important role in our argument,
which states that there exists some absolute constant c>0 such that the region

\displaystyle \{s= $\sigma$+it: $\sigma$\geq 1-\frac{c}{\log(q(|t|+3))}\}
does not contain any zeros of L(s, F\times $\chi$) .

Based on Lemma 2.1, by standard arguments of analytic number theory, we have

Proposition 2.1. Let  N\geq  2 and A_{F}(n, 1) be nth coefficient of L(s, F) . Suppose
that a belongs to the major arcs. Then there exists a constant c>0 such that

\displaystyle \sum_{n\leq N} $\Lambda$(n)A_{F}(n, 1)e(n $\alpha$)\ll N\exp(-c\sqrt{\log N}) ,

where the imphed constant only depends on the form F.

2.2. The minor arcs. The L‐‐function L(s, F) can be also written as an Euler product

L(s, F)=\displaystyle \prod_{p}\prod_{1\leq j\leq 3}(1-\frac{$\alpha$_{F}(p,j)}{p^{ $\epsilon$}})^{-1}
where $\alpha$_{F}(p, 1) , $\alpha$_{F}(p, 2) , a_{F}(p, 3) are local parameters.

By taking the logarithmic derivatives for L(s, F) , we have

-\displaystyle \frac{L'}{L}(s, F)=\sum_{n=1}^{\infty}\frac{$\Lambda$_{F}(n)}{n^{s}},
where

$\Lambda$_{F}(n)=\left\{\begin{array}{ll}
\log p\sum_{j=1}^{3}$\alpha$_{F}(p,j)^{k}, & \mathrm{i}\mathrm{f} n=p^{k},\\
0, & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
We define the function L^{-1}(s, F) as

L^{-1}(s, F)=\displaystyle \sum_{n=1}^{\infty}\frac{$\mu$_{F}(n)}{n^{s}},
where

$\mu$_{F}(n)= \left\{\begin{array}{ll}
0, & \mathrm{i}\mathrm{f} p^{4}|n,\\
\prod_{l=1}^{3}\prod_{p^{\ell}||n}(-1)^{\ell}\sum_{1\leq j_{1}<\cdots<j\ell\leq 3}$\alpha$_{F}(p,j_{1})\cdots$\alpha$_{F}(p,j_{l}) , & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
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It follows from the definition of $\Lambda$_{F}(n) and the result of Kim and Sarnak [6], which

states that A_{F}(n, 1)\ll n^{5/14}d_{3}(n) , we have

\displaystyle \sum_{n\leq N} $\Lambda$(n)A_{F}(n, 1)e(n $\alpha$)=\sum_{n\leq N}$\Lambda$_{F}(n)e(n $\alpha$)+O(N^{6/7+ $\epsilon$}) .
To go further, we need an analogue of Vaughan�s identity (see [10], [11])

‐ \displaystyle \frac{L'(s,F)}{L(s,F)}=H(s)-L'(s, F)G(s)-L(s, F)H(s)G(s)
(2.6)

+(-\displaystyle \frac{L'(s,F)}{L(s,F)}-H(s))(1-L(s, F)G(s)) ,

where

H(s)=\displaystyle \sum_{n\leq X}$\Lambda$_{F}(n)n^{-s} and G(s)=\displaystyle \sum_{n\leq \mathrm{y}}$\mu$_{F}(n)n^{-s} for any X, Y>1.

This gives that

\displaystyle \sum_{n\leq N}$\Lambda$_{F}(n)e(n $\alpha$)=S_{1}+S_{2}-S_{3}+S_{4}+O((XY)^{1+ $\epsilon$})
with

S_{1}=\displaystyle \sum_{n\leq X}$\Lambda$_{F}(n)e(n $\alpha$) ,

S_{2}=\displaystyle \sum_{m\leq Y}$\mu$_{F}(m)\sum_{mn\leq N}A_{F}(n, 1)(\log n)e(mn $\alpha$) ,

(2.7)

S_{3}=\displaystyle \sum_{m\leq XY}a_{F}(m)\sum_{mn\leq N}A_{F}(n, 1)e(mn $\alpha$) ,

S_{4}=\displaystyle \sum_{X<m<N/\mathrm{y}}\sum_{\mathrm{Y}<n\leq N/m}b_{F}(n)$\Lambda$_{F}(m)e(mn $\alpha$) ,

where

a_{F}(m)= \displaystyle \sum_{k=m,b\leq \mathrm{Y},\mathrm{c}\leq X}$\mu$_{F}(b)$\Lambda$_{F}(c) ,

b_{F}(n)=\displaystyle \sum_{b\mathrm{c}=n,b>Y}$\mu$_{F}(b)A_{F}(c, 1)
.

Since one can estimate S_{1} trivially, it suffices to estimate �TYpe I� uilinear forms S_{2},
S_{3} and Type II bilinear form S_{4}.

To estimate �IYpe I� bilinear forms S_{2} , S3, we need the strong orthogonality between

A_{F}(n, 1) and e(n $\alpha$) proved by S. Miller [9].
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Lemma 2.2. Let N\geq 2 and A_{F}(n, 1) be the nth coefficient of L(s, F) . Then for
any  $\alpha$\in \mathbb{R} and any  $\epsilon$>0 one has

\displaystyle \sum_{n\leq N}A_{F}(n, 1)e(n $\alpha$)\ll N^{\frac{3}{4}+ $\epsilon$},
where the implied constant depends only on the form F and  $\epsilon$.

It is standard that S_{4} can be written as a linear combination of O(\log^{2}N) terms,
each of which is of the form

m\displaystyle \sim M',n\sim N'\sum_{mn\sim}\sum_{x'}b_{F}(n)$\Lambda$_{F}(m)e(mn $\alpha$)
with

X<M'<\displaystyle \frac{2N}{\mathrm{Y}}, \mathrm{Y}<N'<\frac{2N}{X}, X\mathrm{Y}<x'<2N, M'N_{\wedge}'\cdot x'.
Set a(m) :=$\Lambda$_{F}(m) and b(n) :=b_{F}(n) . We still need the following standard estimate.

Lemma 2.3. Let M, N,x\geq 2 . Let \{a(m):1\leq m\leq M\} and \{b(n):1\leq n\leq N\}
be any two complex‐valued sequences. Suppose that there exists a constant c_{0}>0 such

that

\displaystyle \sum_{rn\sim M}|a(m)|^{2}\ll M lo\mathrm{g}^{} M and \displaystyle \sum_{n\sim N}|b(n)|^{2}\ll N\log^{c0}N.
Then there exists a positive constant c, depending on c_{0} , such that for any  $\alpha$ satisfying

\displaystyle \sum_{mM,n\tilde{m},n\sim}\sum_{\tilde{x}^{N}}a(m)b(n)e(mn $\alpha$)\ll x(\frac{1}{M}+\frac{1}{N}+\frac{1}{q}+\frac{1}{q}x)^{\frac{1}{2}}\log^{c}x.
It is nontrivial to show that a(m) :=$\Lambda$_{F}(m) and b(n) :=b_{F}(n) satisfies the conditions

in Lemma 2.3. We did this by the Selberg‐Delange method and the analytic properties
of automorphic L‐functions.

Lemma 2.4. Let F be a Hecke‐Maass form for SL(3, \mathbb{Z}) . Let A_{F}(n, 1) , $\mu$_{F}(n) and

$\Lambda$_{F}(n) be the coefficients defined as above. Then for x\geq 2 we have

\displaystyle \sum_{n\leq x}d(n)|$\mu$_{F}(n)|^{2}\ll x\log x,
\displaystyle \sum_{n\leq x}d(n)|A_{F}(n, 1)|^{2}\ll x\log x,
\displaystyle \sum_{n\leq x}d(n)|$\Lambda$_{F}(n)|^{2}\ll x\log^{3}x.
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On collecting all results, and taking X=Y=N^{\frac{1}{6}} , we have

S_{i}\ll N\exp(-c\sqrt{\log N}) , i=1, 2, 3, 4 .

Hence, we obtain

Proposition 2.2. Let N\geq 2 and A_{F}(n, 1) be the nth coefficient of L(s, F) . Suppose
that a belongs to the minor arcs. Then there wnsts a constant c>0 such that

\displaystyle \sum_{n\leq N} $\Lambda$(n)A_{F}(n, 1)e(n $\alpha$)\ll N\exp(-c\sqrt{\log N}) ,

where the implied constant only depends on the form F.

From Propositions 2.1 and 2.2, we complete the proof of Theorem 1.2.

3. FURTHER DISCUSSION

Our previous arguments can not show that the sequences \{ $\mu$(n)\} and \{A_{F}(n, 1)e(n $\theta$)\}
are also strong asymptotically orthogonal. Recently we are able to show that the

sequences \{ $\mu$(n)\} and \{A_{F}(n, 1)e(n $\theta$)\} are actually strong asymptotically orthogonal
as expected, based on the strategy of Iwaniec‐Kowalski [5, Page 124] and Theorem 1.2.

Theorem 3.1. Let N\geq 2 and L(s, F) be the L‐function associated to a Hecke‐Maass

form F for SL(3, \mathbb{Z}) . Let A_{F}(n, 1) denote the nth coefficient of the Dirichlet series for

L(s, F) . Then for any  $\theta$\in \mathbb{R} there exists an effective constant c>0 , such that

\displaystyle \sum_{n\leq N} $\mu$(n)A_{F}(n, 1)e(n $\theta$)\ll N\exp(-c(\log N)^{\frac{1}{3}}) ,

where the implied constant depends only on the form F.

In addition, it seems interesting to detect how the distribution of the zeros of L-

functions affect the magnitude of \displaystyle \sum_{n\leq x} $\mu$(n)e(n $\theta$) . In the literature, many authors

pursued in this direction. Under the assumption that for every Dirichlet character  $\chi$,

the Dirichlet L‐function L(s,  $\chi$) has no zeros in \Re s > a
,

the current best estimate is

due to Baker and Harman [1], who proved

\displaystyle \sum_{n\leq x} $\mu$(n)e(n $\theta$)\ll\left\{\begin{array}{ll}
x^{a+\frac{1}{4}}, & \mathrm{f}\mathrm{o}\mathrm{r} \frac{1}{2}\leq a\leq\frac{11}{20},\\
x^{\mathrm{m}\mathrm{r}(\frac{a+1}{2},\frac{4}{5})}, & \mathrm{f}\mathrm{o}\mathrm{r} \frac{11}{20}\leq a<1.
\end{array}\right.
To go further in our cases, we choose to make several necessary assumptions.

(A) Weaker Grand Riemann Hypothesis: For any primitive Dirichlet character  $\chi$,

there is no zero of L(F\times $\chi$, s) in the half plane  $\sigma$=\Re s>a . Here \displaystyle \frac{1}{2}\leq a<1.
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(B) Hypothesis H: For any fixed \mathrm{v}\geq 2,

\displaystyle \sum_{p}\frac{|a_{F}(p^{ $\nu$})|^{2}(\log p)^{2}}{p^{ $\nu$}}<\infty , (3.1)

where the arithmetic function  a_{F}(n) is defined by the coefficients of the logarithmic
derivatives for L(s, F) .

(C) For any  $\epsilon$>0 , one has

\displaystyle \sum_{n\leq x}A_{F}(n, 1, \ldots, 1)e(n^{k} $\theta$)\ll Fx^{b_{m}+ $\epsilon$} (3.2)

uniformly in  $\theta$ , where the implied constant depends only on the fortn  F and \displaystyle \frac{1}{2}\leq b_{m}<1.
Theorem 3.2. Let L(s, F) be the L‐function associated to a Hecke‐Maass fonn F

for SL(m, \mathbb{Z}) . Let A_{F}(n, 1, \ldots, 1) denote the nth coefficient of the Dirichlet series for
L(s, F) . Then under the Hypothesis (A), (B) and (C) , we have for any  $\alpha$\in \mathbb{R},

S_{F,k}(x,  $\theta$)=\displaystyle \sum_{n\leq x} $\mu$(n)A_{F}(n, 1, \ldots, 1)e(n^{k} $\theta$)\ll x^{$\rho$_{k}+ $\epsilon$},
and

M_{F,k}(x,  $\theta$)=\displaystyle \sum_{n\leq x} $\Lambda$(n)A_{F}(n, 1, \ldots, 1)e(n^{k} $\theta$)\ll x^{$\rho$_{k+5}}.
Here

$\rho$_{1} = \left\{\begin{array}{ll}
a+\frac{1}{4}, & for \frac{1}{2}\leq a\leq\frac{7}{12},\\
\max(\frac{a+1}{2}, \frac{5}{6}, \frac{1}{2}(1+\frac{1}{3-2b_{m}})) , & for \frac{7}{12}\leq a<1.
\end{array}\right.
$\rho$_{k} = \displaystyle \max(1-\frac{2(1-a)}{4^{k-1}+2}, 1-\frac{1}{3}\cdot\frac{1}{4^{k-1}},1-\frac{1}{4^{k-1}(1-b_{m})+1}) for k\geq 2.

The Weaker Grand Riemann Hypothesis gives the good bound for the logarithmic
derivatives for L(s, F) with twists, i.e. \displaystyle \frac{L'}{L}(s, F\times $\chi$)\ll c^{ $\epsilon$}(|t|+1)^{ $\epsilon$} with  $\sigma$\geq a+ $\epsilon$ . This

plays an important role in the proof of Theorem 3.2.
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