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ABSTRACT. Though explicit dimension formulas for vector valued modular

forms are well‐known they are not efflciently computable as soon as the di‐

mension of the underlying \mathrm{S}\mathrm{L}(2, \mathbb{Z}) ‐module grows. For the case of Weil rep‐

resentations, we describe the tools for simplifying the critical terms in the

corresponding dimension formulas in order to obtain formulas which can be

rapidly computed.
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1. INTRODUCTION

For an integer or half integer k, an integral lattice \underline{L} over the rational integers
and a character $\epsilon$^{h} of the nontrivial central extension \mathrm{M}\mathrm{p}(2, \mathbb{Z}) of SL (2, \mathbb{Z}) by \{\pm 1\},
let J_{k,\underline{L}}(6^{h}) denote the space of Jacobi forms of weight k, index \underline{L} , and on the

full modular group with characterl $\epsilon$^{h} (see [BS] or [Sko08] for the basic theory of

these forms). There is a natural isomorphism of J_{k,\underline{L}}(\mathrm{s}^{h}) with the space of vector

valued modular forms of weight k -n/2 , where n =\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(\underline{L}) , with values in the

Weil representations attached to the discriminant module of \underline{L} rescaled by −1 and

twisted2 by $\epsilon$^{h} . This imphes in particular that J_{k,\underline{L}}($\epsilon$^{h})=0 for k < \displaystyle \frac{n}{2} , and that for

k \in \displaystyle \{\frac{n}{2}, \frac{n+1}{2}\} , the spaces J_{k,\underline{L}}(\mathrm{e}^{h}) are naturally isomorphic \mathrm{t}\mathrm{o}^{t} spaces of invariants

of twisted Weil representation derived from the discriminant module of \underline{L} . An

explicit dimension formula for vector valued modular forms are well‐known; it was

first given in [Sko85, Satz 5.1], and restated later by various authors. A straight‐
forward application ofthis dimension formula $\epsilon$^{h} to the vector valued modular forms

corresponding to J_{k,\underline{L}}($\epsilon$^{h}) gives the following.
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lHere h is an integer and  $\epsilon$ the linear character of \mathrm{M}\mathrm{p}(2, \mathbb{Z}) afforded by Dedekind�s eta‐function.

2_{\mathrm{B}\mathrm{y}} the twist of an.Mp (2, \mathbb{Z}) ‐module V by $\epsilon$^{h} we mean the product V\otimes \mathbb{C}($\epsilon$^{h}) of V with the

1‐dimensional \mathrm{M}\mathrm{p}(2, \mathbb{Z}) ‐module with character $\epsilon$^{h}.
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Theorem 1.1 ([BS]). For every k in \mathrm{S}\mathbb{Z}
, every integral positive definite lattice

\underline{L}=(L,  $\beta$) of rank n , and every integer h , one has J_{k,\underline{L}}($\epsilon$^{h})=0 if p :=k-h/2 is

not an integer. Otherwise one has

\dim J_{k,\underline{L}}($\epsilon$^{h})-\dim J_{n+2-k,\underline{L}}^{skew,c\mathrm{u}sp}($\epsilon$^{h})
=\displaystyle \frac{1}{24}(k-\frac{n}{2}-1) (\det(\underline{L})+(-1)^{p+n_{2}}2^{n-n_{2}})

+\displaystyle \frac{1}{4}{\rm Re}(e_{4}(p)$\chi$_{\underline{L}}(2))+\frac{1}{6}(\frac{12}{2p+2n+1})
+\displaystyle \frac{(-1)^{p}}{3\sqrt{3}}{\rm Re}(e_{6}(p)e_{24}(n+2)$\chi$_{\underline{L}}(-3))
+P_{\underline{L}}(h) ,

where

P_{\underline{L}}(h)=-\displaystyle \frac{1}{2}\sum_{x\in L/L}\langle\frac{h}{24}- $\beta$(x)\rangle-\frac{(-1)^{\mathrm{p}+n}2}{2}\sum_{x\in L/L}\langle\frac{h}{24}- $\beta$(x)\rangle.
Here n_{2} is the rank of the unimodular constituent of the Jordan decomposition of \underline{L}
over \mathbb{Z}_{2} , and \langle x ) =x- \lfloor x\rfloor -1/2 . Moreover, for any integer \mathrm{t} , we use

$\chi$_{\underline{L}}(t)=\displaystyle \frac{1}{\sqrt{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(L/L)}}\sum_{x\in L/L}e(t $\beta$(x)) .

Recall that a lattice \underline{L} is a pair (L,  $\beta$) of a free \mathbb{Z}‐module of finite rank and of

a symmetric nondegenerate bilinear form  $\beta$ :  L\otimes L\rightarrow \mathbb{Z} . We use here and in the

following

 $\beta$(x)=\displaystyle \frac{1}{2} $\beta$(x, x) .

In the formula of the theorem L^{\cdot} denotes the shadow of the lattice \underline{L} (whose
definition is recalled in §2) and in the sums defining P_{L}(h) and $\chi$_{\underline{L}}(t) the variable x

runs over a complete set of representatives for the orb‐its L^{\cdot}/L.
A discussion of this formula and its consequences can be found in [BS] and,

with slightly different notations, in [Sko08]. In particular, it can be shown that the

term J_{n+2-k,\underline{L}}^{\mathrm{s}\mathrm{k}\mathrm{e}\mathrm{w},\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{p}}($\epsilon$^{h}) is zero for k>\displaystyle \frac{n}{2}+2 , and equals a space of invariants of certain

twisted Weil representations for k=\displaystyle \frac{n}{2}+2 and k=\displaystyle \frac{n}{2}+3/2.
Summarizing, we see that the problem of finding explicit and ready to compute

formulas for the dimension of J_{k,\underline{L}}($\epsilon$^{h}) reduces to three very different problems de‐

pending on the weight. For  k\in \displaystyle \{\frac{n}{2}, \frac{n}{2}+\frac{1}{2}, \frac{n}{2}+\frac{3}{2}, \frac{n}{2}+2\} it is equivalent to the prob‐
lem of computing dimensions of spaces of invariants of twisted Weil representations.
For k=\displaystyle \frac{n}{2}+1 is is open, no general method is known (though computationally, for

lattices of small discriminant, one can sometimes successfully try to determine the

subspace $\eta$^{l}J_{\frac{n}{2}+1,\underline{L}}($\epsilon$^{h}) of J_{\frac{n}{2}+1+\frac{\ell}{2},\underline{L}}($\epsilon$^{h+l}) ).
For k > \displaystyle \frac{n}{2}+2 the above theorem provides an explicit formula. However, for

computations it is still not satisfactory, since a straightforward implementation
which simply copies the formula literally into any computer algebra system would

easily run into problems when card (L^{\circ}/L)=\det(L) becomes large. The problem is

caused by the functions $\chi$_{\underline{L}} and the parabolic contribution P_{L}(h) ,
which in a naive

implementation require to sum \det(L) many terms. In this note we concentrate on

this problem and sketch how to effectively solve it. The main results are summarized
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in Propositions 2.3, 3.2 and 3.3 for the calculation of $\chi$_{\underline{L}}(t) ,
and in Theorem 4.1 for

the calculation of P_{\underline{L}}(h) .

2. THE CHARACTERISTIC FUNCTION OF A LATTICE

For a given lattice \underline{L}(L,  $\beta$) the set

L^{\cdot} := { r\in \mathbb{Q}\otimes L :  $\beta$(r, x)\equiv $\beta$(x) mod \mathbb{Z} for all x\in L }
is called the shadow of \underline{L} and its elements the shadow vectors of \underline{L} . If \underline{L} is even

(i.e. if  $\beta$(x) is integral for all x) the shadow of \underline{L} equals its dual  L\# . If \underline{L} is odd

(i.e. integral but not even), then L^{\cdot} equals the nontrivial coset of  L_{\mathrm{e}\mathrm{v}}^{\#}/L\# , where

 L_{\mathrm{e}\mathrm{v}} denotes the maximal sublattice on which  $\beta$ is even, i.e.

 L_{\mathrm{e}\mathrm{v}}=\mathrm{k}\mathrm{e}\mathrm{r} (L\rightarrow \mathbb{Z}/2\mathbb{Z}, x\mapsto $\beta$(x)+2\mathbb{Z}) .

From this we deduce in particular card (L^{\cdot}/L)=\det(L) (where the right hand side

is the determinant of any Gram matrix of L . The first observation for computing
the functions $\chi$_{\underline{L}} is

Proposition 2.1 ([BS]). For any integral non‐degenerate lattice \underline{L} of signature s_{\infty},

one has

$\chi$_{\underline{L}}(1)=$\chi$_{\underline{L}_{\mathrm{e}\mathrm{v}}}(1)=e_{8}(s) .

The second identity is sometimes called Milgram�s identity [MH73, p. 127]. The

first one, in contrast, is easy and we refer to [BS].
For odd \underline{L} we need, of course, to compute first of all \underline{L}_{\mathrm{e}\mathrm{v}} . However this is rapidly

done by the following proposition whose easy proof is left to the reader.

Propos\hat{}

ition2.2. Let e_{i} be a basis of L , and let S be the set of indices i such that

the  $\beta$(e_{i}) is not in \mathbb{Z} . A basis for \underline{L}_{\mathrm{e}\mathrm{v}} is then given by e_{i} (inot \in  S) and e_{i}+e_{j}
(i\in S, i\neq j) and 2e_{j} , where j is any fixed index in S.

We shall see in a moment (Proposition 2.3) that the determination of $\chi$_{L}(t) for

arbitrary t can be reduced to the computation of $\chi$_{\underline{L}^{t}}(1) for even lattices \underline{L}^{\overline{\prime}} which

depend on \underline{L} and t . However it is inconvenient to determine the corresponding \underline{L}' at

the level of lattices. A more convenient treatment can be achieved by introducing
finite quadratic modules, which provides also a more uniform treatment of the

\backslash 

functions $\chi$_{\underline{L}} for even latices.

To an even lattice we can associate its discriminant module disc (\underline{L}) . This is the

finite quadratic module ( $\Gamma$ \mathrm{Q}\mathrm{M}) with underlying abelian group L^{\mathfrak{g}}/L and quadratic
form \underline{ $\beta$} : L\#/L \rightarrow \mathbb{Q}/\mathbb{Z} given by \underline{ $\beta$}(x+L) =  $\beta$(x)+\mathbb{Z} . More generally, a finite

quadratic module \mathfrak{M} is a pair (M, Q) , where M is a finite abehan group and Q :

M \rightarrow \mathbb{Q}/\mathbb{Z} a quadratic form. The latter means that Q(ax) = a^{2}Q(x) for all

integers a and x in M , that Q(x, y) := Q(x+y)-Q(x)-Q(y) is bilinear and

x\mapsto Q(x_{-}) defines an isomorphism of M with \mathrm{H}\mathrm{o}\mathrm{m}(M, \mathbb{Q}/\mathbb{Z}) .

For any finite quadratic module, we set

 $\chi$ỉm (t)=\displaystyle \frac{1}{\sqrt{\mathrm{c}\mathrm{a}x\mathrm{d}(M)}}\sum_{x\in M}e(tQ(x)) .

Since $\chi$_{\underline{L}}=$\chi$_{\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}(L)} it suffices to discuss how to compute $\chi$_{\mathfrak{M}}(t) for any given finite

quadratic module \mathfrak{M} . Note that $\chi$_{\underline{L}}(t) depends only. on t modulo \ell
, where \ell denote

the level of \mathfrak{M}
, i.e. the smallest positive integer such that lQ=0.
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It can be shown [Wa163, Theorem (6)] that every finite quadratic module is in

fact isomorphic to he discriminant module of a lattice. In particular,

$\chi$_{\mathfrak{M}}(1)=e_{8}(s) ,

where s is the signature of any even \underline{L} with disc(L) isomorphic to M. We call

s_{\infty}(\mathrm{M}) :=s\mathrm{m}\mathrm{o}\mathrm{d} 8
the signature of M at infinity.

Using FQM we can now describe how to compute $\chi$_{\underline{L}}(t) for odd \underline{L} in terms of

$\chi$_{\mathfrak{M}}(t) .

Proposition 2.3. Let \underline{L} = (L,  $\beta$) be an odd lattice, t an integer, and let L_{t} :=

\displaystyle \frac{1}{t}L\cap L\#.
(1)  Ift $\beta$ takes on integral values on  L_{t} , then \mathfrak{M} := (L\#/L_{t}, x+L_{t}\mapsto t $\beta$(x)+\mathbb{Z})

defines an FQM, and one has $\chi$_{\underline{L}}(t)=$\chi$_{\underline{L}_{\mathrm{e}\mathrm{v}}}(t)-\sqrt{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(L_{t}/L)} $\chi$ \mathrm{m}(1) .

(2) If t $\beta$(x) is not integral for at least one x in L_{t} , one has $\chi$_{\underline{L}}(t)=$\chi$_{\underline{L}_{\mathrm{e}\mathrm{v}}}(t) .

We leave the easy proof of the proposition to the reader (for the proof the reader

might wish to observe that x\mapsto t $\beta$(x)+\mathbb{Z} defines a homomorphism of groups on

L_{t}) .

3. FORMULAS FOR THE CHARACTERISTIC FUNCTION OF AN FQM

The following proposition reduces the computation of $\chi$_{\mathfrak{M}}(t) to the computation
of $\chi$_{\mathfrak{M}'}(1) for a suitable \mathfrak{M}' . Note that, for any integer t the maps x\mapsto tQ(t) defines
a \mathrm{n} homomorphism of groups of M[t] into \mathbb{Q}/Z . Her M[t] is the submodule of x in

M such that tx=0.

Proposition 3.1. Let s and t be integers.

(1) If the homomorphism M[t] \rightarrow \mathbb{Q}/\mathbb{Z}, x \mapsto  tQ(x) is non‐trivial then one

has $\chi$_{\mathfrak{M}}(t)=0.
(2) Otherwise, \mathfrak{M}(t) :=(M/M[t], x+M[t]\mapsto tQ(x)) is a finite quadratic mod‐

ule, and

$\chi$_{\mathfrak{M}}(st)=\sqrt{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(M[t])}$\chi$_{\mathfrak{M}(t)}(s) .

For calculating $\chi$_{\mathfrak{M}}(1) we recall that very finite quadratic  $\psi$‐module can be de‐

composed as a direct sum of modules of the form

\displaystyle \mathfrak{A}_{\mathrm{q}}(a):= (\mathbb{Z}/q\mathbb{Z}, \frac{ax^{2}}{q}) ,

where q is a power of an odd prime and a an integer which is relatively prime to q,
and of modules of the form

\displaystyle \mathfrak{A}_{2^{t}}(a):= (\mathbb{Z}/2^{t}\mathbb{Z}, \frac{ax^{2}}{2^{t+1}}) ,

\mathfrak{B}_{2^{s}} := (\displaystyle \mathbb{Z}/2^{s}\mathbb{Z}\times \mathbb{Z}/2^{s}\mathbb{Z}, \frac{x^{2}+xy+y^{2}}{2^{s}}) , \mathfrak{C}_{2^{s}} := (\displaystyle \mathbb{Z}/2^{S}\mathbb{Z}\times \mathbb{Z}/2^{S}\mathbb{Z}, \frac{xy}{2^{s}}) ,

where s, t are positive integers and a is odd. Indeed, for a prime p , let M\lceil $\gamma$ 0^{\infty} ] the

p‐part of M , which is the submodule of elements annihilated by a sufficiently large
npower. Then \mathfrak{M}(p^{\infty}) := (M\mathrm{r}p^{\infty}] , Q|_{M}\lceil $\gamma$ 0^{\infty}]) is a finite quadratic module and one

verifies that \mathfrak{M} equals the direct sum of the \mathfrak{M}(p^{\infty}) . Moreover, if \mathfrak{M} is a p‐module,
i.e. the exponent of \mathfrak{M} is a p‐‐power, then choosing any isomorphism of M with
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a direct sum of modules \mathbb{Z}/p^{s_{j}}\mathbb{Z} we see that \mathfrak{M} is isomorphic to a module of the

form (\displaystyle \prod_{j=1}^{n}\mathbb{Z}/p^{s_{j}}\mathbb{Z}, \frac{Q(x_{1},\ldots,x_{n})}{2^{t}}) with t= 1+\displaystyle \max s_{j} and a quadratic form Q in

\mathbb{Z}[X_{1}, . . . , X_{n}] (in fact, if p is odd and sometimes also for p= 2 , on can choose

t=\displaystyle \max s_{j}) . But Q can then be decomposed over \mathbb{Z}_{p} (or \mathbb{Z}/2^{t}\mathbb{Z}) as a direct sum of

unary and, for p=2 . possible binary forms.

Note that the characteristic function of the direct sum of finite quadratic modules

equals the product of the characteristic functions of the components of the direct

sum. The characteristic functions of the \mathfrak{A}, \mathfrak{B} and ￠ can be easily computed using
the well‐known formulas for ordinary Gauss‐sums as recalled in Table 1^{3} (For the

TABLE 1. The values of $\chi$_{\mathfrak{M}}(1) for \mathfrak{M} in the \mathfrak{A}, \mathfrak{B}, \not\subset series.

verification of the formula for \mathfrak{M}=\mathfrak{B}_{2^{ $\epsilon$}} the reader might want to verify first of all

that $\chi$_{\mathfrak{B}_{2^{S}}}(1)=$\chi$_{\mathfrak{B}_{2^{S}-2}}(1) for s\geq 2. )
For \mathrm{a} (finite) prime p we define the signature of \mathfrak{M} at p as the integer s_{p}(M)

such that

$\chi$_{\mathfrak{M}(p^{\infty})}(1)=e_{8}(-s_{p}(\mathfrak{M})) .

We then have the product formula

p\mathrm{p}rime o\displaystyle \mathrm{r}\prod_{\infty}e_{8}(s_{p}(\mathfrak{M}))=1.
We note three immediate consequences of the decomposition into modules of the

\mathfrak{A}, \mathfrak{B} and ￠ series.

Proposition 3.2. Let p be a prime number.

(1) If p is odd, one has

e_{8}(-s_{p}(\displaystyle \mathfrak{M}))=e_{8}(k-q_{1}-\cdots-q_{k})(\frac{2a_{1}}{q_{1}})\cdots(\frac{2a_{k}}{q_{k}}) ,

for any decomposition of \mathfrak{M}(p^{\infty}) as direct sum of \mathfrak{A}_{q_{i}}(a_{i}) (i=1, \ldots, k) .

(2) Ifp=2 one has

e_{8} ( -s_{2} (EM)) =e_{8}(a_{1}+\displaystyle \cdots+a_{k}+4(s_{1}+\cdots+s_{l}))(\frac{a_{1}}{q_{1}})\cdots(\frac{a_{k}}{q_{k}})
for any decomposition of \mathfrak{M}(2^{\infty}) as direct sum of \mathfrak{A}_{q_{i}}(a_{i}) (i = 1, \ldots, k) ,

\mathfrak{B}_{q_{j}} (j=1, \ldots , l) and possibly some more modules from the \mathrm{C} ‐series.

In particular, we obtain

3_{\mathrm{F}\mathrm{o}\mathrm{r}} integers a and b > 0 , we use (\displaystyle \frac{a}{b}) for the generalized Legendre symbol, i.e. the symbol
which is multiplicative in a and in b , which equals the usual Legendre symbol if b is an odd prime,
and which, for b=2

, equals 1, -1 or 0 accordingly as a\equiv\pm 1\mathrm{m}\mathrm{o}\mathrm{d} 8, a\equiv\pm 3\mathrm{m}\mathrm{o}\mathrm{d} 8 or a is even,

respectively.
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Proposition 3.3. Let \mathfrak{M} be a finite quadratic module. For any ínteger a which \dot{\uparrow}s

relatively prime to card (M) , one has

$\chi$_{\mathfrak{M}}(a)= (\displaystyle \frac{a}{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(M)}) e_{8}((a-1)T_{\mathfrak{M}})$\chi$_{\mathfrak{M}}(1) .
Here T_{\mathfrak{M}} denotes the sum of all a_{i} (i= 1, \ldots, k) in any decomposition of \mathfrak{M}(2^{\infty})
as direct sum of \mathfrak{A}_{q_{\mathfrak{i}}}(a_{i}) (i=1, \ldots , k) and possibly additional pieces \mathfrak{B}_{29}, \mathbb{C}_{2^{h}}.

Alternatively, one can deduce a similar formula from the obvious identity

$\chi$_{\mathfrak{M}}(a)=$\sigma$_{a'} (  $\chi$ỉm(l)) \displaystyle \frac{$\sigma$_{a'}(w)}{w},
where a'\equiv a\mathrm{m}\mathrm{o}\mathrm{d} P is any integer relatively prime to 2 and the level \ell of SEJt, where

 w = \sqrt{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(M)} , and $\sigma$_{a'} is the Galois substitution of the 8lth cyclotomic field

which maps a root of unity  $\zeta$ to  $\zeta$^{a'}

Proposition 3.4. Let 2^{u} be the exact 2‐power dividing the integer t . One has

$\chi$_{\mathfrak{M}}(t)=0 if and only if \mathfrak{A}_{2^{u}}(a) , for some a , is a direct summand of \mathfrak{M}.

4. A CLASS NUMUER FORMULA

For calculating the parabòlic contribution P_{\underline{L}}(h) we have to study expressions
like

H:=\displaystyle \sum_{x\in M}\mathrm{B}(Q(x)-\frac{h}{24}) .

Here, as in the previous section, \mathfrak{M}= (M, Q) denotes a finite quadratic. module,
and we use \mathrm{B}(x) for the periodically continued first Bernoulli polynomial. In other

words \mathrm{B}(x) = x- \lfloor x\rfloor - \displaystyle \frac{1}{2} for x \not\in \mathbb{Z} and \mathrm{B}(x) = 0 for integral x . The Fourier

expansion of \mathrm{B}(x) is given by

\displaystyle \mathrm{B}(x)=-\frac{1}{ $\pi$}\sum_{n\geq 1}\frac{\Im(e(nx))}{n}.
Therefore

\displaystyle \sum_{x\in M}\mathrm{B}(Q(x)-\frac{h}{24}) =-\frac{\sqrt{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(M)}}{\prime $\pi$}\lim_{s\downarrow 0}\Im(D(\mathfrak{M}, h, s))
where we use

D(\displaystyle \mathfrak{M}, h, s)=\sum_{n\geq 1}\frac{$\chi$_{\mathfrak{M}}(n)e(\frac{-hn}{24})}{n^{s}}.
Note that the Dirichlet series D(\mathfrak{M}, h, s) is absolutely convergent for \Re(s)>1 (since
its coefficients are periodic in n). In fact, it is a linear combination of Hurwitz zeta

functions, and can therefore be holomorphically continued to the whole complex
plane with the exception of s=1

,
where it might have a simple pole.

Let p denote the level of \mathfrak{M} (i.e. the smallest positive integer such that \ell Q=0).
We decompose the Dirichlet series in the form

D(\displaystyle \mathfrak{M}, h, s)=\sum_{t\in D_{\mathfrak{M}}}\sqrt{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(M[t])}$\chi$_{\mathfrak{M}(t)}(1)t^{-s}D_{\mathrm{p}\mathrm{r}}.(\mathfrak{M}(t), ht, s) ,
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where D_{9\mathfrak{N}} is the set of divisors of P such that $\chi$_{\mathfrak{M}}(t)\neq 0 (cf. Proposition 3.4), and

where, for any \mathfrak{M} , we set

D_{\mathrm{p}\mathrm{r}}.(\displaystyle \mathfrak{M}, h, s)=\sum_{n\geq 1}e_{24}(-hn)(\frac{n}{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(M)})e_{8}((n-1)T_{\mathfrak{M}})n^{-s}
For simplicity we assume from now on that h=0 and that card (M) is odd (so

that T_{\mathfrak{M}}=0), and we drop the h in the above notations. We then have

D_{\mathrm{p}\mathrm{r}}.(\displaystyle \mathfrak{M}, s)=\sum_{n\geq 1}(\frac{n}{f})n^{-s}\prod_{p|N}(1- (\frac{p}{f})p^{-s}) ,

where N= card (M) and f denotes the squarefree part of N . Inserting this into

the last formula for D(\mathfrak{M}, s) yields

Proposition 4.1. Assume that card (M) is odd. Then

D(\displaystyle \mathfrak{M}, s)=\sum_{t|\ell}\sqrt{N_{1}/N_{t}}$\chi$_{\mathfrak{M}(\mathrm{t}})(1)t^{-s}L((\frac{*}{f_{\mathrm{t}}}), s)\prod_{p|N_{t}}(1-(\frac{p}{f_{t}})p^{-s}) ,

where N_{t} = card (M/M[t]) and f_{t} is the squarefree part of N_{t} , and where we use

L(((\displaystyle \frac{*}{f_{\mathrm{t}}}), s) for the L ‐series associated to the Dirichlet character (\displaystyle \frac{*}{f_{\mathrm{t}}}) .

We now let s> 1 be real and consider the imaginary part of D(\mathfrak{M}, s) . Clearly
the tth term is nonzero only if $\chi$_{\mathfrak{M}(t)}(1) has an nonzero imaginary part, which be

Prop. 3.2 holds true if and only if f_{t}\equiv 3\mathrm{m}\mathrm{o}\mathrm{d} 4 . But in this case

L((\displaystyle \frac{*}{f_{\mathrm{t}}}), 1) =\frac{ $\pi$ h(-f_{t})}{w(-f_{t})\sqrt{f_{t}}})
where, for a negative discriminant d we use w(D) = 3 , 2, 1 accordingly as D =

-3, -4 or D< -4
, and where h(-f_{t}) is the class number of \mathbb{Q}(\sqrt{-f}) . Using the

well‐known formula (see e.g. [Lan73, Ch. 8, 1, Thm. 7] for a proof).

\displaystyle \frac{h(-N_{t})}{w(-N_{t})}=\frac{h(-f_{t})}{w(-f_{t})}g_{t}\prod_{p|N_{t}} (1- (\frac{p}{f_{t}})\frac{1}{p}) ,

where as before N_{t} = card (M/M[t]) =f_{t}g_{t}^{2} for a suitable positive integer g_{t} , we

finally find

Theorem 4.1. Let \mathfrak{M}=(M, Q) be a finite quadratic module with level P. Assume
that card (M) is odd. Then

\displaystyle \sum_{x\in M}\mathrm{B}(Q(x))=- \displaystyle \sum_{t|\ell,N_{t}\equiv 3\mathrm{m}}od 4\displaystyle \frac{\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(M[t])}{t}\Im($\chi$_{\mathfrak{M}(t)}(1))\frac{h(-N_{t})}{w(-N_{t})},
where we use N_{t}= card (M/M[t]) .

5. CONCLUSION

Though the dimension formula of Theorem 1.1 can be easily implemented in any

existing computer algebra package its computation becomes slow or even unfeasible
if the size of L/L grows. This is due to the sums $\chi$_{\underline{L}}(2) and $\chi$_{\underline{L}}(-3) and the.

parabolic contribution, which require in a naive implementation the summation

over L^{\cdot}/L . The considerations in Section 2 reduce the calculation of $\chi$_{\underline{L}} to the

problem of calculation of the characteristic functions $\chi$_{\mathfrak{M}} of suitable finite quadratic
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modules \mathfrak{M} . Section 3 reduces the calculation of $\chi$_{\mathfrak{M}}(t) for a given \mathfrak{M} to the

diagonalization of a quadratic form (which depends on \mathfrak{M} but not on t) in k variables

over the localisation of \mathbb{Z} at the ideal generated by the level of \mathfrak{M}
,

where k is the

number of elementary divisors of \mathfrak{M} , and then for each t
, the calculation of k

generalized Legendre symbols.
The Theorem of Section 4 shows that the calculation of the parabolic contribu‐

tion amounts essentially to the calculation of a class number and a value of $\chi$_{\mathfrak{M}} for

each divisor of the level. This theorem is not complete in that it does not include

the case of lattices with even determinant and not the case of a nontrivial character

of \mathrm{M}\mathrm{p}(2, \mathbb{Z}) . A more complete version will eventually appear elsewhere.
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