
Numerical verification method for positivity of solutions to

elliptic equations

Kazuaki Tanaka1,* , Kouta Sekine2, Shin�ichi Oishi2
1 Graduate School of RLndamental Science and Engineering, Waseda University, Japan

2Faculty of Science and Engineering, Waseda University, Japan

Abstract. In this paper, we propose a numerical method for verifying the positivity of solutions

to semilinear elhptic equations. We provide a sufficient condition for a solution to an elliptic
equation to be positive in the domain of the equation, which can be checked numerically without

requiring a complicated computation. We present some numerical examples.
Key words: computer‐assisted proof, elliptic boundary value problem, existence proof, veri‐

fied numerical computation, verifying positivity

1 Introduction

We are concerned with verified numerical computation methods for solutions to the following
elliptic problem:

\left\{\begin{array}{ll}
Lu(x)=f(u(x)) , x\in $\Omega$, & (1\mathrm{a})\\
u(x)>0, x\in $\Omega$ & (1\mathrm{b})
\end{array}\right.
with an appropriate boundary condition, e.g., the Dirichlet type

 u(x)=0, x\in\partial $\Omega$ , (2)

where  $\Omega$ is a bounded domain (i.e., an open connected bounded set) in \mathbb{R}^{n} (n = 1,2,3, \cdots) ,

f : \mathbb{R}\rightarrow \mathbb{R} is a given nonlinear function, and L is a uniformly elliptic self‐adjoint operator.
Equation (1a), including the case with (1b), has been widely studied using analytical methods

(see, e.g., [7, 2, 14] and the references therein). Moreover, verified numerical computation
methods, which originate from [11, 15] and have been further developed by many researchers, in

recent years have turned to be effective to obtain, through computer‐assistance, existence and

multiplicity results for various concrete examples where purely analytical approaches have failed

(see, e.g., [12, 13, 17, 18 These methods enable us to obtain a concrete ball containing exact

solutions to (1a), typically in the sense of the norms \Vert\nabla\cdot\Vert_{L^{2}(\mathrm{S}\mathrm{t})} and \Vert\cdot\Vert_{L^{\infty}( $\Omega$)} . Therefore, such

methods have the additional advantage that quantitative information of solutions to a target
equation is provided accurately in a strict mathematical sense. However, irrespective of how

small the radius of the ball is, the positivity of some solutions is not ensured without additional

considerations. For example, in the homogeneous Dirichlet case (2), it is possible for a solution

that is verified by such methods not to be positive near the boundary \partial $\Omega$.

In this paper, we propose a numerical method for verifying the positivity of solutions to (1a),
in order to verify solutions of (1). Theorem 2.2 provides a sufficient condition for positivity, and

only requires a simple numerical computation. This is a generalization of [22, Theorem 2] and

[23, Theorem 2.2] so that this can be applied to a wider class of elliptic problems. Indeed,
Theorem 2.2 (in this paper) works well for verifying positivity of solutions to the stationary
problem of the Alien‐Cahn equation (see Section 3), whereas the previous theorems in [22, 23]
cannot be applied to this problem.
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2 Verification of positivity

Throughout this paper, we omit the expression �almost everywhere� for Lebesgue measurable

functions, for simplicity. For example, we employ the notation u>0 in the place of u(x)>0 a.e.

 x\in $\Omega$ . Let  H^{1}( $\Omega$) be the first order L^{2}‐Sobolev space on  $\Omega$ . We define  H_{0}^{1}( $\Omega$) :=\{u\in H^{1}( $\Omega$) :

u=0 on \partial $\Omega$ in the trace sense}, and  H^{-1}( $\Omega$) denotes the dual space of H_{0}^{1}( $\Omega$) with the usual

\displaystyle \sup‐norm. Moreover, we assume that  f(u(\cdot))\in H^{-1}( $\Omega$) for each u\in H^{1}( $\Omega$) , and denote

F : \left\{\begin{array}{ll}
H^{1}( $\Omega$) & \rightarrow H^{-1}( $\Omega$) ,\\
u & \mapsto f(u(\cdot)) .
\end{array}\right. (3)

We introduce the following lemma that is required to prove Theorem 2.2.

Lemma 2.1. Let u \in H_{0}^{1}( $\Omega$) be a weak solution to (1) with the boundary condition (2), such

that

1. F(u)\geq 0 and F(u)\not\equiv 0 ;

2.  e(u(\cdot))<\infty ; whère  e(x) :=f(x)x^{-1}, x\in \mathbb{R}.

Then,

esssup\{e(u(x)) : x\in $\Omega$\}\geq$\lambda$_{1} , (4)

where $\lambda$_{1} is the first eigenvalue of the problem

(-L $\phi$, v)_{L^{2}( $\Omega$)}= $\lambda$( $\phi$, v)_{L^{2}( $\Omega$)}, \forall v\in H_{0}^{1}( $\Omega$) ; (5)

the dewivatives on the left side are understood in the sense of distributions.

Proof. Let $\phi$_{1}\geq 0($\phi$_{1}\not\equiv 0) be the first eigenfunction corresponding to $\lambda$_{1} (see, e.g., [4, Theorems

1.2.5 and 1.3.2] for ensuring the nonnegativeness of the first eigenfunction). Since L\backslash is self‐

adjoint, it follows that

(F(u), $\phi$_{1})_{L^{2}( $\Omega$)}=$\lambda$_{1}(u, $\phi$_{1})_{L^{2}( $\Omega$)}.

Therefore,

(F(u), $\phi$_{1})_{L^{2}( $\Omega$)}

=\displaystyle \int_{ $\Omega$}F(u(x))u(x)^{-1}\{u(x)$\phi$_{1}(x)\}dx
\displaystyle \leq \mathrm{e}\mathrm{s}\mathrm{s}\sup\{e(u(x)) : x\in $\Omega$\}(u, $\phi$_{1})_{L^{2}( $\Omega$)}
=$\lambda$_{1}^{-1}\displaystyle \mathrm{e}\mathrm{s}\mathrm{s}\sup\{\mathrm{e}(u(x)) : x\in $\Omega$\}(F(u), $\phi$_{1})_{L^{2}( $\Omega$)}.

The positivity of (F(u), $\phi$_{1})_{L^{2}( $\Omega$)} implies (4). \square 

Using Lemma 2.1, we are able to prove the following theorem, which provides a sufficient

condition for the positivity of solutions to (1a).

Theorem 2.2. Let u\in C^{2}( $\Omega$)\cap C(\overline{ $\Omega$}) be a function satisfying (1a) (a boundary value condition

is not necessary) such that \underline{u}\leq u\leq\overline{u} in \overline{ $\Omega$} for \underline{u}, \overline{u}\in C(\overline{ $\Omega$}) . Function u is always positive in

 $\Omega$ , if the following conditions are satisfied:

1. \underline{u} is positive in a nonemptyt subdomain  $\Omega$+ \subset $\Omega$ ($\Omega$_{+}\neq $\Omega$) ;
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2. \partial$\Omega$_{-}\cap\partial $\Omega$=\emptyset , or  u=0 on \partial$\Omega$_{-}\cap\partial $\Omega$ if \partial$\Omega$_{-}\cap\partial $\Omega$\neq\emptyset_{2} where $\Omega$_{-} is the interior of  $\Omega$\backslash $\Omega$_{+} ;

3. there exists a domain $\Omega$_{-}^{\mathrm{o}}\supset$\Omega$_{-} ($\Omega$_{-}^{\mathrm{o}} \neq $\Omega$ s.t.,  f([0, \displaystyle \max\{\overline{u}(x) : x\in$\Omega$_{-}^{\mathrm{o}} \geq 0 ;

4. f ( [\displaystyle \min\{\underline{u}(x) :  x\in $\Omega$  0])\leq 0 and f([\displaystyle \min\{u(x) :  x\in $\Omega$  0)) <0 ;

5. For a domain \hat{ $\Omega$} such that $\Omega$_{-} \subset \hat{ $\Omega$} \subset  $\Omega$, e([0, -\displaystyle \min\{u(x) : x \in  $\Omega$ < $\lambda$_{1}(\hat{ $\Omega$})_{J} where

e(x) :=f(x)x^{-1} , and $\lambda$_{1}(\hat{ $\Omega$}) is the first eigenvalue of the problem (5) with the notational

replacement  $\Omega$=\hat{ $\Omega$}.

Proof. Assume that u is not always positive in  $\Omega$
, that is, there exists a point  x\in$\Omega$_{-} such that

u(x) \leq 0 . The strong maximum principle ensures that u cannot be zero at an interior minimum,
i.e., there exists a point x \in $\Omega$_{-} such that u(x) < 0 (the case that u \equiv 0 in $\Omega$_{-} is generally
allowed, but this case is also ruled out due to Assumption 3; note that (u\geq)\underline{u}>0 in $\Omega$_{-}^{\mathrm{o}}\backslash $\Omega$_{-} ).
In other words, there exists a nonempty subdomain $\Omega$_{-}'\subset$\Omega$_{-} such that u<0 in $\Omega$_{-}' and u=0

on \partial $\Omega$ Therefore, the restricted function  v :=-u|_{$\Omega$_{-}'} can be regarded as a solution to

\left\{\begin{array}{ll}
-Lv(x)=f_{-}(v(x)) (:=-f(-v(x))) & x\in $\Omega$\\
 v(x)>0 & x\in $\Omega$\\
 v(x)=0 & x\in\partial $\Omega$
\end{array}\right.
Since f_{-}(v(\cdot)) \geq 0, f_{-}(v(\cdot))\not\equiv 0 , and f_{-}(v(\cdot))v(\cdot)^{-1} <$\lambda$_{1}(\hat{ $\Omega$})(<\infty) in $\Omega$_{-}' due to Assumptions
4 and 5, it follows from Lemma 2.1 that

($\lambda$_{1}(\displaystyle \hat{ $\Omega$})>\sup_{x\in$\Omega$_{-}^{J}}e(-u(x))=)\sup_{x\in$\Omega$_{-}}\frac{f_{-}(v(x))}{v(x)}\geq$\lambda$_{1}($\Omega$_{-}') ,

where $\lambda$_{1}($\Omega$_{-}') is the first eigenvalue of (5) with the notational replacement  $\Omega$= $\Omega$ Since the

inclusion  $\Omega$_{-}'\subset\hat{ $\Omega$} ensures that all functions in H_{0}^{1}($\Omega$_{-}') can be regarded as functions in H_{0}^{1}(\hat{ $\Omega$})
by considering the zero extension outside  $\Omega$ the inequality  $\lambda$_{1}($\Omega$_{-}') \geq$\lambda$_{1}(\hat{ $\Omega$}) follows. Thus, we

have the contradiction that $\lambda$_{1}(\hat{ $\Omega$})>$\lambda$_{1}(\hat{ $\Omega$}) . \square 

Remark 2.3. Assumption 2 in Theorem 2.2 always holds when u satisfies the homogeneous
Dirichlet boundary condition (2).

Remark 2.4. We may employ the condition that f ([0, \displaystyle \max\{\overline{u}(x) : x \in $\Omega$_{-}\}+ $\epsilon$]) \geq  0 for a

positive number e , instead of Assumption 3. Indeed, since Of \dot{u} a continuous function over  $\Omega$,
there exists a domain $\Omega$_{-}^{\mathrm{o}} \supset$\Omega$_{-} such that \displaystyle \max\{\overline{u}(x) : x\in$\Omega$_{-}^{\mathrm{o}}\}\leq\max\{\overline{u}(x) : x\in$\Omega$_{-}\}+ $\epsilon$ for
any  $\epsilon$>0.

The following corollary is convenient to prove the positivity of a solution u that is proven

to exist in a ball centered around an approximation û. Indeed, in Section 3, we present numer‐

ical examples where the positivity of solutions to (1a), that are in balls centered around their

approximations, is verified.

Corollary 2.5. Let u\in C^{2}( $\Omega$)\cap C(\overline{ $\Omega$}) be a function satisfying (1a) (a boundary value condition

is not necessary) such that |u(x)—û(x) | \leq  r for all x \in  $\Omega$
, for given \hat{u} \in  C(\overline{ $\Omega$}) and r > 0.

Function u is always positive in  $\Omega$ , if the following conditions are satisfied:

1. û—r  u positive in a nonempty subdomain $\Omega$_{+} \subset $\Omega$ ( $\Omega$+\neq $\Omega$) ;

2. \partial$\Omega$_{-}\cap\partial $\Omega$=\emptyset , or  u=0 on \partial$\Omega$_{-}\cap\partial $\Omega$ if \partial$\Omega$_{-}\cap\partial $\Omega$-\neq\emptyset , where $\Omega$_{-} \dot{u} the interior of  $\Omega$\backslash $\Omega$_{+} ;

3. f([0,2r+ $\epsilon$])\geq 0 for a positive number e ;
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4. f([m-r, 0])\leq 0 and f([m-r, 0))<0 , where m : = min{û(x) :  x\in $\Omega$

5. For a domain \hat{ $\Omega$} such that $\Omega$_{-} \subset\hat{ $\Omega$}\subset $\Omega$, e([0, -m+r]) <$\lambda$_{1}(\hat{ $\Omega$}) , where e(x) :=f(x)x^{-1},
and $\lambda$_{1}(\hat{ $\Omega$}) is the first eigenvalue of the problem (5) with the notational replacement  $\Omega$=\hat{ $\Omega$}.

Remark 2.6. Assumption 3 in Corollary 2.5 \dot{u} simplified owing to the discussion in Remark

2.4.

3 Numerical example

In this section, we present numerical exampIes in which the positivity of solutions to (1a) is

verified. All computations were carried out on a computer with Intel Xeon E7‐4830 v2 \times 4

processors, 2 TB RAM, CentOS 6.6, and MATLAB 2012\mathrm{b} . All rounding errors were strictly
estimated using the toolboxes of INTLAB version 9 [20] and KV library version 0.4.36 [5] for

verified numerical computations. Therefore, the accuracy of all results was mathematically
guaranteed. Hereafter, \overline{B}(x, r ; || . denotes the closed ball whose center is x , and whose radius

is r\geq 0 in the sense of the norm \Vert.
For the first example, we select the case in which -L = \triangle (the usual Laplace operator),

 f(u(\cdot))=u(\cdot)^{p} and F(u)=u^{p} (p=3,5) , and  $\Omega$=(0,1)^{2}\subset \mathbb{R} , i.e., we consider \mathrm{t}\mathrm{h}\mathrm{e} problem of

finding solutions to

\left\{\begin{array}{ll}
-\triangle u=u^{p} \mathrm{i}\mathrm{n}  $\Omega$, & (6\mathrm{a})\\
u>0 \mathrm{i}\mathrm{n}  $\Omega$, & (6\mathrm{b})\\
u=0 \mathrm{o}\mathrm{n} \partial $\Omega$. & (6\mathrm{c})
\end{array}\right.
We computed approximate solutions û \in C (  $\Omega$ ) to

\left\{\begin{array}{ll}
- $\Delta$ u=|u|^{p-1}u & \mathrm{i}\mathrm{n}  $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (7)

which is displayed in Fig. 1, using a Legendre polynomial basis, i.e., we constructed û as

\displaystyle \hat{u}=\sum_{i,j=1}^{N}u_{i,j}$\phi$_{i}$\phi$_{j}, u_{i,j}\in \mathbb{R} , (8)

where each $\phi$_{i} is defined by

$\phi$_{n}(x)=\displaystyle \frac{1}{n(n+1)}x(1-x)\frac{dP_{n}}{dx}(x) , n=1, 2, 3, \cdots (9)

with the Legendre polynomials  P_{n} defined by

 P_{n}=\displaystyle \frac{(-1)^{n}}{n!}(\frac{d}{dx})^{n}x^{n}(1-x)^{n}, n=0, 1, 2, \cdots (10)

We proved the existence of solutions  u to (7) in an H_{0}^{1}‐ball B (\^{u}, r_{1}; \Vert\nabla. \Vert_{L^{2}( $\Omega$)}) and an L^{\infty}-

ball B (\^{u}, r_{2}; \Vert . \Vert_{L^{\infty}( $\Omega$)}) both centered around the approximations û, using Theorem A.1 [17]
combined with the method in [24, 8| (see Section A for details). We then verified the positivity
of the verified solutions using Corollary 2.5. For the prablem (7), Assumptions 2, 3, and 4 in

Corollary 2.5 are always satisfied. Therefore, it is only necessarỳ to confirm Assumptions 1 and

5, where e(x)=x^{p-1} and \hat{ $\Omega$}= $\Omega$ . Note that the verified solutions have the regularity to be in
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 C^{2}( $\Omega$)\cap C(\overline{ $\Omega$}) , regardless of the regularity of the corresponding approximations û. Indeed, for

each h\in L^{2}( $\Omega$) , the problem

\left\{\begin{array}{ll}
- $\Delta$ u=h & \mathrm{i}\mathrm{n}  $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$
\end{array}\right.
has a unique solution u\in H^{2}( $\Omega$) , such as when  $\Omega$ is a bounded convex domain with a piecewise
 C^{2} boundary (see, e.g., [3, Section 3.3]). Therefore, the so‐called bootstrap argument ensures

that a weak solution u\in H_{0}^{1}( $\Omega$) to (7) on such a domain  $\Omega$
, is in  C^{\infty}( $\Omega$)(\subset C^{2}( $\Omega$)) . Table. 1

presents the verification result, which ensures the positivity of the verified solutions to (7)
centered around û, owing to the condition that e ([0, -m_{ $\Omega$-} +r]) \leq (-m_{ $\Omega$}+r)^{p-1} < $\lambda$_{1}( $\Omega$) ,

where we denote m_{$\Omega$_{-}} = min \{ û(x) : x\in$\Omega$_{-}\} and m  $\Omega$= min \{û(x) : x\in $\Omega$\}.

p=3, \displaystyle \max_{x\in $\Omega$} û( \mathrm{x} ) \approx 6.6232 p=5, \displaystyle \max_{x\in $\Omega$} û( \mathrm{x} ) \approx 3.1721

Figure 1: Approximate solutions to (7) on  $\Omega$=(0,1)^{2} for p=3 ,
5.

Table 1: Verification results for (6) on  $\Omega$=(0,1)^{2} , where p=3 and 5.

In the next example, we consider the stationary problem of the Allen‐Cahn equation:

\left\{\begin{array}{ll}
-$\epsilon$^{2} $\Delta$ u=u-u^{3} \mathrm{i}\mathrm{n}  $\Omega$, & (\mathrm{l}\mathrm{l}\mathrm{a})\\
u>0 \mathrm{i}\mathrm{n}  $\Omega$, & (\mathrm{l}\mathrm{l}\mathrm{b})\\
u=0 \mathrm{o}\mathrm{n} \partial $\Omega$, & (\mathrm{l}\mathrm{l}\mathrm{c})
\end{array}\right.
where  $\epsilon$>0 . We again constructed approximate solutions û to (lla) with (llc), i.e., to

\left\{\begin{array}{ll}
- $\Delta$ u=$\epsilon$^{-2}(u-u^{3}) & \mathrm{i}\mathrm{n}  $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (12)

using a Legendre polynomial basis. These solutions are displayed in Fig. 2. Using Theorem

A. 1, we again verified the existence of solutions to (12) in the balls B (\^{u}, r_{1}; \Vert\nabla. \Vert_{L^{2}( $\Omega$)}) and

B (\^{u}, r_{2}; \Vert\cdot\Vert_{L^{\infty}( $\Omega$)}) , which are also C^{2}‐regular. For the problem (12), Assumption 2 in Corollary
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2.5 is always satisfied as well. Therefore, it is necessary to confirm Assumptions 1, 3, 4, and

5, where e(x) =$\epsilon$^{-2}(1-x^{2}) . Note that Assumption 3 is satisfied if 2r_{2} < 1
, and Assumption

4 is satisfied if -m_{ $\Omega$-} +r_{2} (< -m_{ $\Omega$}+r_{2}) < 1 . We present the verification results for  $\epsilon$ =0.1,
0.05, and 0.025 in Table 2, which ensure the positivity of the verified solutions to (12) centered

around û, owing to the condition that e ([0, -m_{$\Omega$_{-}} +r_{2}]) \leq $\epsilon$^{-2} < $\lambda$_{1}(\hat{ $\Omega$}) , where we set \hat{ $\Omega$} =

(0,1)^{2}\backslash [0.009765625 , 0.990234375 ]
2 and proved $\Omega$_{-} \subset \hat{ $\Omega$} in all the cases. The upper and lower

bounds for the first eigenvalue $\lambda$_{1}(\hat{ $\Omega$}) were numerically computed with verification using the

method in [9, 8] with a piecewise linear finite element basis.

 $\epsilon$=0.1  $\epsilon$=0.05  $\epsilon$=0.025

Figure 2: Approximate solutions to (12) on  $\Omega$=(0,1)^{2}.

Table 2: Verification results for (11) on  $\Omega$=(0,1)^{2}.

A Verification theorem for elliptic problems

In this section, we apply the method summarized in [16, 17, 18] to a verified numerical compu‐

tation for solutions to (1a) with (2). Hereafter, we denote V=H_{0}^{1}( $\Omega$) and V^{*} =H^{-1}( $\Omega$) . We

assume that F defined in (3) is Fréchet differentiable, and there exists q\in L^{\infty}( $\Omega$) such that

F\displaystyle \frac{\prime}{u}u=qu for u\in V, (13)

where F_{\hat{u}}' is the Fréchet derivative of F at \^{u}\in  V , i.e., we may regard F_{\overline{u}}' as an L^{\infty} function.

Indeed, when we select F as in the examples of Section 3, this is true. We endow V with inner

product

)_{V}=(\nabla\cdot, \nabla\cdot)_{L^{2}( $\Omega$)}+ $\tau$ )_{L^{2}( $\Omega$)}
and norm \Vert\cdot\Vert_{V}:= \sqrt{)_{V}} , where  $\tau$ is a nonnegative number chosen as

 $\tau$>-F_{\overline{u}}'(x) (a.e.  x\in $\Omega$). (14)

Note that, since the norm \Vert\cdot\Vert_{V} monotonically increases with  $\tau$ , the usual norm \Vert\nabla\cdot\Vert_{L^{2}( $\Omega$)} is

bounded by \Vert\cdot\Vert_{V} for any  $\tau$ ; therefore, B (\^{u}, r_{1};\Vert\nabla\cdot\Vert_{L^{2}( $\Omega$)}) \subset B (\^{u}, r_{1};\Vert\cdot\Vert_{V}) for any r_{1} \geq 0 and
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 $\tau$\geq 0 . The L^{2}‐inner product and the L^{2}‐norm are simply denoted by ) and respectively,
if no confusion arises. By defining \mathcal{F}:V\rightarrow V^{*} as

\langle \mathcal{F}(u) ,  v\rangle :=(\nabla u, \nabla v)-(F(u), v) for u, v\in V,

we first re‐write (1a) with (2) as

\mathcal{F}(u)=0 in V^{*} , (15)

and discuss the verified numerical computation for (15). In other words, we first consider the

existence of a weak solution to (1a) with (2) (a solution to (15) in V), and then we discuss its

H^{2}‐regularity if necessary. The norm bound for the embedding V \mapsto Ư (  $\Omega$) is denoted by  C_{p},
i.e., C_{p} is a positive number that satisfies

\Vert u||_{L^{p}( $\Omega$)} \leq c_{p}1u\Vert_{V} for all u\in V. (16)

Since an explicit upper bound for C_{p} is important for the verification theory, formulas that give
such an upper bound are provided in B.

A. 1 H_{0}^{1} error estimation

We use the following verification theorem for obtaining H_{0}^{1} error estimations for solutions to

(15).

Theorem A.l ([17]). Let \mathcal{F}:V\rightarrow V^{*} be a Fréchet differentiable operator. Suppose that û \in V,
and that there exist  $\delta$>0, K>0 , and a non‐decreasing function g satisfying

\Vert \mathcal{F}(\hat{u})\Vert_{V^{*}} \leq $\delta$, (17)

\Vert u\Vert_{V}\leq K\Vert \mathcal{F}_{\hat{u}}'u\Vert_{V^{*}} for all u\in V, (18)

\Vert \mathcal{F}_{\hat{\mathrm{u}}+u}'-\mathcal{F}_{\hat{u}}'\Vert_{B(V,V^{*})}\leq g(\Vert u\Vert_{V}) for all u\in V, (19)
and

g(t)\rightarrow 0 as t\rightarrow 0 . (20)

Moreover, suppose that some  $\alpha$>0 exists such that

 $\delta$\displaystyle \leq\frac{ $\alpha$}{K}-G( $\alpha$) and Kg( $\alpha$)<1,

where G(t) :=\displaystyle \int_{0}^{t}g(s)ds . Then, there exists a solution u\in V to the equation \mathcal{F}(u)=0 satisfying

\Vert u-\hat{u}\Vert_{V}\leq $\alpha$ . (21)

Furthermore, the solution is unique under the side condition (21).

Note that, the Fréchet derivative \overline{f}_{\hat{u}}' of \mathcal{F} at û \in V is given by

\langle F_{\hat{u}}'u, v\rangle=(\nabla u, \nabla v)-(F_{\hat{u}}'u, v) for u, v\in V.

Residual bound  $\delta$

For û \in V that satisfies  $\Delta$û \in L2 (  $\Omega$) , the residual bound  $\delta$ is computed as

 C_{2}\Vert $\Delta$\hat{u}+F(\hat{u})\Vert_{L^{2}( $\Omega$)}(\leq $\delta$) ;

the L^{2}‐norm can be computed by a numerical integration method with verification.
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Bound K for the operator norm of \mathcal{F}_{u^{-}}^{;-1}
We compute a bound K for the operator norm of \mathcal{F}_{\hat{u}}^{\prime-1} by the following theorem, proving
,simultaneously that this inverse operator exists and is defined on the whole of V^{*}.

Theorem A.2 ([19]). Let  $\Phi$ :  V\rightarrow V^{*} be the canonical isometric isomorphism, i. e.,  $\Phi$ is given
 by

\langle $\Phi$ u,  v\rangle :=(u, v)_{V}\backslash for u,v\in V.

If the point spectrum of $\Phi$^{-1}F_{\hat{u}}' (denoted by $\sigma$_{p}($\Phi$^{-1}\mathcal{F}_{\hat{u}}') ) does not contain zero, then the inverse

of \sqrt{}'\hat{u} exists and

\Vert \mathcal{F}_{\hat{u}}^{\prime-1}\Vert_{B(V^{*},V)} \leq$\mu$_{0}^{-1} , (22)

where

$\mu$_{0}=\displaystyle \min\{| $\mu$| :  $\mu$\in$\sigma$_{p}($\Phi$^{-1}\mathcal{F}',)\cup\{1\}\} . (23)

The eigenvalue problem ￠ -1_{\overline{f_{\hat{l4}}}^{J}u}= $\mu$ u in V is equivalent to

(\nabla u, \nabla v)-(F_{\hat{\mathrm{u}}}'u, v)= $\mu$(u, v)_{V} for all v\in V.

Since  $\mu$= 1 is already known to be in  $\sigma$($\Phi$^{-1}\mathcal{F}_{\hat{\mathrm{u}}}') , it suffices to look for eigenvalues  $\mu$\neq  1 . By
setting  $\lambda$=(1- $\mu$)^{-1} , we further transform this eigenvalue problem into

Find u\in V and  $\lambda$\in \mathbb{R} s.t. (u, v)_{V}= $\lambda$(( $\tau$+F_{\hat{\mathrm{u}}}')u, v) for all v\in V. (24)

Owing to (14), (24) is a regular eigenvalue problem, the spectrum of which consists of a sequence

\{$\lambda$_{k}\}_{k=1}^{\infty} of eigenvalues converging to +\infty . In order to compute  K on the basis of Theorem A.2,
we concretely enclose the eigenvalue  $\lambda$ of (24) that minimizes the corresponding absolute value

of | $\mu$|(=|1-$\lambda$^{-1}|) , by considering the following approximate eigenvalue problem

Find u\in V_{N} and $\lambda$^{N}\in \mathbb{R} (25)
\mathrm{s}.\mathrm{t}. (u, v)_{V}=$\lambda$^{N}(( $\tau$+F_{u^{-}}')u, v) for all v_{N}\in V_{N},

where V_{N} is a finite‐dimensional subspace of V.

We estimate the error between the kth eigenvalue $\lambda$_{k} of (24) and the kth eigenvalue $\lambda$_{k}^{N} of

(25), by considering the weak formulation of the Poisson equation

(u, v)_{V}=(h, v)_{L^{2}( $\Omega$)} for all v\in V (26)

for given h\in L^{2}( $\Omega$) ; it is well �known that this equation has a unique solution u\in V for each

h\in L^{2}(\sim $\Omega$) . Moreover, we introduce the orthogonal projection P_{N}^{ $\tau$} : V\rightarrow V_{N} defined by

(P_{N}^{ $\tau$}u-u, v_{N})_{V}=0 for all u\in V and V_{N}\in V_{N}.

The following theorem enables us to estimate the error between $\lambda$_{k} and $\lambda$_{k}^{N}.
Theorem A.3 ([24, 8 Suppose that there exists a positive number C_{N}^{ $\tau$} such that

\Vert u_{h}-P_{N}^{ $\tau$}u_{h}\Vert_{V}\leq C_{N}^{ $\tau$}\Vert h\Vert_{L^{2}( $\Omega$)} (27)

for any h\in L^{2}( $\Omega$) and the corresponding solution u_{h}\in V to (26). Then,

\displaystyle \frac{$\lambda$_{k}^{N}}{$\lambda$_{k}^{N}(C_{N}^{ $\tau$})^{2}\Vert $\tau$+F_{\hat{\mathrm{u}}}'\Vert_{L^{\infty}( $\Omega$)}+1}\leq$\lambda$_{k}\leq$\lambda$_{k}^{N},
where F_{\hat{\mathrm{u}}}' is regarded as an L^{\infty} function owing to (13).
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The inequality on the right is well known as a Rayleigh‐Ritz bound, which is derived from

the min‐max principle:

$\lambda$_{k}=\displaystyle \min_{H_{k}\subset V}(\max\frac{\Vert v\Vert_{V}^{2}}{\Vert av\Vert_{L^{2}( $\Omega$)}^{2}}) \leq$\lambda$_{k}^{N},
where we set a= \sqrt{ $\tau$+F_{\hat{\mathrm{u}}}'} and the minimum is taken over all k‐dimensional subspaces H_{k} of

V. Moreover, proofs of the inequality on the left can be found in [24, 8]. Assuming the H^{2}-

regularity of solutions to (26) (e.g., when  $\Omega$ is convex [3, Section 3.3]), [24, Theorem 4] ensures

the left inequality. A more general statement, that does not require the  H^{2}‐regularity, can be

found in [8, Theorem 2.1].

Remark A.4. When the H^{2} ‐regularity of solutions to (26) is confirmed a priori, e.g. , when  $\Omega$

\dot{u} convex [3, Section 3.3], (27) can be replaced by

\Vert u-P_{N}^{ $\tau$}u\Vert_{V}\leq C_{N}^{ $\tau$}\Vert- $\Delta$ u+ $\tau$ u\Vert_{L^{2}( $\Omega$)} for all u\in H^{2}( $\Omega$)\cap V. (28)

We can compute an explicit value of C_{N}^{0} with  $\tau$=0 , for V_{N} spanned by a Legendre basis \{ ￠i\}_{i=1}^{N}
using [6, Theorem 2.3], and may employ C_{N}^{ $\tau$}=c_{N}^{0}\sqrt{1+ $\tau$(C_{N}^{0})^{2}} , since

\Vert u-P_{N}^{ $\tau$}u\Vert_{ $\tau$}^{2}\leq \Vert u-P_{N}^{0}u\Vert_{ $\tau$}^{2}=\Vert\nabla(u-P_{N}u)\Vert^{2}+ $\tau$\Vert u-P_{N}^{0}u\Vert^{2}
\leq \Vert\nabla(u-P_{N}u)\Vert^{2}+ $\tau$(C_{N}^{0})^{2}\Vert\nabla(u-P_{N}u)\Vert^{2}=(1+ $\tau$(C_{N}^{0})^{2})\Vert\nabla(u-P_{N}u)\Vert^{2}
\leq (1+ $\tau$(C_{N}^{0})^{2})(C_{N}^{0})^{2}\Vert-\mathrm{A}u\Vert^{2}\leq (1+ $\tau$(C_{N}^{0})^{2})(C_{N}^{0})^{2}\Vert- $\Delta$ u+ $\tau$ u\Vert^{2}

where the last inequality follows from [24, Lemma 1].

Local lipschitz bound \mathcal{F}_{u}^{\underline{\prime}}
A concrete construction of a function g satisfying (19) and (20) is important for our verification

process. For the nonlinearity F(u) = au+bu^{p} with p \geq  2 and a, b \in  L^{\infty}( $\Omega$) (this form is

applicable to the concrete nonlinearities in Section 3), one can employ

g(t)=\Vert b\Vert_{L^{\infty}( $\Omega$)}p(p-1)C_{p+1}^{3}Kt(\Vert\hat{u}\Vert_{L^{p+1}( $\Omega$)}+C_{p+1}t)^{p-2}
where  $\delta$ and  K are the respective constants in (17) and (18) for û \in  V . This selection can be

found in [10, Theorem 3.1].

A.2 L^{\infty} error estimation

In this subsection, we discuss a method that gives an L^{\infty} error bound for a solution to (1a) with

(2) from a known H_{0}^{1} error bound, that is, we compute an explicit bound for \Vert u-\hat{u}\Vert_{L^{\infty}( $\Omega$)} for

a solution u\in V to (1a) with (2) satisfying

\Vert u-\hat{u}\Vert_{V}\leq $\rho$ (29)

with  $\rho$ > 0 and \^{u}\in  V . We assume that  $\Omega$ is convex and polygonal to obtain such an error

estimation; this condition gives the  H^{2}‐regularity of solutions to (1a) with (2) (and therefore,
ensures their. boundedness) a priori. More precisely, when  $\Omega$ is a convex polygonal domain, \mathrm{a}

weak solution u\in V to (26) and h\in L^{2}( $\Omega$) is H^{2}‐regular (see, e.g., [3, Section 3.3]). A solution
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u satisfying (29) can be written in the form u= û + pcd with some  $\omega$\in V, 1 $\omega$\Vert_{V}\leq 1 . Moreover,
 $\omega$ satisfies

\left\{\begin{array}{ll}
- $\Delta \rho \omega$=F (\^{u}+ $\rho \omega$)+ $\Delta$\^{u} & \mathrm{i}\mathrm{n}  $\Omega$,\\
 $\omega$=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right.
and therefore is also H^{2}‐regular if  $\Delta$û \in  L^{2}( $\Omega$) . We then use the following theorem to obtain

an L^{\infty} error estimation.

Theorem A.5 ([16]). For all u\in H^{2}( $\Omega$) ,

\Vert u\Vert_{L^{\infty}( $\Omega$)}\leq c_{0}\Vert u\Vert_{L^{2}( $\Omega$)}+c_{1}\Vert\nabla u\Vert_{L^{2}( $\Omega$)}+c_{2}\Vert u_{xx}\Vert_{L^{2}( $\Omega$)}
with

c_{j}=\displaystyle \frac{$\gamma$_{j}}{|\overline{ $\Omega$}|} [\mathrm{m}\mathrm{a}_{\frac{\mathrm{x}}{ $\Omega$}}\int_{\overline{ $\Omega$}}|x-x_{0}|^{2j}dx]^{1/2} (j=0,1,2) ,

where u_{xx} denotes the Hesse matrix of u, |\overline{ $\Omega$}| is the measure of \overline{ $\Omega$}
, and

$\gamma$_{0}=1, $\gamma$_{1}=1.1548, $\gamma$_{2}=0.22361.

For n=3 , other values of $\gamma$_{0}, $\gamma$_{1} , and $\gamma$_{2} have to be chosen (see [16]).

Remark A.6. The norm of the Hesse matrix of u is precisely defined by

\Vert u_{xx}\Vert_{L^{2}( $\Omega$)}=\sqrt{\sum_{i,j=1}^{2}\Vert\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}\Vert_{L^{2}( $\Omega$)}^{2}}.
Moreover, since  $\Omega$ is polygonal, \Vert u_{xx}\Vert_{L^{2}( $\Omega$)}=\Vert $\Delta$ u\Vert_{L^{2}( $\Omega$)} for all u\in H^{2}( $\Omega$)\cap V (see, e.g. , [3]).

Remark A.7. Explicit values of each c_{j} are provided for some special domains  $\Omega$ in [16, 17].
According to these papers, one can choose, for  $\Omega$=(0,1)^{2},

c_{ $\Phi$}=$\gamma$_{0}, c_{1}=\sqrt{\frac{2}{3}}$\gamma$_{1} , and c_{2}=\displaystyle \frac{$\gamma$_{3}}{3}\sqrt{\frac{28}{5}}.
Applying Theorem A.5, we obtain the following corollaries.

Corollary A.8. Let u be a solution to (7) with p \geq  2
, satisfying (29) for \^{u}\in  V such that

Aû \in L2 (  $\Omega$ ) . Moreover, let  c_{0}, c_{1} , and c_{2} be as in Theorem A.5. Then,

\Vert u-\hat{u}\Vert_{L^{\infty}( $\Omega$)} \leq c_{0}C_{2} $\rho$+c_{1} $\rho$+ (30)

c_{2} (2^{p-\frac{3}{2}}p $\rho$ C_{3}\sqrt{||\hat{u}\Vert_{L^{6(p-1)}( $\Omega$)}^{2(p-1)}+\frac{$\rho$^{2(p-1)}}{2p-1}C_{6(p-1)}^{2(p-1)}}+\Vert $\Delta$\hat{u}+|\hat{u}|^{p-1}\hat{u}\Vert_{L^{2}( $\Omega$)})
Proof. Let us denote F(u)=|u|^{p-1}u in this proof. Due to Theorem A.5, we have

\Vert u-\hat{u}\Vert_{L^{\infty}( $\Omega$)}= $\rho$\Vert $\omega$\Vert_{L^{\infty}( $\Omega$)}

\leq $\rho$(c_{0}\Vert $\omega$\Vert_{L^{2}( $\Omega$)}+c_{1}\Vert $\omega$\Vert_{V}+c_{2}\Vert $\Delta \omega$\Vert_{L^{2}( $\Omega$)})
\leq $\rho$(c_{0}C_{2}+c_{1}+c_{2}\Vert \mathrm{A} $\omega$\Vert_{L^{2}( $\Omega$)}) .
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The last term \Vert \mathrm{A} $\omega$\Vert_{L^{2}( $\Omega$)} is estimated by

 $\rho$\Vert\triangle $\omega$\Vert_{L^{2}( $\Omega$)}= \Vert F(\hat{u}+ $\rho \omega$)+ $\Delta$\hat{u}\Vert_{L^{2}( $\Omega$)}
=\Vert F (û + $\rho \omega$)—  F (û) +F (\hat{u})+ $\Delta$\hat{u}\Vert_{L^{2}( $\Omega$)}
\leq \Vert F (û + $\rho \omega$)—  F (\hat{u})\Vert_{L^{2}}( $\Omega$) +||\triangleû +F (\hat{u})\Vert_{L^{2}( $\Omega$)}.

Since the mean value theorem ensures that

\displaystyle \int_{ $\Omega$} (F (\^{u}+ $\rho \omega$) -F(\hat{u}))^{2}dx
=\displaystyle \int_{ $\Omega$}( $\rho \omega$(x)\int_{0}^{1}F_{u+t $\rho \omega$}'-(x)dt)^{2}dx
=\displaystyle \int_{ $\Omega$}( $\rho \omega$(x)\int_{0}^{1}p|\hat{u}(x)+ $\rho$ t $\omega$(x)|^{p-1}dt)^{2}dx
=p^{2}$\rho$^{2}\displaystyle \int_{ $\Omega$} $\omega$(x)^{2}(\'{I}_{0}^{1} |\^{u}(x)+ $\rho$ t $\omega$(x)|^{p-1}dt)^{2}dx
\displaystyle \leq p^{2}$\rho$^{2}\int_{ $\Omega$} $\omega$(x)^{2}\int_{0}^{1}|\hat{u}(x)+ $\rho$ t $\omega$(x)|^{2(p-1)}dtdx
\displaystyle \leq p^{2}$\rho$^{2}\Vert $\omega$\Vert_{L^{3}( $\Omega$)}^{2}\int_{0}^{1}\Vert|\hat{u}+ $\rho \omega$ t|^{2(\mathrm{J}\mathrm{J}-1)}\Vert_{L^{3}( $\Omega$)}dt
=p^{2}$\rho$^{2}\displaystyle \Vert $\omega$\Vert_{L^{3}( $\Omega$)}^{2}\int_{0}^{1}\Vert\hat{u}+ $\rho \omega$ t\Vert_{L^{6(p-1)}( $\Omega$)}^{2(p-1)}dt
\leq p^{2}$\rho$^{2}\Vert $\omega$\Vert_{L^{3}( $\Omega$)}^{2}\'{I}_{0}^{1}(\Vert\hat{u}\Vert_{L^{6(p-1)( $\Omega$)}}+t $\rho$\Vert $\omega$\Vert_{L^{6(p-1)}( $\Omega$)})^{2(p-1)}dt
\displaystyle \leq 2^{2(p-1)-1}p^{2}$\rho$^{2}\Vert $\omega$\Vert_{L^{3}( $\Omega$)}^{2}\{||\hat{u}\Vert_{L^{6(p-1)}( $\Omega$)}^{2(p-1)}+\int_{0}^{1}(t $\rho$\Vert $\omega$\Vert_{L^{6(p-1)}( $\Omega$)})^{2(p-1)}dt\}
=2^{2p-3}p^{2}$\rho$^{2}\displaystyle \Vert $\omega$\Vert_{L^{3}( $\Omega$)}^{2} (\Vert\hat{u}\Vert_{L^{6(\mathrm{p}-1)( $\Omega$)}}^{2(p-1)}+\frac{p^{2(p-1)}}{2p-1}\Vert $\omega$\Vert_{L^{6(p-1)}( $\Omega$)}^{2(p-1)})
\displaystyle \leq 2^{2\mathrm{p}-3}p^{2}$\rho$^{2}C_{3}^{2}(\Vert\hat{u}\Vert_{L^{6(\mathrm{p}-1)}( $\Omega$)}^{2(p-1)}+\frac{$\rho$^{2(p-1)}}{2p-1}c_{6(p-1)}^{2(p-1)}) .

it follows that

 $\rho$\Vert \mathrm{A} $\omega$\Vert_{L^{2}( $\Omega$)}\leq 2^{p-\frac{3}{2}}p $\rho$ C_{3}\sqrt{\Vert\hat{u}\Vert_{L^{6(p-1)( $\Omega$)}}^{2(p-1)}+\frac{$\rho$^{2(p-1)}}{2p-1}C_{6(p-1)}^{2(p-1)}}+\Vert $\Delta$\hat{u}+F(\hat{u})\Vert_{L^{2}( $\Omega$)}.
Consequently, the L^{\infty} error of u is estimated as asserted in (30). \square 

Corollary A.9. Let u be a solution to (12) satisfying (29) for û \in  V such that \triangle\^{u}\in L^{2}( $\Omega$) .

Moreover, let c_{0}, c_{1} , and c_{2} be as in Theorem A.5. Then,

\Vert u-\hat{u}\Vert_{L^{\infty}( $\Omega$)} \leq c_{0}C_{2} $\rho$+c_{1} $\rho$+c_{2}( $\rho \epsilon$^{-2}C_{3}(1+3\Vert\hat{u}\Vert_{L^{12}( $\Omega$)}^{2} (31)

+3 $\rho$ C_{12}\Vert\hat{u}\Vert_{L^{12}( $\Omega$)}+$\rho$^{2}C_{12}^{2}) +\Vert $\Delta$\hat{u}+$\epsilon$^{-2}(\hat{u}-\hat{u}^{3})\Vert_{L^{2}( $\Omega$)}) .

Proof. Let us denote F(u)=$\epsilon$^{-2}(u-u^{3}) in this proof. Due to Theorem A.5, we have

\Vert u-\hat{u}\Vert_{L^{\infty}( $\Omega$)}= $\rho$\Vert $\omega$\Vert_{L^{\infty}( $\Omega$)}
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\leq $\rho$(c_{0}\Vert $\omega$\Vert_{L^{2}( $\Omega$)}+\mathrm{c}_{1}\Vert $\omega$\Vert_{V}+c_{2}\Vert $\Delta \omega$\Vert_{L^{2}( $\Omega$)})
\leq $\rho$(c_{0}C_{2}+c_{1}+c_{2}\Vert $\Delta \omega$\Vert_{L^{2}( $\Omega$)}) .

The last term \Vert $\Delta \omega$\Vert_{L^{2}( $\Omega$)} is estimated by

 $\rho$\Vert $\Delta \omega$\Vert_{L^{2}( $\Omega$)}=\Vert F(\hat{u}+ $\rho \omega$)+ $\Delta$\hat{u}\Vert_{L^{2}( $\Omega$)}
=\Vert F (û + $\rho \omega$)—  F (û) +F (\hat{u})+\triangle\hat{u}\Vert_{L^{2}( $\Omega$)}
\leq\Vert F (û + $\rho \omega$)—  F (\hat{u})\Vert_{L^{2}( $\Omega$)}+\Vert $\Delta$\hat{u}+F(\hat{u})\Vert_{L^{2}( $\Omega$)}.

Since the mean value theorem ensures that

\displaystyle \int_{ $\Omega$} (F (û + $\rho \omega$)—F (û))2  dx

=\displaystyle \int_{ $\Omega$} ( $\rho \omega$(x)\displaystyle \int_{0}^{1}F' (û(x ) +t $\rho \omega$ (  x)) dt)^{2}dx
=\displaystyle \int_{ $\Omega$}( $\rho \omega$(x)\int_{0}^{1}$\epsilon$^{-2}\{(1-3(\hat{u}(x)+t $\rho \omega$(x))^{2}\}dt)^{2}dx
=$\rho$^{2}$\epsilon$^{-4}\displaystyle \int_{ $\Omega$} $\omega$(x)^{2}(\int_{0}^{1}\{1-3(\hat{u}(x)+t $\rho \omega$(x))^{2}\}dt)^{2}dx
=$\rho$^{2}$\epsilon$^{-4}\displaystyle \int_{ $\Omega$} $\omega$(x)^{2}(\'{I}_{0}^{1}(1-3\hat{u}(x)^{2}-6t $\rho \omega$(x)\hat{u}(x)-3t^{2}$\rho$^{2} $\omega$(x)^{2})dt)^{2}dx
\displaystyle \leq$\rho$^{2}$\epsilon$^{-4}\Vert $\omega$\Vert_{L^{3}( $\Omega$)}^{2}\Vert\cdot(\int_{0}^{1}(1-3\hat{u}^{2}-6t $\rho \omega$\hat{u}-3t^{2}$\rho$^{2}$\omega$^{2})dt)^{2}\Vert_{L^{3}( $\Omega$)}
=$\rho$^{2}$\epsilon$^{-4}\displaystyle \Vert $\omega$\Vert_{L^{3}( $\Omega$)}^{2}\Vert\int_{0}^{1}(1-3\hat{u}^{2}-6t $\rho \omega$\hat{u}-3t^{2}$\rho$^{2}$\omega$^{2})dt\Vert_{L^{6}( $\Omega$)}^{2}
\leq$\rho$^{2}$\epsilon$^{-4}\Vert $\omega$\Vert_{L^{3}( $\Omega$)}^{2}(1+3\Vert\hat{u}^{2}\Vert_{L^{6}( $\Omega$)}+3 $\rho$\Vert $\omega$\hat{u}\Vert_{L^{6}( $\Omega$)}+$\rho$^{2}\Vert$\omega$^{2}\Vert_{L^{6}( $\Omega$)})^{2}
\leq$\rho$^{2}$\epsilon$^{-4}\Vert $\omega$\Vert_{L^{3}( $\Omega$)}^{2}(1+3\Vert\hat{u}\Vert_{L^{12}( $\Omega$)}^{2}+3 $\rho$\Vert\hat{u}\Vert_{L^{12}( $\Omega$)}\Vert $\omega$\Vert_{L_{J}^{12}( $\Omega$)}+$\rho$^{2}\Vert $\omega$\Vert_{L^{12}( $\Omega$)}^{2})^{2}
\leq$\rho$^{2}$\epsilon$^{-4}C_{3}^{2} ( 1+3\Vert\hat{u}\Vert_{L^{12}( $\Omega$)}^{2}+3 $\rho$ C_{12} \Vert û \Vert L12(  $\Omega$ ) + $\rho$2C122)2

it follows that

 $\rho$\Vert $\Delta \omega$\Vert_{L^{2}( $\Omega$)}

\leq $\rho \epsilon$^{-2}C_{3}(1+3\Vert\hat{u}\Vert_{L^{12}( $\Omega$)}^{2}+3 $\rho$ C_{12}\Vert\hat{u}\Vert_{L^{12}( $\Omega$)}+$\rho$^{2}C_{12}^{2})+\Vert\triangle\hat{u}+F(\hat{u})\Vert_{L^{2}( $\Omega$)}.
Consequently, the L^{\infty} error of u is estimated as asserted in (31). \square 

B Simple bounds for the needed embedding constants

The following theorem provides the best constant in the classical.Sobolev inequality with critical

exponents.

136



Theorem B.1 (T. Aubin [1] and G. Talenti [21]). Let u be any function in W^{1,q}(\mathbb{R}^{n}) (n\geq 2) ,

where q is any real number such that 1 < q < n . Moreover, set p = nq/(n-q) . Then,
u\in\ovalbox{\tt\small REJECT} (\mathbb{R}^{n}) and

(\displaystyle \int_{\mathrm{R}^{n}}|u(x)|^{p}dx)^{\frac{1}{p}}\leq T_{\mathrm{p}}(\int_{\mathrm{R}^{n}}|\nabla u(x)|_{2}^{q}dx)^{\frac{1}{q}}
holds for

T_{p}=$\pi$^{-\frac{1}{2}}n^{-\frac{1}{q}} (\displaystyle \frac{q-1}{n-q})^{1-\frac{1}{\mathrm{q}}} \{\frac{ $\Gamma$(1+\frac{n}{2})\mathrm{F}(n)}{ $\Gamma$(\frac{n}{q}) $\Gamma$(1+n-\frac{n}{q})}\}^{\frac{1}{n}} (32)

where |\nabla u|_{2}= ((\partial u/\partial x_{1})^{2}+(\partial u/\partial x_{2})^{2}+\cdots+(\partial u/\partial x_{n})^{2})^{1/2} , and  $\Gamma$ denotes the gamma func‐
tion.

The following corollary, obtained from Theorem B. 1, provides a simple bound for the em‐

bedding constant from  H_{0}^{1}( $\Omega$) to Ư (  $\Omega$) for a bounded domain  $\Omega$.

Corollary B.2. Let  $\Omega$\subset \mathbb{R}^{n}(n\geq 2) be a bounded domain. Let p be a real number such that

p\in(n/(n-1), 2n/(n-2)] ifn\geq 3 and p\in(n/(n-1), \infty) ifn=2. . Moreover, set q=np/(n+p) .

Then, (16) holds for

C_{p}( $\Omega$)=| $\Omega$|^{\frac{2-q}{2q}}T_{p},
where T_{p} \dot{u} the constant in (32).

Proof. By zero extension outside  $\Omega$ , we may regard  u\in  H_{0}^{1}( $\Omega$) as an element  u\in  W^{1,q}(\mathbb{R}^{n}) ;

note that q<2 . Therefore, from Theorem B.1,

\displaystyle \Vert u\Vert_{L^{p}( $\Omega$)} \leq T_{p}(\int_{ $\Omega$}|\nabla u(x)|_{2}^{q}dx)^{\frac{1}{q}} (33)

Hölder�s inequality gives

\displaystyle \int_{ $\Omega$}|\nabla u(x)|_{2}^{q}dx\leq (\int_{ $\Omega$}|\nabla u(x)|_{2}^{q\cdot\frac{2}{q}}dx)^{2}\mathrm{g} (\int_{ $\Omega$}1^{\frac{2}{2-\mathrm{q}}}dx)^{\frac{2-q}{2}}
=| $\Omega$|\overline{2}2-q (\displaystyle \int_{ $\Omega$}|\nabla u(x)|_{2}^{2}dx)^{2}\mathrm{A}

that is,

(\displaystyle \int_{\mathbb{R}^{n}}|\nabla u(x)|_{2}^{\mathrm{q}}dx)^{\frac{1}{q}} \leq| $\Omega$|^{\underline{2}-A}2\mathrm{q}\Vert\nabla u\Vert_{L^{2}( $\Omega$)} , (34)

where | $\Omega$| is the measure of  $\Omega$ . From (33) and (34), it follows that

\Vert u\Vert_{L^{p}( $\Omega$)}\leq| $\Omega$|^{\frac{2-}{2}9}\mathrm{q}T_{p}\Vert\nabla u\Vert_{L^{2}( $\Omega$)}.
For any  $\tau$\geq 0 , it is true that \Vert\nabla u\Vert_{L^{2}( $\Omega$)}\leq 1u\Vert_{V}. \square 
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Remark B.3. The case that p=2 is ruled out in Corollary B.2, but it is well known that

\displaystyle \Vert u\Vert_{L^{2}( $\Omega$)}\leq\frac{1}{\sqrt{$\lambda$_{1}+ $\tau$}}\Vert u\Vert_{V},
where $\lambda$_{1} is the first eigenvalue of the following problem:

(\nabla u, \nabla v)= $\lambda$(u, v) for all v\in V. (35)

Note that, when  $\Omega$=(0,1)^{2}, $\lambda$_{1}=2$\pi$^{2}.

The use of the following theorem enables us to obtain an upper bound of the embedding
constant when the first eigenvalue $\lambda$_{1} of (35) is concretely estimated. We employ the smaller of

the two estimations of C_{p} derived from Corollary B.2 and Theorem B.4.

Theorem B.4 ([18]). Let $\lambda$_{1} denote the first eigenvalue of the problem (35).
a) Let n=2 and  p\in[2, \infty ). With the largest integer \mathrm{v} satisfying \mathrm{v}\leq p/2 , (16) holds for

C_{p}( $\Omega$)= (\displaystyle \frac{1}{2})^{\frac{1}{2}+\frac{2 $\nu$-3}{\mathrm{p}}} [\frac{p}{2}(\frac{p}{2}-1)\cdots(\frac{p}{2}- $\nu$+2)]^{\frac{2}{\mathrm{p}}}($\lambda$_{1}+\frac{p}{2} $\tau$)^{-\frac{1}{p}},
where \displaystyle \frac{p}{2}(\frac{p}{2}-1)\cdots(\frac{p}{2}-\mathrm{v}+2) =1 if \mathrm{v}=1.

b) Let n\geq 3 and p\in[2, 2n/(n-2 With s :=n(p^{-1}-2^{-1}+n^{-1})\in[0 , 1 ] , (16) holds for

C_{p}( $\Omega$)= (\displaystyle \frac{n-1}{\sqrt{n}(n-2)})^{1-s}(\frac{s}{s$\lambda$_{1}+ $\tau$})^{\frac{s}{2}}
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