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Large time behavior of solutions to the compressible
Navier-Stokes equations in an infinite layer under slip
boundary condition *
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1 Introduction

We study the large time behavior of solutions of the compressible Navier-Stokes
equations

Oip + div(pv) =0, (1)
p(Bw + v - Vv) — pAv — (u+ p')Vdive + VP(p) =0 (2)

in an infinite layer Q of R?:
Q={z=(r1,22) €R?* 7, eR,0< 2 < 1}
under the slip boundary condition
O,V z3=01 =0, v*|g,=01 =0. (3)

Here p = p(z,t) > 0 and v = " (v!(z,t),v%(z,t)) denote the unknown density and

velocity, respectively, at time ¢t > 0 and position z € ; P = P(p) is the pressure

that is assumed to be a smooth function of p satisfying P'(p,) > 0 for a given

constant p, > 0; u and y' are viscosity coefficients that are assumed to be constants

and satisfy u > 0, u+u’ > 0; div, V and A denote the usual divergence, gradient and

Laplacian with respect to . Here and in what follows T+ means the transposition.
We impose the initial condition

pli=o = po, Vli=o = vo. (4)

Here pgy = po(z) and vy = vp(z) satisfy po(z) = ps» and vo(z) — 0 as |z| = oo.

The aim of our research is to investigate the large time behavior of solutions
to (1)-(4) around the motionless state p = p,, v = 0. We rewrite (1)-(2) into the
following equations for the perturbation

at¢ + ’)’le’w = f0(¢7 w)a (5)

*This is based on a joint work with Shota Enomoto (Graduate School of Mathematics, Kyushu
University) and Professor Yoshiyuki Kagei (Faculty of Mathematics, Kyushu University).
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dw — vAw — oVdivw + yV¢ = f(¢, w). (6)
Here u = T(¢,w) with ¢ = i(p — px) and w = %v denotes the perturbation from
us = ' (p«,0); v, 7 and 7y are parameters given by

b + 4/ TPmY
V=p_7 V:I—L_p—7 Y= Pl(p*)a
and f(¢,w) = "(f°(o, w),f(qﬁ,'w)) denote the nonlinear terms.
The boundary condition (3) and initial condition (4) are transformed into

3z2w1|z2=0,1 =0, w2|m=0,1 =0 (7)

and
uli—o = up = T(¢o, wp). (8)
Here ug satisfies up(z) — 0 as |z| — oo.

The large time behavior of solutions of the compressible Navier-Stokes equa-
tions (1)-(2) on the layer Q was studied in [1, 2, 3, 4] under the non-slip boundary
condition v|;,—01 = 0. It was shown in [3] that the large time behavior of perturba-
tions of the motionless state is described by a one-dimensional linear heat equation.
In [4] the asymptotic stability of parallel flow was considered and it was proved
that the large time behavior of perturbations of parallel flow is described by a one-
dimensional viscous Burgers equation when the Reynolds and Mach numbers are
sufficiently small. In the case of time-periodic parallel flow, the large time behavior
of perturbations is also described by a one-dimensional diffusion equation ([1, 2]).
In all cases of [1, 2, 3, 4], the asymptotic leading parts under the non-slip bound-
ary condition exhibit purely diffusive phenomena. In this paper we show that the
solution of (1)-(2) under the slip boundary condition (3) with (4) behaves like a
superposition of one-dimensional diffusion waves as t — oo as in the case of one-
dimensional compressible Navier-Stokes equation [7, 10]. More precisely, consider
the problem (5)-(8) for u. We prove that, under appropriate conditions for ug, the
solution wu(t) satisfies

|85 — x+ar — x-a-) @)l S CL+1)7575, k=01, (9)
where @+ = T(1,%1,0) and x+ = x+(z1,t) are the diffusion waves given by
X+ (x1,t) = z4(z1 £ 4L, t). (10)
Here 24 = z4(z1,t) are the self-similar solutions of the viscous Burgers equations
v+7U
Orzy — Tﬁilzi F O, (22) =0 (11)
satisfying
1
/ 2a(an, t)dm = /n (do(2) £ (1 + do(2))wi(z))dz (12)
R

for some constant ¢ € R.

In contrast to the case of the non-slip boundary condition, we see that a hyper-
bolic aspect of (1)-(2) appears in the asymptotic leading part of the solution under
the slip boundary condition.
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2 Main results
We set
HZ = {w == T(wl,w2) e HZ(Q), 3w2w1|x2=0,1 = 0, w2|x2=0,1 = 0}

For a € R, we denote by L1 = L1(f) the weighted L' space with weight (1 +
|z1])®, and its norm is denoted by

£l = [ 1+ L)l @)l

We now state the main results of this paper. We have the following decay
estimate of the L? norm of the solution u.

Theorem 2.1 There exists a positive number gy such that if ug = ' (do, wp) €

(H? x H2) N L' with wy = T (w}, w) satisfies |[uo||m2nrr < €o, then problem (5)-(8)
has a unique global solution

u(t) = T(#(t), w(t)) € C([0,00); H* x HY)

and u(t) satisfies
1_k
10zu(t)llzz < C(1+)7572 |luo||manzs

fort>0,k=0,1,2.
We next consider the asymptotic behavior of solutions.
Theorem 2.2 In addition to the assumptions of Theorem 2.1, if ¢o, w§ € L1 /2> then
185w — X101 —x-a- )@l < CAU+1)7775, k=0,1.

Hereax = " (1,%£1,0) and x+ = x+(71,t) are the diffusion waves given in (10)-(12).

3 Outline of the proof

3.1 Spectral properties of linearized operator
We rewrite the equation (5)-(6) as following
Ou+Lu=F, u|wo=uo, (13)

where u =T (¢, w); F = T(f°, f) with f = T(f%, f2) is a given function, and L is an

operator of the form
L= 0 ~div
YV —vA —9Vdiv

in H' x L? with domain D(L) = H' x HZ.



To investigate (13), we take the Fourier transform of (13) in z; € R, and then
we expand @ and F' into the Fourier series to obtain

Bty + Le i = F, (14)
where d, = T (g, Wk, w2), Fr = T(f2, fL, f2) and
. 0 174 vkm
Ly = v v(E+ k2n?) + g2 —ivkmé )
—~km ivkn§ V(€% + k*n?) + vk*n?

For the the spectrum of a(—f@k), the case || < 1, k = 0 is the slowest decay part.
In this case, the eigenvalues and eigenprojections are given by

Meo(6) = £in ~ L22E 4+ 0(E) (€-0)

P, = Pi(1+0(8)m,

1 +1 0 (@)
Py = (il 1 0) , Mu= ((wl)) :
0 0 O 0

Here u = " (¢, w!,w?) and (¢) is defined by (¢) = /1 é(x2)dz,.
0

where

3.2 Decay estimate: Proof of Theorem 2.1

We consider the nonlinear problem

{ Ou+ Lu = F(u),

Uls=0 = Ug.

Here u = ' (¢, w) and F(u) = T (f%(¢,w), f(¢,w)).
One can prove the local solvability for (15) as in [5].

Proposition 3.1 Assume that uo = " (¢o,wo) € H? x HZ and (|¢olloc < 3. Then
there exists Ty > 0 depending on ||ug|| g2 such that problem (15) has a unique solution
u="(¢,w) on [0,Tp] satisfying u € C([0,Tp]; H*> x H2) N C*([0, Tp); L?) with w €
L2(0,Ty; H%) and ||¢o(t)|lec < 3 for t € [0, To]. Furthermore, the inequality

To
sup {[Ju(t)|laz + [|6wu(t)| 2} +/ [wlffsdt < Cofl + JuollE= )} lluollZ>  (16)
tG[OsTﬂ] 0

holds with some constants Cy > 0 and a > 0.
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The global existence of u(¢) follows in a standard manner from Proposition 3.1
and Proposition 3.4 below which provides the a priori bound {|u(t)|| g2 < C||uo||m2nr2
when ||ug||g2nz: is sufficiently small.

We next consider the a priori estimates for u(t). Let ro be a number satisfying
0 < ro < 1. We introduce the cut-off function 1y <., defined by

U LR (GRE)
{lg|<ro} =

0 (I€] = o).
We introduce the projections P, and P, defined by
Plu = ‘F_ll{IEISTo}H]:U‘? Poo =1-— Pl.

We decompose u = ' (¢, w) into
U = U1 + Ugo,

where
u = Pu= T(¢1»w}a w%), Uo = oo = T(d)ooawio’wczx))'

Proposition 3.2 Letu(t) be a solution of (15) on [0, T]. Assume thatu € C([0,T]; H*x
H2) N CY([0,T); L?) with w € L*(0,T; H®). Then

ur =" (¢1,w) € CH[0, T H'(Q)) (V1=0,1,2,--")

and
Uoo = ' (Boo, Weo) € C([0, T]; H* x HZ) N C*([0,T]; L?)

with we € L*(0,T; H3).
Furthermore, u; and uy, satisfy
t
uy = Pre ug +/ Pie~ DL P(u(r))dr, (17)
0
at'ufoo + Luy = Fooy uoolt:O = Poo“Ov (18)
where Foo = PooF = T(f9, foo), foo = (fL, f2).
We define M(t) > 0 by
M(t) = Ma(t) + Mw(t) (¢t € [0,T]).
Here M;(t) and M (t) are defined by
2
M) = sup { 30+ DI un(r)s + (14 IOkl .

o<r<t L425

1
2

Mao(t) = ( sp (1 +7)3{[tto() 2 + NOrtioo(7)[72)
We introduce the quantities Eo(t) and Duo(t) for ue(t) = T (deo(t), Weo(t)):
Eoo(t) = Iluce(t) [z + l10¢tco (t) 122,
Deo(t) = [|Voo @)z + Voo ()32 + 105000 (8) -
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Proposition 3.3 Let u(t) be a solution of (15) on [0, T). Then there ezists a positive
constant €1 such that if ||u(t)|| g2 < e1 and M(t) <1 fort € [0,T), the estimates

My(t) < Clluollz + M(t)*} (19)

and

E(t) + t e~ Do ()dr
/0 (20)

< C{e ™ En(0) + (1 + 1) EM@) + [ R

hold uniformly for t € [0,T] with C > 0 independent of T. Here a = a(v,7,7) is a
positive constant; and R(t) is a function satisfying the estimate

R(t) < C{(1+£)"2M(t)? + M(t) Do (t)}. (21)

3.3 Estimates of low and high frequency parts
We see from spectral properties of —ig,k and the definition of II that
16, e~ Pruollzz < C(1 +1) 74 o] (22)
for [ > 0, and we thus obtain
1%, ur (B)llz2 < O +1) 735 {|luoll s + M (1)} (23)

for k=0,1,2.
As for the time derivative, we have

10 ()| z2 < C(1+ )7 {|Juol|zs + M (2)?}. (24)

By (23) and (24), we obtain (19). :

As for the high-frequency part u., = Pyu, we apply the Matsumura-Nishida
energy method to prove estimate (20) in Proposition 3.3.

From Proposition 3.3, one can show the following uniform estimate of M(¢) as
in [4].

Proposition 3.4 If |luo||g2nrr is sufficiently small, then
M(t) < Clluol| g2np1- (25)

Theorem 2.1 now follows from Propositions 3.1 and 3.4.



3.4 Asymptotic behavior: Proof of Theorem 2.2

To prove Theorem 2.2 we rewrite (1)-(2) in the form of conservation laws.
We set
m = pv = p.(1+ ¢)o.

Then (1)-(2) is written as

Op +divm =0,
Bym — pA(Z) — (p+ ) Vdiv(%) + VP(p) + div(mE™) =0,

and the boundary condition (3) is transformed into

= 0.

z2=0,1 -

=0, m2|

We decompose ' (¢, m!) as
$=0+80, ®=¢1=P¢, B = o= Pt

1 - 1
ml = Dy M+ Moo y M = Pml, MOO -
pay( ) P o

Pom!.

Note that w! = %& Here the operators P, and P,, defined by

p1¢ = ‘F_ll{lﬂﬁro} (]:d))’ Poo =1I- -Pl-
Applying P; to (26) and using (27), we have

8,5(1) + 7(9le = 0,
M — (v + 0)OZ M + 735, @ = 8, Pig(U) + 8;, A3

Here U = T(®, M),

I (D P

§=§(z,t) = —(v + 1)y, (pw') — &%7(”—*)(%@& +32)
- 7(2MM00 + Mozo) + 7(¢w1 (M + Moo)):

where ¢ = ® + O, w! = Mﬁ"—gﬁ
We write (28) in the form

QU + LoU = 8, BLG(U) + 8, PG, U = Py,
Uls=o = PylUy,

where Uy = T(¢y, ﬁmé) = (o, (1 + do)wp),

Lo= (0 V0,
0~ \10,, —(v+0)e2 )’

62
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6w~ (yn) 6= ()

and P, denotes the projection defined by

o= (52)
for U =T(®, M).

We see from the spectral properties of —ﬁg,k that
e7tho = Fl(MP, + *'P.)F,

where

1 1
)‘:i: = )‘:I:,O = —-2-(1/ + ﬁ)éa + '2-\/(1/ + 17)264 - 4’)’262,

— 1 —Az €
Fe ——i/\+—>\_ (i’Yf Ax )’

We observe that, for |£| < 1,

r =22t ine +0(E),

Pe=3 (4 %) aroe.

We define S(t) and S (t) by
S(t) = S+() + S-(t),
Si(t) = f‘lS'i( )F,
(

t) ”';"Eztd:i'yﬁt < 1 :*:1) )

Ss +1 1

Clearly, e~tL° Py has the same estimate as that for e7*L' P; such as (22). Furthermore,
e*lo Py is approximated by S(t) in the following way. We define IIy by

oUp = " ({¢0), (Mo)) for Up = T (¢, Mo).
Note that H()Pg = POHO = Po.
We denote by U@ (t) = T(¢©(xy,t), MO1(zy,t)) the solution of the following
integral equation:
t
UO(t) = S(t)aUp + / S(t — 1), GUO(1))dr. (30)
0
We see from (29) that U(t) is written as
t .
U(t) = e Pyl + / e ¢-DR P, (GU) + C)(r)dr. (31)
0

we have the following estimates for U (t).
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Proposition 3.5 If |Up||g2nr < 1, then (30) has a unique solution U (t) that
satisfies

185 U #)]| 2 < CQ + )35 | Usllgranzar k= 0,1,2, (32)
185 UO(#)] pee < C(L+1)7272|[Up|l g, k= 0,1. (33)

We have the following estimate for U(t) — U®(¢).
Theorem 3.6 If ||Up||g2nz: < 1, then

185, (U (5) = U @)l 2 < CQ+ )55 Upll gz, k=0,1,

for any § > 0.

Proof of Theorem 2.2. It suffices to show that ||8% (U® — x, b, — x-b_)(t)||z2
for k = 0,1, where by = T(1,£1) € R% Here x+ = x+(21,1) is the diffusion waves
given in (10)-(12) with ¢ = 3(a+b),a = —f%”—*l, b = —~. We follow the arguments
in [7, 6]. We write Uy as

U = Uy + Uy,

where

1 1 #+1 1 1
Ug;{; = 5 ( +1 1 ) HgUg = §(¢0 + p;ymé)bi'
It then follows that
UO () = S.(t)Ups + S_(t)Uo— + I (t) + I —(t),

where
0

¢
Il,:l:(t) = A S:I:(t - T)aml ( a(¢(0))2 + b(M(O),l)Z ) dt.
We write I; 1 (t) as

t
L= ﬂ:%/ e—(t—T)Ltaml (a(¢(0))2 + b(M(O)’1)2)d'rbi,
0

where

e thayy = FH el € E00,]

We note that e~*'+ satisfies the same estimates as those for Si(t).
We define V (t) = T (n(t), {(t)) by

UO(t) = x4+ )by +x-(t)b- + V(2)
_ ( X+ +X-+17 )
X+ =x-+¢ /)’

Y(t) = sup {(1+7)HV() 2 + (14 D))j0 V() 12}

and introduce
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We write
(6D) = x% +x% + 2x4X- + oum,
(MON2 =32 432 — 2x,x- + 02,

where 07 = x4 + x— + ¢©@ and 03 = x4 — x— + M@, It then follows that I; 4 (t)
is written in the following forms

1 t
halt) = 25 [ €0, (0 +H0E ) +2a b
0

+ a0 + bag() drb..
Since .+ satisfies

_ a+b
X2 (t) = e xox £

t
| oo, 0,
0

where xo+ = x+(0), we see that

V() = UO(t) = x+(£)by — x-(£)b-
= S+(t)(Uo+ Xo+b+) + S_(t)(Uo_ — Xo_b_) + Il,+ + Il,_

t
- __a+b/ ~@=nlig (x2 2)(r)drby + a—2i—b/ et I-g, (x2)(7)drb_
0 0
)

2
= S+ (t)(Uot — xo+b4) + S-(t)(Uo- — x0-b-)

t
1+ i+ / e, (x2)(r)drb,
0

1

2

1 13

S+t / e~ t=TE-5, (x2)(r)drb_
0

t
+(a—b) / e CIL+d, (x,x)()drby

t
—(a—b) / I8, (e x_)(T)drb_
0
1

11
+ Ea/ e~ ¢+ g, (o1n)(r)drdTb,
0

t
- %a / e~¢I-5, (o1n)(1)drb_

0

1 t
+ b / e~ -E48, (03¢)(r)drbs

- —b / ~-7L-, (0y¢)(r)drb_..
It then follows that
e < Z 1185, 55() (Uoj — x03b5) 2
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+ 11105, w+ ()| 22 + 1107, w-(t) | 2)

+0s [ 10567001, (e ade
+0s [ 105750, (ox )l
+04 [ 1070 o))l
+0s [ 105,650, (o)) s
+Ca [ 105670 020) ()

G / 1t e=C=72-8, (0420)(r) | adr

- Zu S;(8)(Uoj — Xo5 J)IIL2+ZI

j=1

where
¢
wa(t) = / e t-NLxg, (32)(r)dr
0
1 1 1
Cy = §|a+ bl, Co=C3= I(J, - bl, Cy=0C5= §|a|, Ce=Cr= §|b|
Since
/(Uo:t — Xoxb+)dz;
R
1 1
z 0L - — =
2 /9 (¢ + pwm") dz /R inda:l] by =0,
we have

165, S4(8) (Uox — Xo+ba)l|z < O35 JuollL -
As for I;, we apply the estimates for wy by T.-P. Liu [8] (see also [6, Lemma
4.2]) to obtain

1

I < C+t)77 5 ||ug| 4
We next estimate I. For 1 < p < oo and [ > 0, we have

1020 x-) @)z < Ce™ luollFangs- (34)
It then follows from (34) that
I < C(1+ )13 flugl%en-

Similarly, we have I3 < C(1 + t)‘%‘glluo”?pm;l-
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As for I, we have
i
L<cC / (1+t— 1) 5 orn(r) | dr
0
t
+C / (L+ ¢ — 1) 38, (01m) (7)] podir
3
t
+C / 9 (¢ )40, (027) () | padlr
0
=: Iy + Iy + Lys.
By applying Proposition 3.5 and the following estimate
185 x ()] 22 < C(L+ )3 % [lug| 1, (35)

we see that ||oy(7)|[zz < C(1 + 7)~%|Jugl|g2nzr. Since ||lovn||z: < ||owllzelinllzz, we
have

In < C(1+ )35 |Jug|| genp Y (2),
Ip < C(L+ )7 % |lug|lgenra Y (8),
Is < C(]_ + t)_%_%“u[)”HWWLIY(t)'

We thus obtain I < C(1 + t)~2~%|Jug||g2nz1 Y (t). We can obtain the estimates for
I5, Iy, I; in a similar manner. It then follows that if ||up||g2nz1 < 1, we have

185V (£)]| 2 < C(L + )77 % |lug|| 2z (36)

for k=0,1.
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