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ON HOROWITZ AND SHELAH’S BOREL MAXIMAL
EVENTUALLY DIFFERENT FAMILY

DAVID SCHRITTESSER

ABsTrACT. We give an exposition of Horowitz and Shelah’s proof that there
exists an effectively Borel maximal eventually different family (working in ZF
or less) and announce two related theorems.

1. INTRODUCTION

A. Two functions fo, fi on N are called eventually different if and only if
{neN| foln) = fi(n)}

is finite. A set £ is called an eventually different family (of functions from N to N)
if and only if £ C NN and any two distinct fy, fi € £ are eventually different; such a
family is called mazimal if and only if it is maximal with respect to inclusion among
eventually different families (we abbreviate mazimal eventually different family by
medf). :

In [2] Horowitz and Shelah prove the following (working in ZF).
Theorem 1.1 ([2]). There is a A} mazimal eventually different family.

This was surprising as the analogous statement is false in many seemingly similar
situations: e.g., infinite so-called mad families cannot be-analytic [5] (see also [9]).
In a more recent, related result [1] Horowitz and Shelah obtain a Al mazimal
cofinitary group.

In this note we present a short and elementary proof of their first tesult, i.e., that

there is a A} maximal eventually different family. We also take the opportunity to }
announce the following improvement of Theorem 1.1: '

Theorem 1.2 ([8, 7]). There is a II{ mazimal eventually different family.

The following question was asked by Asger Térnquist [10]: For F: N — N\ {0}
such that liminf, ., F(n) = oo does there exist a Borel or even a compact medf
in the space Nr? Here the space N is defined to be the closed subspace Np =

{9 €NN| (Vn eN) g(n) < F(n)} of Baire space "N.

To make the question entirely precise, we give.the definition of (mé.ximal) even-
tually different families a broader context:

Definition 1.3. Let a function F: N — w + 1 be given. A set £ is an eventually
different family in N if and only if £ C Nr and any two distinct go, g1 € £ are
eventually different; such a family is called mazimal (or short: a medyf) if and only
if it is maximal among such families under inclusion.
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~ We also announce the following results (see [7] for proofs).

Theorem 1.4 ([7]). Suppose F: N — (w+1)\ {0} is such that limp o F(n) =w.
There is a perfect TIY(F) mazimal eventually different family in Np.

Corollary 1.5 ([7]). With F as above, there is a compact II}(F) medf in Np if

. and only if F(n) < w for infinitely many n € N. Moreover we have two cases:

(1) liminf, o F(n) < w. In this case every medf is finite and there is a finite
medf consisting of constant functions.

(2) limy, y00 F(n) = w. In this case there is a perfect IIY(F) medf but no
_countable medf.

We ask (Vn € N) F(n) > 0 to. preclude the trivial case of the empty space. When
liminf, o F(n) < w there is m such that {n € N| F(n) = m} is infinite and the
set {cx | k < m} where ¢ is the constant function with value k constitutes a medf.

“So the question posed by Térnquist is only interesting if lim,, o F(n) = w holds. -

Note: This note is an ‘abridged version of [8] in which ‘we show that there exists
a 9 (i e., effectively closed) maximal eventually different family. In the related [7]
we present a further s1mp11ﬁcat10n of the construction, as well as provide an answer
to Tornquist’s question. :

B. We fix some notation and terminology (generally, our reference for notation is
[3]). ‘3°°” means ‘there are infinitely many...,” NN means the set of functions from
N to N and <NN means the set of finite sequences from N; we write Ih(s) for the
length of s when s € <NN. For s,t € "N, st is the concatenation of s and t, ie.,
the unique u € B ()+1(®)N such that s C u and (Vk < Ih(t)) u(ln(s) + k) = t(k).

We write fo =" f1 to mean that fy and f; are not eventually different (they are
infinitely equal). Two sets A, B C N are called almost disjoint if and only if AN B
is finite, and an almost disjoint family is a set A C P(N) any two elements of which
are almost disjoint.

It makes sense to talk about AY(F) for F: w — w + 1 as above because we may
identify F in an obvious way with a subset of H(w) (the set of hereditarily finite
sets). Consult [6, 4, 3] for more on the (effective) Borel and projective hierarchies,
ie., on II9, I{(F), Al, ... sets.

In this paper we work in the theory ZF (or in fact, in a not so strong subsystem
of second order arithmetic).

C. This note is organized as follows. In Section 2 we make some motivating obser-
vations, leading to Lemma 2.5 which gives an abstract recipe for éreating maximal
eventually different families. We take the opportumty to give a rough sketch of the
proof of Theorem 1.1 as given in [2].

We then give a simpler construction instantiating the recipe from Lemma 2.5
and yielding a medf which is £ V IT3 in Section 3.

We close in Section 4 with some open questions.

Acknowledgements: The author gratefully acknowledges the generous support
- from the DNRF Niels Bohr Professorship of Lars Hesselholt.

- 2. THE RECIPE

Definition 2.1. Fix a computable (i.e., AY) bijection n + s, of N with <NN and
write s > # s for its inverse. Given f: N = N, let e(f): N — N be the function
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defined by
e(f)(n)=#fIn.

Clearly {e(f) | f € "N} is an eventually different family. At first sight, it may
seem a naive strategy to make it also maximal by varying the definition of e(f) so
that it leaves f intact on some infinite set. But this is just how [2] succeeds.

Definition 2.2. Let f: N — N.

A Let B(fy={2n+1|s, C f}. .

B. For aset B CN, let é(f, B): N = N be the function defined by
f(n) ifne B,
#fIn ifn ¢ B.
Remark 2.3. Note for later that f is recursive in &(f, B(f)) as &(f;B(f)) [ 2N =
e(f) [ 2N. .

The family & = {&(f,B(f)) | f e NN} is obviously maximal in the sense that

(Vh € NN)(3g € F) h = g. Interestingly, £ is also in some sense close to being
eventually different: For if &(f,B(f))(n) = &(f’,B(f’))(n) for infinitely many n,

almost all of these n must lie in B(f) UB(f’) and hence as {B(f) | f € NN} is an
almost disjoint family,

&(f,B)(n) = {

(3*n € B(f)) f(n) =e(f')(n)
or the same holds with f and f’ switched.

The brilliant idea of Horowitz and Shelah is the following: Ensure maximality
with respect to f which look like e(f’) on an infinite set using e(f’); restrict the use
of & to f which don’t look like they arise from e on some infinite subset of B(f) to
avoid the situation described above. We make these ideas precise in the following
definition and in Lemma 2.5 below.

Definition 2.4. Let a function f: N - N and X C N be given. We say f is
oo-coherent on X if and only if there is f € NN and infinite X’ € X such that
FI1X =e(f)1X.

We can now give a general recipe for constructing a medf.

Lemma 2.5. Suppose that T C NN and C: N — P(N) is a function such that
(A) If f ¢ T, there is an infinite set X’ C C(f) and f' € N such that f [ X' =
e(f) ' X'; i.e., [ is co-coherent on C(f).
(B) If f € T, for no f' € NN does f agree with e(f') on ‘infinitely many points
in C(f); t.e., f is not co-coherent on C(f).
(C) {C(f) | f € T} is an almost disjoint family.
Then
E={&(f,CUN I feTrulef) | f¢ T}

is a mazimal eventually different family.

Of course the challenge here is to define C and T so that & is A}l; before we
discuss this aspect, we prove the lemma.
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For the sake of this proof it will be convenient to define the map é: NN—) NN as
follows: For f € NN let &(f) be the function defined by

“(f) - {é(f, C(f) HfeT, O

e(f) otherwise.

Clearly £ = {&(f) | f € NN}.

Proof of Lemma 2.5. To show £ consists of pairwise eventually different functions,

fix distinct gy and g; from £ and suppose g; = é(f;) for each i € {0,1}. Clearly we
can disregard

N = {n €N | go(n) = e(fo)(n) and g1(n) = e(f1)(m)}

as go and g; can only agree on finitely many such n.

If n'¢ N then it must be the case that for some i € {0,1}, f; € 7 and n € C(f;);
suppose ¢ = 0 for simplicity. By (C) we may restrict our attention to C(f5) \ C(f1)
where gy agrees with fo and g; agrees with e(f1). But f; and e(f1) can’t agree on
an infinite subset of C(fs) \ C(f1) by (B). ,

It remains to show maximality. So let f: N — N be given. If f € 7 we have
e(f) 1 C(f) = f I.C(f) and &(f) € £ by definition. :

If on the other hand f ¢ 7 there is f' € NN such that e(f’) agrees with f on an
infinite subset of C(f). As é(f’) € £ it suffices to show f =" &(f’).

If f' ¢ T as well this is clear as &(f’) = e(f’). If on the contrary f’ € T, we have
f # f" and so C(f) N C(f’) is finite by (C). So &(f’) agrees with e(f’) for all but
finitely many points in C(f) and hence agrees with f on infinitely many points. [

Note that letting 7 = {f € NN| f is not co-coherent on B(f)} and C(f) = B(f)
the requirements of Lemma 2.5 are'trivially satisfied; but the resulting £ will not
be Borel (only II} V £1). On the other hand if 7 is A} and C: "N — P(N) is &1,
then £ is clearly £, and in fact it follows that £ is A} in this case because it is a
medf and so

h¢€ <= (e™N)h#gAh="gAg€E.
(Of course the function C: NN — P(N) is also automatically Al.) We may view the
task at hand to be: find a reasonably effective process producing from a function
f either a subset of B(f) where f agrees with some e(f’) or a set C(f) € B(f) on
which f can be seen effectively to not be oo-coherent.

From this we can sketch what is arguably the core of Horowitz and Shelah’s con-
struction from [2]. The present author has not verified whether their construction
yields an arithmetic family.

Proof of Theorem 1.1. Given f: N — N define a coloring of unordered pairs from
N as follows (supposing without loss of generality that k' < k’):

c({k, K}) = {0 i 55y & 850k,
' L i (sr09 & s760)-
Let 7 consist of those f € NN such that there is an infinite set X C B(f) which is
1-homogeneous, i.e., ¢ assigns the color 1 to every unordered pair from X. By the
Infinite Ramsey Theorem f ¢ 7 if and only if there is an infinite 0-homogeneous
X C B(f), whence 7 is Al and (A) holds. For f € 7 let C(f) pick some infinite
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1-homogeneous X C B(f); for f ¢ T let C(f) = B(f). Then (B) and (C) hold by
definition and by Lemma 2.5, £ is a medyf.
By the proof of the Infinite Ramsey Theorem, the function C: NN — P(B(f))

can be chosen to be £}. Thus & as defined in Lemma 2.5 is A}. o

In the next section, we essentially replace the appeal to the Infinite Ramsey
Theorem by a simple instance of the law of excluded middle.

3. A MAXIMAL EVENTUALLY DIFFERENT FAMILY WITH A SIMPLE DEFINITION

We now give a simpler construction of a family satisfying the requirements of
Lemma 2.5.

Definition 3.1 (The medf £). .
A. Let f: N — N. Define a binary relation < on N by
m=<im = [ (Ih(sg(my) = m) A (Ih(s5pm) = M) A (s50my & sf(m,))]
. B. Let T be the set of f: N — N such that
(Vn € B(f))(3m € B(f) \ n)(Vm' € B(f) \ m) ~(m </ m') )

We also say f is tangled to mean f € T.
C. For f ¢ T, define C(f) to be B(f) and for f € 7 define

C(f) = {m € B(f) | (vm’ € B(f) \m) ~(m </ m')}.
D. Let £ be defined from 7 and C as in Lemma 2.5, i.e.,
E={&f) | fe"N}
where é(f) is the function defined as in (1):
o) = {é(f,C(f)) itfeT,
e(f) otherwise.

We want to call the following to the readers attention:
(i) {C(f) | f € NN} is an almost disjoint family (as C(f) C B(f) by definition).
(ii) When f is tangled, C(f) is an infinite set by (2) and for no f’ € NN does f
agree with e(f’) on infinitely many (or in fact, just two) points in C(f)—i.e.,
f is not oco-coherent on C(f).

Lemma 3.2. The set £ is a mazimal eventually different family.

_Proof. We show that Lemma 2.5 can be applied. Requirements (C) and (B) hold
by (i) and (ii) above. For (A), suppose [ is not tangled, i.e.,

(3n € B(f))(Ym € B(f) \ n)(3m' € B(f) \ m) m < m’.

Let mg be the least witness to the leading existential quantifier above; by recursion
let m;,1 be the least m’ in B(f) above m; such that m; < m/. Letting f’ =
U{ss(ms) | © € N} yields a well-defined function in NN such that f = e(f’), i.e., f
is co-coherent on C(f). . O

It is obvious that £ is Al. We now show a stronger result.
Lemma 3.3. The set £ is in the Boolean algebra generated by the %3 sets in NN,

Proof. By construction g € £ if and only if the following holds of g (see Remark 2.3):
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(@) (Vn € N) lh(sg(2n)) = 2n, and
(I1) (Vn € N)(Vm <'n) sg2m) C ég(gn), and letting f = J,,con Sg(2n)
(IIT) either the following three requirements hold:
(a) f is tangled and
(b) (VneN)n € C(f) = g(n) = f(n) and
(¢) (vn e N)n ¢ C(f) = g(n) = e(f)(n);
(IV) or both of the following hold:
(a) f is not tangled and
(b) (Vn€N) g(n) = e(f)(n).
As C(f) is II)(f) for f € T and (IIIa) is TI3(f), clearly (III) is II3(g, f). Likewise
(IV) is £3(g, f). As f is recursive in g, (III) can be expressed by a IT3(g) formula
and (IV) can be expressed by a £3(g) formula (substitute each expression of the
form f(n) = m by sg@ni2y(n) =m and f [ n by sg2n) [ n). O

4. QUESTIONS

1. Is it the case that for some F': N — N there is a compact II9(F) maximal
cofinitary group in Np?

2. For which F'is the answer to the previous question ‘yes’ (if any)?

3. Is there a natural, minimal fragment of second order arithmetic which
proves there is a IIY eventually different family (or, respectively, a IT{ max-
imal cofinitary group)? ‘

4. For any set X let X[°] denote the set of infinite subsets of X. Given any
F:N— {N}UN and a medf € on N consider the co-ideal

Ce={XePM)|{gl X |get}isamedfin [[ F(n)}.
nekl
Is there a closed medf € in N or N (under some assumption on F) such
that Ce = NlI?
To make Question 4 precise, we make the following (slightly artificial) definition:

Definition 4.1. Any two functions go,g; with a countably infinite domain X are
called eventually different if and only if {z € X | go(z) = g1(z)} is finite.
Given E Cw and F: E— w+1, [],cg F(n) of course means

{f+E—=N | (Vn€E) f(n) < F(n)}.

A set Eisan eventually different family in Hne g F(n)ifandonlyif € C ],z F(n)
and any two distinct go,g1 € € are eventually different; such a family is called
mazimal (or short: a medf) in [[_ .z F(n) if and only if it is maximal among such
families under inclusion.

nek
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