Asymptotic stability in a two-species chemotaxis-competition system

Masaaki Mizukami

Department of Mathematics Tokyo University of Science

1. Introduction

We consider the two-species chemotaxis system

$$\begin{cases} u_{t} = d_{1}\Delta u - \nabla \cdot (u\chi_{1}(w)\nabla w) + \mu_{1}u(1 - u - a_{1}v), & x \in \Omega, \ t > 0, \\ v_{t} = d_{2}\Delta v - \nabla \cdot (v\chi_{2}(w)\nabla w) + \mu_{2}v(1 - a_{2}u - v), & x \in \Omega, \ t > 0, \\ w_{t} = d_{3}\Delta w + h(u, v, w), & x \in \Omega, \ t > 0, \\ \nabla u \cdot \nu = \nabla v \cdot \nu = \nabla w \cdot \nu = 0, & x \in \partial\Omega, \ t > 0, \\ u(x, 0) = u_{0}(x), \ v(x, 0) = v_{0}(x), \ w(x, 0) = w_{0}(x), & x \in \Omega, \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^n $(n \in \mathbb{N})$ with smooth boundary $\partial \Omega$ and ν is the outward normal vector to $\partial\Omega$. The initial data u_0 , v_0 and w_0 are assumed to be nonnegative functions. The unknown functions u(x,t) and v(x,t) represent the population densities of two species and w(x,t) shows the concentration of the substance at place x and time t.

The problem (1.1) consists of the influence of chemotaxis, diffusion, and the Lotka-Volterra kinetics. In mathematical view, global existence and behavior of solutions are fundamental theme. In the case $\chi_i(w) = \chi_i$ and $h(u, v, w) = \alpha u + \beta v - \gamma w$, Bai-Winkler [1] considered asymptotic behavior of solutions to (1.1). When $a_1, a_2 \in (0, 1)$, they proved that the solution (u, v, w) satisfies $u(t) \to u^*$, $v(t) \to v^*$, $w(t) \to \frac{\alpha u^* + \beta v^*}{\gamma}$ in $L^{\infty}(\Omega)$ as $t\to\infty,$ where $u^*=\frac{1-a_1}{1-a_1a_2}$ $v^*=\frac{1-a_2}{1-a_1a_2},$ under the conditions

These conditions are not natural because they are not symmetric.

The purpose of the present report is to improve the method in [1] for obtaining asymptotic stability of solutions to (1.1) under a more general and sharp condition for the sensitivity function $\chi_i(w)$. We shall suppose throughout this report that h, χ_i (i = 1, 2) satisfy the following conditions:

(1:3)
$$\chi_i \in C^{1+\theta}([0,\infty)) \cap L^1(0,\infty) \ (0 < \exists \theta < 1), \quad \chi_i > 0 \quad (i = 1,2),$$

(1.4)
$$h \in C^1([0,\infty) \times [0,\infty) \times [0,\infty), \quad h(0,0,0) \ge 0,$$

(1.4)
$$h \in C^{1}([0,\infty) \times [0,\infty) \times [0,\infty)), \quad h(0,0,0) \ge 0,$$
(1.5)
$$\exists \gamma > 0; \ \frac{\partial h}{\partial u}(u,v,w) \ge 0, \quad \frac{\partial h}{\partial v}(u,v,w) \ge 0, \quad \frac{\partial h}{\partial w}(u,v,w) \le -\gamma,$$

(1.6)
$$\exists \delta > 0, \ \exists M > 0; \ |h(u, v, w) + \delta w| \le M(u + v + 1),$$

(1.7)
$$\exists k_i > 0; \ -\chi_i(w)h(0,0,w) \le k_i \quad (i=1,2).$$

We also assume that

(1.8)

$$\exists p > n; \ 2d_i d_3 \chi_i'(w) + \left((d_3 - d_i)p + \sqrt{(d_3 - d_i)^2 p^2 + 4d_i d_3 p} \right) [\chi_i(w)]^2 \le 0 \quad (i = 1, 2).$$

The above conditions cover the prototypical example $\chi_i(w) = \frac{K_i}{(1+w)^{\sigma_i}}$ $(K_i > 0, \sigma_i > 1),$ h(u, v, w) = u + v - w. We assume that the initial data u_0, v_0, w_0 satisfy

$$(1.9) 0 \le u_0 \in C(\overline{\Omega}) \setminus \{0\}, \ 0 \le v_0 \in C(\overline{\Omega}) \setminus \{0\}, \ 0 \le w_0 \in W^{1,q}(\Omega) \ (\exists q > n).$$

The following result which is concerned with global existence and boundedness in (1.1) was established in [2].

Theorem 1.1. Let $d_1, d_2, d_3 > 0$, $\mu_1, \mu_2 > 0$, $a_1, a_2 \geq 0$. Assume that h, χ_1, χ_2 satisfy (1.3)–(1.8). Then for any u_0, v_0, w_0 satisfying (1.9) for some q > n, there exists an exactly one pair (u, v, w) of nonnegative functions

$$u, v, w \in C(\overline{\Omega} \times [0, \infty)) \cap C^{2,1}(\overline{\Omega} \times (0, \infty)),$$

which satisfy (1.1). Moreover, the solutions u, v, w are uniformly bounded, i.e., there exists a constant $C_1 > 0$ such that

$$||u(t)||_{L^{\infty}(\Omega)} + ||v(t)||_{L^{\infty}(\Omega)} + ||w(t)||_{W^{1,\infty}(\Omega)} \le C_1$$
 for all $t \ge 0$,

and the solutions u, v, w are the Hölder continuous functions, i.e., there exist $\alpha \in (0,1)$ and $C_2 > 0$ such that

$$||u||_{C^{2+\alpha,1+\frac{\alpha}{2}}(\overline{\Omega}\times[1,t])} + ||v||_{C^{2+\alpha,1+\frac{\alpha}{2}}(\overline{\Omega}\times[1,t])} + ||w||_{C^{2+\alpha,1+\frac{\alpha}{2}}(\overline{\Omega}\times[1,t])} \le C_2 \quad \text{for all } t \ge 1.$$

Since Theorem 1.1 guarantees that u, v and w exist globally and are bounded and nonnegative, it is possible to define nonnegative numbers α_1 , α_2 , β_1 , β_2 by

(1.10)
$$\alpha_{1} := \min_{(u,v,w) \in I} h_{u}(u,v,w), \qquad \alpha_{2} := \max_{(u,v,w) \in I} h_{u}(u,v,w),$$

$$\beta_{1} := \min_{(u,v,w) \in I} h_{v}(u,v,w), \qquad \beta_{2} := \max_{(u,v,w) \in I} h_{v}(u,v,w),$$

where $I = (0, C_1)^3$ and C_1 is defined in Theorem 1.1.

In the case $a_1, a_2 \in (0, 1)$ asymptotic behavior of solutions to (1.1) will be discussed under the following additional conditions: there exists $\delta_1 > 0$ such that

$$(1.11) 4\delta_1 - a_1 a_2 (1 + \delta_1)^2 > 0$$

and

(1.12)
$$\mu_1 > \frac{\chi_1(0)^2 u^*(1+\delta_1)(\alpha_2^2 a_1 \delta_1 + \beta_2^2 a_2 - \alpha_1 \beta_1 a_1 a_2 (1+\delta_1))}{4a_1 d_1 d_3 \gamma (4\delta_1 - a_1 a_2 (1+\delta_1)^2)},$$

(1.13)
$$\mu_2 > \frac{\chi_2(0)^2 v^* (1 + \delta_1) (\alpha_2^2 a_1 \delta_1 + \beta_2^2 a_2 - \alpha_1 \beta_1 a_1 a_2 (1 + \delta_1))}{4a_2 d_2 d_3 \gamma (4\delta_1 - a_1 a_2 (1 + \delta_1)^2)}.$$

Now the main result reads as follows. The main theorem is concerned with asymptotic stability in (1.1) in the case $a_1, a_2 \in (0, 1)$.

Theorem 1.2. Let $d_1, d_2, d_3 > 0$, $\mu_1, \mu_2 > 0$ and $a_1, a_2 \in (0, 1)$. Under the conditions (1.3)–(1.9) and (1.11)–(1.13), the unique global solution (u, v, w) of (1.1) has the following asymptotic behavior:

$$||u(t) - u^*||_{L^{\infty}(\Omega)} \to 0, \quad ||v(t) - v^*||_{L^{\infty}(\Omega)} \to 0 \quad ||w(t) - w^*||_{L^{\infty}(\Omega)} \to 0 \quad (t \to \infty).$$

where

$$u^* := \frac{1 - a_1}{1 - a_1 a_2}, \quad v^* := \frac{1 - a_2}{1 - a_1 a_2}$$

and $w^* \ge 0$ such that $h(u^*, v^*, w^*) = 0$.

Remark 1.1. Theorem 1.2 can be applied to the case $\chi_i(w) = \chi_i$ and $h(u, v, w) = \alpha u + \beta v - \gamma w$. Then the conditions (1.11)–(1.13) have symmetry and relax the condition (1.2) assumed in [1]. Indeed, the conditions (1.2) are stronger than (1.11)–(1.13) when $\delta_1 = 1$. Moreover, in view of considering the function

$$f(x) = \frac{a_1(\alpha^2 - \alpha\beta a_2)x^2 + (\beta^2 a_2 - \alpha^2 a_1)x}{-a_1 a_2 x^2 + 4x - 4}$$

(we put $x = 1 + \delta_1$), x = 2 ($\delta_1 = 1$) is not a minimizer of the right-hand sides of (1.12) and (1.13) except the case $\beta^2 a_2 = \alpha^2 a_1$. Thus the conditions (1.11)–(1.13) relax (1.2).

Remark 1.2. In Theorem 1.2 we can find $w^* \geq 0$ satisfying $h(u^*, v^*, w^*) = 0$. Indeed, from (1.4)–(1.6) for every $a, b \geq 0$ there exists \overline{w} such that $h(a, b, \overline{w}) = 0$. Indeed, if we choose $w_1 \geq \frac{M(a+b+1)}{\delta}$, then (1.6) yields $h(a, b, w_1) \leq M(a+b+1) - \delta w_1 \leq 0$. On the other hand, (1.4) and (1.5) imply that $h(a, b, 0) \geq h(0, 0, 0) \geq 0$. Hence, by the intermediate value theorem there exists $\overline{w} \geq 0$ such that $h(a, b, \overline{w}) = 0$.

The strategy for the proof of Theorem 1.2 is to modify an argument in [1]. The key for this strategy is to construct the following energy estimate:

$$\frac{d}{dt}E(t) \le -\varepsilon \left(\int_{\Omega} (u - \overline{u})^2 + \int_{\Omega} (v - \overline{v})^2 + \int_{\Omega} (w - \overline{w})^2 + \int_{\Omega} |\nabla w|^2 \right)$$

with some function $E(t) \ge 0$ and some $\varepsilon > 0$, where $(\overline{u}, \overline{v}, \overline{w}) \in \mathbb{R}^3$ is a solution of (1.1). For finding the above inequality we apply more "suitable" estimates for

$$\int_{\Omega} \frac{\chi_1(w)}{u} \nabla u \cdot \nabla w \quad \text{and} \quad \int_{\Omega} \frac{\chi_1(w)}{v} \nabla v \cdot \nabla w.$$

These enable us to improve the condition (1.2).

2. Proof of the main result

In this section we will establish asymptotic stability of solutions to (1.1) in the case $a_1, a_2 \in (0, 1)$. For the proof of Theorem 1.2, we shall prepare some elementary results.

Lemma 2.1 (see [1, Lemma 3.1]). Suppose $f:(1,\infty)\to\mathbb{R}$ is a uniformly continuous nonnegative function satisfying $\int_1^\infty f(t) dt < \infty$. Then $f(t)\to 0$ as $t\to \infty$.

Lemma 2.2. Let $a, b, c, d, e, f \in \mathbb{R}$. Suppose that

$$(2.1) a > 0, d - \frac{b^2}{4a} > 0, f - \frac{c^2}{4a} - \frac{(2ae - bc)^2}{4a(4ad - b^2)} > 0.$$

Then

(2.2)
$$ax^{2} + bxy + cxz + dy^{2} + eyz + fz^{2} \ge 0$$

holds for all $x, y, z \in \mathbb{R}$.

Proof. From straightforward calculations we obtain

$$ax^{2} + bxy + cxz + dy^{2} + eyz + fz^{2}$$

$$= a\left(x + \frac{by + cz}{2a}\right)^{2} + \left(d - \frac{b^{2}}{4a}\right)\left(y + \frac{2ae - bc}{4ad - b^{2}}\right)^{2} + \left(f - \frac{c^{2}}{4a} - \frac{(2ae - bc)^{2}}{4a(4ad - b^{2})}\right)z^{2}.$$

In view of the above equation, (2.1) leads to (2.2).

Now we will prove the key estimate for the proof of Theorem 1.2.

Lemma 2.3. Let $a_1, a_2 \in (0, 1)$ and (u, v, w) a solution to (1.1). Under the conditions (1.3)–(1.9) and (1.11)–(1.13), there exist $\delta_1, \delta_2 > 0$ and $\varepsilon > 0$ such that the nonnegative functions E_1 and F_1 defined by

$$E_1(t) := \int_{\Omega} \left(u - u^* - u^* \log \frac{u}{u^*} \right) + \delta_1 \frac{a_1 \mu_1}{a_2 \mu_2} \int_{\Omega} \left(v - v^* - v^* \log \frac{v}{v^*} \right) + \frac{\delta_2}{2} \int_{\Omega} \left(w - w^* \right)^2$$

and

$$F_1(t) := \int_{\Omega} (u - u^*)^2 + \int_{\Omega} (v - v^*)^2 + \int_{\Omega} (w - w^*)^2 + \int_{\Omega} |\nabla w|^2$$

satisfy

(2.3)
$$\frac{d}{dt}E_1(t) \le -\varepsilon F_1(t) \qquad (t > 0).$$

Proof. Thanks to (1.11)–(1.13) we can choose $\delta_1 > 0$ defined in (1.11)–(1.13) and $\delta_2 > 0$ satisfying

$$\frac{\chi_1(0)^2 u^*(1+\delta_1)}{4d_1d_3} < \delta_2 < \frac{a_1\mu_1\gamma(4\delta_1 - a_1a_2(1+\delta_1)^2)}{\alpha_2^2 a_1\delta_1 + \beta_2^2 a_2 - \alpha_1\beta_1a_1a_2(1+\delta_1)}$$

and

$$\frac{a_1\mu_1\chi_2(0)^2v^*(1+\delta_1)}{4a_2\mu_2d_2d_3} < \delta_2 < \frac{a_1\mu_1\gamma(4\delta_1 - a_1a_2(1+\delta_1)^2)}{\alpha_2^2a_1\delta_1 + \beta_2^2a_2 - \alpha_1\beta_1a_1a_2(1+\delta_1)}.$$

We denote by $A_1(t)$, $B_1(t)$, $C_1(t)$ the functions defined as

$$A_1(t) := \int_{\Omega} \left(u - u^* - u^* \log \frac{u}{u^*} \right), \quad B_1(t) = \int_{\Omega} \left(v - v^* - v^* \log \frac{v}{v^*} \right),$$

$$C_1(t) := \frac{1}{2} \int_{\Omega} \left(w - w^* \right)^2,$$

and we write as

$$E_1(t) = A_1(t) + \delta_1 \frac{a_1 \mu_1}{a_2 \mu_2} B_1(t) + \delta_2 C_1(t).$$

The Taylor formula applied to $H(s) = s - u^* \log s$ $(s \ge 0)$ yields $A_1(t) = \int_{\Omega} (H(u) - H(u^*))$ is a nonnegative function for t > 0 (more detail, see [1, Lemma 3.2]). Similarly, we have that $B_1(t)$ is a positive function. By the straightforward calculations we infer

$$\frac{d}{dt}A_{1}(t) = -\mu_{1} \int_{\Omega} (u - u^{*})^{2} - a_{1}\mu_{1} \int_{\Omega} (u - u^{*})(v - v^{*}) - d_{1}u^{*} \int_{\Omega} \frac{|\nabla u|^{2}}{u^{2}}
+ u^{*} \int_{\Omega} \frac{\chi_{1}(w)}{u} \nabla u \cdot \nabla w,
\frac{d}{dt}B_{1}(t) = -\mu_{2} \int_{\Omega} (v - v^{*})^{2} - a_{2}\mu_{2} \int_{\Omega} (u - u^{*})(v - v^{*}) - d_{2}v^{*} \int_{\Omega} \frac{|\nabla v|^{2}}{v^{2}}
+ v^{*} \int_{\Omega} \frac{\chi_{2}(w)}{v} \nabla v \cdot \nabla w,
\frac{d}{dt}C_{1}(t) = \int_{\Omega} h_{u}(u - u^{*})(w - w^{*}) + \int_{\Omega} h_{v}(v - v^{*})(w - w^{*}) + \int_{\Omega} h_{w}(w - w^{*})^{2}
- d_{3} \int_{\Omega} |\nabla w|^{2}$$

with some derivatives h_u , h_v and h_w . Hence we have

(2.4)
$$\frac{d}{dt}E_1(t) = I_3(t) + I_4(t),$$

where

$$I_3(t) := -\mu_1 \int_{\Omega} (u - u^*)^2 - a_1 \mu_1 (1 + \delta_1) \int_{\Omega} (u - u^*) (v - v^*) - \delta_1 \frac{a_1 \mu_1}{a_2} \int_{\Omega} (v - v^*)^2 + \delta_2 \int_{\Omega} h_u (u - u^*) (w - w^*) + \delta_2 \int_{\Omega} h_v (v - v^*) (w - w^*) + \delta_2 \int_{\Omega} h_w (w - w^*)^2 dv dv$$

and

(2.5)
$$I_{4}(t) := -d_{1}u^{*} \int_{\Omega} \frac{|\nabla u|^{2}}{u^{2}} + u^{*} \int_{\Omega} \frac{\chi_{1}(w)}{u} \nabla u \cdot \nabla w - d_{2}v^{*} \delta_{1} \frac{a_{1}\mu_{1}}{a_{2}\mu_{2}} \int_{\Omega} \frac{|\nabla v|^{2}}{v^{2}} + v^{*} \delta_{1} \frac{a_{1}\mu_{1}}{a_{2}\mu_{2}} \int_{\Omega} \frac{\chi_{2}(w)}{v} \nabla v \cdot \nabla w - d_{3}\delta_{2} \int_{\Omega} |\nabla w|^{2}.$$

At first, we shall show from Lemma 2.2 that there exists $\varepsilon_1 > 0$ such that

(2.6)
$$I_3(t) \le -\varepsilon_1 \left(\int_{\Omega} (u - u^*)^2 + \int_{\Omega} (v - v^*)^2 + \int_{\Omega} (w - w^*)^2 \right).$$

To see this, we put

$$\begin{split} g_1(\varepsilon) &:= \mu_1 - \varepsilon, \\ g_2(\varepsilon) &:= \left(\frac{a_1}{a_2} \mu_1 \delta_1 - \varepsilon\right) - \frac{a_1^2 \mu_1^2 (1 + \delta_1)^2}{4(\mu_1 - \varepsilon)}, \\ g_3(\varepsilon) &:= \left(-\delta_2 h_w - \varepsilon\right) - \frac{h_u^2}{4(\mu_1 - \varepsilon)} \delta_2^2 - \frac{(2h_v(\mu_1 - \varepsilon) - h_u a_1 \mu_1 (1 + \delta))^2}{4(\mu_1 - \varepsilon) (4\frac{a_1}{a_2} \mu_1 \delta_1 (\mu_1 - \varepsilon) - a_1^2 \mu_1^2 (1 + \delta_1)^2)} \delta_2^2 \end{split}$$

Since $\mu_1 > 0$, we have $g_1(0) = \mu_1 > 0$. Due to (1.11), we infer

$$g_2(0) = \frac{a_1 \mu_1}{4a_2} (4\delta_1 - a_1 a_2 (1 + \delta_1)^2) > 0.$$

In light of (1.5) and the definitions of $\delta_2 > 0$, $\alpha_i, \beta_i \geq 0$ (defined in (1.10)) we obtain

$$\begin{split} g_3(0) &= \delta_2 \left(-h_w - \left(\frac{h_u^2}{4\mu_1} + \frac{a_2(2h_v - h_u a_1(1+\delta_1))^2}{4a_1\mu_1(4\delta_1 - a_1 a_2(1+\delta_1)^2)} \right) \delta_2 \right) \\ &\geq \delta_2 \left(\gamma - \left(\frac{\alpha_2^2 a_1 \delta_1 + \beta_2^2 a_2 - \alpha_1 \beta_1 a_1 a_2(1+\delta_1)}{a_1\mu_1(4\delta_1 - a_1 a_2(1+\delta_1)^2)} \right) \delta_2 \right) > 0. \end{split}$$

Combination of the above inequalities and the continuity argument yields that there exists $\varepsilon_1 > 0$ such that $g_i(\varepsilon_1) > 0$ hold for i = 1, 2, 3. Thanks to Lemma 2.2 with

If the above inequalities and the continuity argument yields at
$$g_i(\varepsilon_1) > 0$$
 hold for $i = 1, 2, 3$. Thanks to Lemma 2.2 with $a = \mu_1 - \varepsilon_1$, $b = a_1\mu_1(1+\delta_1)$, $c = -\delta_2h_u$, $d = \delta_1\frac{a_1\mu_1}{a_2} - \varepsilon_1$, $e = -\delta_2h_v$, $f = -\delta_2h_w - \varepsilon_1$, $x = u(t) - u^*$, $y = v(t) - v^*$, $z = w(t) - w^*$,

we obtain (2.6) with $\varepsilon_1 > 0$. Lastly we will find $\varepsilon_2 > 0$ satisfying

(2.7)
$$I_4(t) \le -\varepsilon_2 \int_{\Omega} |\nabla w|^2.$$

By virtue of the definition of $\delta_2 > 0$, we can find $\delta_3 \in \left(\frac{\chi_i(0)^2 u^*(1+\delta_1)}{4d_1 d_3 \delta_2}, 1\right)$. Noting that $\chi_i' < 0$ (from (1.8)) and then using the Young inequality, we have

$$u^* \int_{\Omega} \frac{\chi_1(w)}{u} \nabla u \cdot \nabla w \le \chi_1(0) u^* \int_{\Omega} \frac{|\nabla u \cdot \nabla w|}{u}$$
$$\le \frac{\chi_1(0)^2 u^{*2} (1 + \delta_1)}{4 d_3 \delta_2 \delta_3} \int_{\Omega} \frac{|\nabla u|^2}{u^2} + \frac{d_3 \delta_2 \delta_3}{1 + \delta_1} \int_{\Omega} |\nabla w|^2$$

$$\begin{split} v^* \delta_1 \frac{a_1 \mu_1}{a_2 \mu_2} \int_{\Omega} \frac{\chi_2(w)}{v} \nabla v \cdot \nabla w &\leq \chi_2(0) v^* \delta_1 \frac{a_1 \mu_1}{a_2 \mu_2} \int_{\Omega} \frac{|\nabla v \cdot \nabla w|}{v} \\ &\leq \frac{\chi_2(0)^2 v^{*2} \delta_1(1+\delta_1)}{4 d_3 \delta_2} \left(\frac{a_1 \mu_1}{a_2 \mu_2} \right)^2 \int_{\Omega} \frac{|\nabla v|^2}{v^2} + \frac{d_3 \delta_1 \delta_2}{1+\delta_1} \int_{\Omega} |\nabla w|^2. \end{split}$$

Plugging these into (2.5) we infer

$$I_{4}(t) \leq -u^{*} \left(d_{1} - \frac{\chi_{1}(0)^{2}u^{*}(1+\delta_{1})}{4d_{3}\delta_{2}\delta_{3}} \right) \int_{\Omega} \frac{|\nabla u|^{2}}{u^{2}}$$

$$-v^{*}\delta_{1} \frac{a_{1}\mu_{1}}{a_{2}\mu_{2}} \left(d_{2} - \frac{a_{1}\mu_{1}\chi_{2}(0)^{2}v^{*}(1+\delta_{1})}{4d_{3}a_{2}\mu_{2}\delta_{2}} \right) \int_{\Omega} \frac{|\nabla v|^{2}}{v^{2}}$$

$$-d_{3}\delta_{2} \left(1 - \frac{\delta_{1} + \delta_{3}}{1+\delta_{1}} \right) \int_{\Omega} |\nabla w|^{2}.$$

We note from the definitions of $\delta_2 > 0$ and $\delta_3 > 0$ that

$$d_1 - \frac{\chi_1(0)^2 u^* (1 + \delta_1)}{4 d_3 \delta_2 \delta_3} > 0,$$

$$d_2 - \frac{a_1 \mu_1 \chi_2(0)^2 v^* (1 + \delta_1)}{4 d_3 a_2 \mu_2 \delta_2} > 0$$

and

$$1 - \frac{\delta_1 + \delta_3}{1 + \delta_1} = \frac{1 - \delta_3}{1 + \delta_1} > 0.$$

Therefore we obtain that there exists $\varepsilon_2 > 0$ such that (2.7) holds. Combination of (2.4), (2.6) and (2.7) implies the end of the proof.

Proof of Theorem 1.2. We let $f_1(t) := \int_{\Omega} (u - u^*)^2 + \int_{\Omega} (v - v^*)^2 + \int_{\Omega} (w - w^*)^2 \ge 0$. We have $f_1(t)$ is a nonnegative function, and thanks to the regularity of u, v, w (see Theorem 1.1) we can see that $f_1(t)$ is uniformly continuous. Moreover, integrating (2.3) over $(1, \infty)$, we infer from the positivity of $E_1(t)$ that

$$\int_{1}^{\infty} f_1(t) dt \le \frac{1}{\varepsilon} E_1(1) < \infty.$$

Therefore we obtain from Lemma 2.1 that $f_1(t) \to 0$.

References

- [1] X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553–583.
- [2] M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxiscompetition model with signal-dependent sensitivity, submitted.
- [3] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Ural'ceva, *Linear and Quasi-linear Equations of Parabolic Type*, AMS, Providence, 1968.

Department of Mathematics

Tokyo University of Science

1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, JAPAN

E-mail address: masaaki.mizukami.math@gmail.com