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1. Introduction

We consider the two-species chemotaxis system
up = diAu — V- (ux1(w)Vw) + pu(l —u—agv), z€Q, t>0,
v = doAv — V - (ux2(w)Vw) + p2v(l —au —v), z€Q, t>0,
(1.1) wy = dgAw + h(u,v,w), - x €N, t>0,
Vu-v=Vv-v=Vw -vr=0, x €09, t>0,
Lu(z,0) = up(z), v(z,0) = v(z), w(z,0) =we(z), z€Q,

where Q is a bounded domain in R™ (n € N) with smooth boundary 9 and v is the out-
ward normal vector to 2. The initial data ug, vg and wy are assumed to be nonnegative
functions. The unknown functions u(z,t) and v(z,t) represent the population densities
of two species and w(z,t) shows the concentration of the substance at place z and time ¢.

The problem (1.1) consists of the influence of chemotaxis, diffusion, and the Lotka—
Volterra kinetics. In mathematical view, global existence and behavior of solutions are
fundamental theme. In the case x;(w) = x; and A{u,v,w) = au + fv — yw, Bai-Winkler
[1] considered asymptotic behavior of solutions to (1.1). When ay, a2 € (0, 1), they proved
that the solution (u,v,w) satisfies u(t) — u*, v(t) = v*, w(t) — ﬁj:”i”— in L*(Q) as
t — 00, where u* = 122 y* = 1= ypder the conditions

1—-aia2 l1-aiaz’
(12) 1y > daxiu* s > X3v*(a10” + agff® — 201a204ﬁ)
’ 4a1'y(1—a1a2)d1d2d3 _ d1a1x2'v* ’ 16d d a 1 — a1a
(a102+a28%—2a1a200) 4;424122 278 27( 1 2)

These conditions are not natural because they are not symmetric.

The purpose of the present report is to improve the method in [1] for obtaining asymp-
totic stability of solutions to (1.1) under a more general and sharp condition for the sensi-
tivity function x;(w). We shall suppose throughout this report that h, x; (z = 1, 2) satisfy
the following conditions:

(1:3) xi € C*0([0,00)) NL}0,00) (0< 3O < 1), xi>0 (i=1,2),
(1.4) h € C*([0,00) x [0,00) x [0,00)), k(0,0,0) >0,

(1.5) 3y >0 g (u,v,w) >0, %(u,v,w) >0, 8h(u v,w) < —7,
(1.6) 35 >0, IM > 0; |h(u,v,‘w)+6w]§M(u+v+1),

(1.7) Ik > 0; —xa(w)h(0,0,w) <k (i =1,2).
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We also assume that
(1.8)
3p > n; 2dyxi(w) + ((ds — dip+ /ds — di)?p? + 4did3p) )2 <0 (i=1,2).

The above conditions cover the prototypical example x;(w) = Trwyer +w)°z (K; >0, 00 > 1),
h(u,v,w) = v+ v — w. We assume that the initial data wo, vo, wo satisfy

(1.9) 0 <ug€C(Q)\{0}, 0< v € )\ {0}, 0<wo e WH(Q) (3g>n).

The following result which is concerned with global existence and boundedness in (1.1)
was established in [2].

Theorem 1.1. Let dy,ds,ds > 0, p1, 2 > 0, a1,a2 > 0. Assume that h, x1, X2 satisfy
(1.3)~(1.8). Then for any ug, ve, wo satisfying (1.9) for some q > n, there exists an
exactly one pair (u,v,w) of nonnegative functions

u, v, w € C(Q x [0,00)) N C*(Q x (0,00)),

which satisfy (1.1). Moreover, the solutions u,v,w are um'formlyv bounded, i.e., there exists
a constant C; > 0 such that

@) Lz + @l + [0(®) lwaooy < Co - for allt >0,

and the solutions u,v,w are the Holder continuous functions, i.e., there exist a € (0,1)
and Cy > 0 such that

”u”02+a,1+%(ﬁx [1,4) + ”U”c”“’”%(ﬁx[l,t]) + ”w“02+a,1+g-(§x[17t]) <0 forallt> 1.

Since Theorem 1.1 guarantees that u, v and w exist globally and are bounded and
nonnegative, it is possible to define nonnegative numbers oy, az, f1, B2 by

ap = min hy(u,v,w), g = max hy(u,v,w),
(1 10) (u,v,w)€I (u,v,w)el
’ Br:= min h,(u,v,w),  Bo:= max h,(u,v,w),
(u,v,w)el (u,v,w)€el

where I = (0,C})? and C} is defined in Theorem 1.1.
In the case a1, as € (0,1) asymptotic behavior of solutions to (1.1) will be discussed
under the following additional conditions: there exists §; > 0 such that

(1.11) 461 — a1az(1+61)> > 0

and

<1 12) X1(0)2U (1 + 51)(0.’2&151 + ,820,2 — a1ﬂ1a1a2(1 + 51))
’ 4a1d1d3’)’(451 - alag(l + 51)2) ’

(1 13) iz > X2(0)2’U*(1 + 51)(0[2(1151 -+ ,320,2 - alﬁlalaz(l + 51))

4aydadsy (461 — ayag(1 + 61)%)

Now the main result reads as follows. The main theorem is concerned with asymptotic
stability in (1.1) in the case aj,as € (0,1).
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Theorem 1.2. Let dy,da,ds > 0, pg,pe > 0 and ag,az € (0,1). Under the conditions
(1.3)—(1.9) and (1.11)—(1.13), the unique global solution (u,v,w) of (1.1) has the following
asymptotic behavior:

() = ullze@ = 0, [[o(t) = v"llzeo@) = 0 [[w(t) = wlz=i@) =0 (¢~ 00).

where

* . 1—[11 . 1—&2
u = s = —_—
1—a1a2 1-a1a2

and w* > 0 such that h(u*,v*, w*) = 0.

Remark 1.1. Theorem 1.2 can be applied to the case x;(w) = x; and h(u,v,w) =
au + Bv — yw. Then the conditions (1.11)—(1.13) have symmetry and relax the condition
(1.2) assumed in [1]. Indeed, the conditions (1.2) are stronger than (1.11)—(1.13) when
& = 1. Moreover, in view of considering the function

_ay(0? — afag)z® + (BPay — oPay)x
- —a1a022 + 4z — 4

f(z)

(we put £ =1+ 6;), z =2 (6; = 1) is not a minimizer of the right-hand sides of (1.12)
and (1.13) except the case $%as = a2a;. Thus the conditions (1.11)-(1.13) relax (1.2).

Remark 1.2. In Theorem 1.2 we can find w* > 0 satisfying h(u*, v*,w*) = 0. Indeed,
from (1.4)—(1.6) for every a,b > 0 there exists @ such that h(a,b,w) = 0. Indeed, if we
choose wy > M—(“—“gbﬂ, then (1.6) yields h(a, b, w1) < M(a+b+1)—dw; < 0. On the other
hand, (1.4) and (1.5) imply that h(a,b,0) > h(0,0,0) > 0. Hence, by the intermediate
value theorem there exists W > 0 such that k(a, b, w) = 0.

The strategy for the proof of Theorem 1.2 is to modify an argument in [1]. The key
for this strategy is to construct the following energy estimate:

GF0 <= (fu-+ [+ [+ [ [vup)

with some function E(t) > 0 and some & > 0, where (%, v, w) € R3 is a solution of (1.1).
For finding the above inequality we apply more “suitable” estimates for

/MVU-V'w and /MV’U'V’UJ.
o U Q@ v

These enable us to improve the condition (1.2).

2. Proof of the main result
In this section we will establish asymptotic stability of solutions to (1.1) in the case
ay,as € (0,1). For the proof of Theorem 1.2, we shall prepare some elementary results.

Lemma 2.1 (see [1, Lemma 3.1]). Suppose f : (1,00) = R is a uniformly continuous
nonnegative function satisfying [° f(t) dt < co. Then f(t) — 0 ast — oco.
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Lemma 2.2. Let a,b,c,d,e, f € R. Suppose that

b? 2 (2ae—bc)?

2.1 - .
(2.1) a>0, d=0 >0 S T Tatea— ~°
Then

(2.2) ar® + by + cxz+dyt +eyz+ f22 >0

holds for all x,y,z € R.

Proof. From straightforward calculations we obtain

az® + bry + cxz + dy* + eyz + f22
_ by +cz\> b? 2ae — be\” 2 (2ae—bc)?\ ,
—¢ (w "% ) T )V name) T\ T daed=wy ) F

In view of the above equation, (2.1) leads to (2.2). a

Now we will prove the key estimate for the proof of Theorem 1.2.

Lemma 2.3. Let ag,as € (0,1) and (u,v,w) a solution to (1.1). Under the conditions
(1.3)—(1.9) and (1.11)—(1.13), there exist 61,02 > 0 and € > 0 such that the nonnegative
functions E; and Fy defined by

i A T i a1p1 ok ok 1 @ _a*\2
Ei(t) -L(u Ut —u logu*)—t—&l@m/Q(v v —v logv*)-i- 2/9(111 w*)

and

Fi(t) :=/Q(u-u*)2+/n(v~v*)2+/ﬂ(w—w*)2+/Q|Vw|2

satisfy

d
Proof. Thanks to (1.11)-(1.13) we can choose d; > 0 defined in (1.11)—(1.13) and d, > 0

satisfying

x1(0)%u* (1 + 61) b < arp1y(40; — araz(1 + 61)%)
4d1d3 2 agal& + 5%&2 - alﬁlalag(l + 51)
and

0/1M1X2(0)2’U*(1 + 51) < 52 < al}Ll’)’(451 - 04(12(1 + 51)2)
daypodads 3010, + B30 — oy Praras(l+61)°
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We denote by A;(¢), Bi(t), Ci(f) the functions defined as

A (1) :=/ (u —u* —u*log%) , Bi(t) = /Q (v - v*log:—*) ,
Cy(t) = / (w —w*)",
and we write as
Ei(t) = A1) +51@ﬂ31( £) + 8201 (8).
The Taylor formula applied to H(s) = s—u*logs (s > 0) yields Ay (t) = [,(H(u)—H(u*))

is a nonnegative function for ¢ > 0 (more detail, see [1, Lemma 3.2]). Similarly, we have
that Bj(t) is a positive function. By the straightforward calculations we infer

%fh(t = —M/(U u*)® — alul/(u —u")(v—v*) — du* |Vu1;|2
+u* xaw )V -Vw
/ le|2

—31 ——,ug/(v—v)z—agm/(u——u)v—v
+v/QX2( )Yy Vu

v

Lot = / Bl — u")(w — w) + / (v — %) (w — w) + / o (1 — w)?
dt Q Q Q
- dg/ IV’U)]Z
Q
with some derivatives A, h, and h,,. Hence we have
(2.4) —El(t) = I3(t) + I(¢),
where
I(t) = —m/(u —u)? —ayug(1+6) /(u — ) (v — o) — §, 2 /(v — %)
Q Q az Jo
+ 52/ hy(u — u*)(w — w*) + 62/ hy(v —v*)(w — w*) + 52/ ho(w — w*)?
Q Q o}

and

2 2
(25) I4(t) = —dlu*/ @4_“*/ ( >v S Vw — dyv*8; 0,1/,1,1/ |VUI
o U Q u

aspz Jo V2

+’U*51M/MVU'VUJ—d352/ [Vwl|?.
Q2p2 Jo Y Q
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At first, we shall show from Lemma 2.2 that there exists £; > 0 such that

(26) Lt) < —&: ( /n (=) + /ﬂ (0= )2 + /Q (w— w*)2) .

To see this, we put

91(e) = — ¢,
a1 aipi(l +6,)°
g)i=|—md —¢ —_—,
92() (azﬂl 1 ) 4 —e)
A o el OV )) Y

05(€) 1= (e = &) = g A — &) 4% (i — ) — B T 5P

Since p; > 0, we have ¢1(0) = 1 > 0. Due to (1.11), we infer

92(0) = 02”1 (401 — araz(1 + 61)%) >

In light of (1.5) and the definitions of d; > 0, a;, 5; > 0 (defined in (1.10)) we obtain

h2 02(2hv - hual(l + 51))2 ) )
0) = ¢ —hw — | + 4
95(0) 2 ( <4M1 dayp1 (461 — arag(1 +61)?) ’

2 2
a3a101 + B3as — arfraras(l + 61)
> — .
=0 (7 ( arp1(461 — agas(1 + 61)%) o) =0

Combination of the above inequalities and the continuity argument yields that there exists
€1 > 0 such that g;(e1) > 0 hold for i = 1,2,3. Thanks to Lemma 2.2 with

a=py — &1, b=a1(1+51), c=—dh,,
d= 51 a;‘;l — &1, e = —(52h,u, f = —(52hw — €1,
z = u(t) — u*, y = v(t) — v, z=w(t) —
we obtain (2.6) with €; > 0. Lastly we will find &5 > 0 satisfying
(2.7) L(t) < —82/ |Vw|?.
Q

By virtue of the definition of d2 > 0, we can find d3 € (%&W 1) Noting that
X; < 0 (from (1.8)) and then using the Young inequality, we have

Q U Q u

< X1(0)2u*2(1+61) |V'Ll,|2 dz6203 / Iv |2
- 4d30203 a u? 1 + 61

and
0*51%/Mvv.ngxz(O)v*&alM/ Vo Vol
agli2 Jo v

Qg b2 v
<X2(0)2v*251(1+51) arpn )’ |Vv|2 d36165 /IV 9
- 4d3d Qg s q U2 1—|—5
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Plugging these into (2.5) we infer

. x1(0)*u*(1 + 41) |Vul?
< _ _
Laft) < —u (dl 435,05 0 2

ws 011 ( a1pax2(0)%v*(1 + 51)) [Vo]?
—v*H dy — 2
Qaft2 4dzaz 202 Q v

01 + 03 2

We note from the definitions of 3 > 0 and 43 > 0 that
_ (02w (1+61)

d
! bty O
dy— a1 x2(0)°v* (1 +41) -0
ddgas s
and
01+ 03 _ 1— 45
146 1448 "
Therefore we obtain that there exists g5 > 0 such that (2.7) holds. Combination of (2.4),
(2.6) and (2.7) implies the end of the proof. O

Proof of Theorem 1.2. We let fi(t) := [,,(u—u*)?+ [,(v—v*)*+ [ (w—w*)? > 0. We
have fi(t) is a nonnegative function, and thanks to the regularity of u, v, w (see Theorem
1.1) we can see that fi(¢) is uniformly continuous. Moreover, integrating (2.3) over (1, 00),
we infer from the positivity of Ey(t) that

/ T hwd < e < .
1 €

Therefore we obtain from Lemma 2.1 that f(t) — 0. O
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