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Abstract

We deal with stationary scattering problems for elastic wave equation with a free boundary
condition in a local perturbation of the three dimensional half-space. Applying the method
of Agmon-Hérmander, we show that all solutions to the stationary elastic wave equations in
the Agmon-Hérmander space are characterized in terms of the generalized Fourier transform
associated with the elastic operator. Moreover, we investigate asymptotic properties: a uniform
asymptotic expansion of the solutions in the averaged sense and representation of the S-matrix.
Our expansion describes the behavior of body waves and Rayleigh surface waves in the same
topology.

1 Introduction

A basic issue in the scattering theory for partial differential equations is to analyze relations be-
tween asymptotic behaviors of solutions at infinity and their Fourier transforms. In particular, the
following problems are focused in the stationary scattering theory. Given a self-adjoint operator L
associated with the PDE of mathematical physics :

o Construct the Fourier transformation.
o Describe the set of solutions to (L — A)u = 0 in terms of the Fourier transform.
o Expand the resolvent R(\ £i0) of L at spatial infinity.

e Expand the solutions to (L — A)u = 0 at spatial infinity.

The results also play a key role in inverse scattering problems.

An appropriate method to deal with the above problems has already been established by Agmon-
Hérmander [1]. Introducing a Besov type function space B and its conjugate space B*, they showed
that all solutions in B* to the equation (Py(D)— A)u = 0 are characterized by the Fourier transform
restricted to the characteristic surface {£; Py(§) = A}. This result was extended to two-body



Schrodinger equations (Yafaev [21]), three-body Schrédinger equations (Isozaki [6]) and Laplacians
on non-compact manifolds with applications to inverse problems (Isozaki [7] and Isozaki-Kurylev-
Lassas [10], see also Isozaki-Kurylev [11]).

We are interested in an elastic wave equation uz; + Lu = 0 with a free boundary condition in
€  R3 which is a local perturbation of the half-space R3, where

1 8
Iu=4-——5"""Z,.
U= 7500 2 g7
J=t 1<i<3
Here u = t(uj,us,us) is the vector displacement in 2, p(x) > 0 is the density of £ and the stress
tensor o;;(u) has the form

ai(u) = A(x)(V - u)dy; + 2u(x)€ij (u),

where A(x) and p(x) are Lamé coefficients and £;;(u) = (8;u; + 0;u;)/2 is the deformation tensor.
This equation has been investigated as a simple model describing the seismic wave propagation (see
eg. [2]).

Time-dependent scattering theory for the elastic wave equation in the half-space have been
investigated by Kawashita-Kawasita-Soga ([14], [15]). They constructed translation representations
of the Lax-Phillips type for the elastic wave equation in the half-space ([14]) and developed a
scattering theory of the Lax-Phillips type for the elastic wave equation in a perturbed half-space.
A representation of the scattering kernel was given in [15]. By using the representation, Kawashita-
Soga [16] studied a connection between the singular part of the scattering kernel and singularities
of the Rayleigh surface wave passing through the perturbed boundary.

With regard to the stationary scattering theory for the elastic operator, although some results—
stationary scattering theory in the weighted L? space (Dermanjian-Guillot [3]), eigenfunction expan-
sions in stratified media (Shimizu [19]) and existence and uniqueness for the problem of diffraction
by an elastic wedge (Kamotski-Lebeau [13])—are known, the characterization of the solutions in
B* has remained unclear. Moreover, few studies have focused on the asymptotic expansion of the
solution uniform with respect to directions. This uniformity is crucial to observe the behavior of the
solution near the surface. However, the solution possesses the anisotropy in its spatial asymptotics,
which causes a difficulty in deriving the uniform asymptotic expansion.

As is well-known, the solution to the elastic equation is composed of (i) body waves, i.e. P-waves
and S-waves propagating inside the body, and (ii) surface waves, i.e. Rayleigeh waves, propagating
along the surface (Guillot [5]). Therefore, the generalized eigenfunctions for the elastic operator L
in Q are written as a sum of plane waves: incident P-waves and their reflections, incident S-waves
and their reflections and Rayleigh surface waves (see [3]). In their asymptotic expansions, therefore,
it is expected that the expansions of P-waves and S-waves (the body waves) involve spherical waves
of the form e*ivVAr /7, where A > 0 and 7 = |x|, x € R3. On the other hand, the expansions of the
Rayleigh surface waves involve spherical waves of the form e™*3 eiVAn. /+/Tx, Where r, = |z,| and
z, € R2. Here we used a notation R3 > x = (z4,23), 2+ = (21,22).

This is similar to the multi-channel scattering property appearing in the quantum mechan-
ical many-body problems, and in [6], the asymptotic expansion of the resolvent of the 3-body
Schr”odinger operator is obtained in B-B* spaces. One can compare the 3-cluster scattering to the
body wave and the 2-cluster scattering to the surface wave. This suggests us to use the same idea
for the elastic equation.



Here, let us mention a difficulty in dealing with the body wave due to the reflection. In the case
of the half-space Ri, it is known that the reflected body waves have different behavior in each of
the following regions:

2 1/2
]Egvz{:z::(z*,:c3)€Ri;0<x3< (Z—g—l) |.1:*|},
S

02 1/2
Egy = {w = (z4,23) € R3; 23 > (c—§ - 1) | p -
S

For example, the reflected SV-wave generated by the incident P-wave does not travel in ]E%V. This
phenomenon suggests that the asymptotic expansion of the reflected SV-wave vanishes in ]E%V and
is described by the spherical wave of the form etivAr /r in Egy.

As such, the generalized eigenfunctions for the elastic operator in IR;’_ have anisotropy in their
asymptotic expansions as |x| = oco. The difficulty in the uniform asymptotic expansion and the
characterization of the solution results from this anisotropy of the solutions.

This paper presents a characterization in the Agmon-Hormander space B* of the solutions to
the stationary elastic wave equations in terms of the Fourier transform associated with the elastic
operators in R?‘,_ and . Our main results are :

¢ Limiting absorption principle (LAP) on B-B* space.

¢ Uniform asymptotic expansions averaged in B* of the resolvent.

o Construction of the generalized Fourier transform for the operator L.

¢ Characterization of the set of solutions to (L — A\)u = 0 in terms of the Fourier transform.

e Asymptotic expansion of the solutions to (L — A)u = 0 at |x| — oo and representation of the
S-matrix.

Our expansion of the solutions describes the behavior of body waves and Rayleigh surface wave
in the same topology B*. A technically difficult part of this study is to analyze the resolvent of the
elastic operator L because generalized Fourier transform for the operator L has singularities along
the cone OEgy. We overcome the difficulty by applying the classical stationary phase method (c.f.
[17]) and idea used in [6]. This method will be applicable to analyze waves propagating along some
surface boundaries (e.g. Stoneley wave).

1.1 Elastic operator in a perturbed half-space

Let K C R® be a bounded closed set and Q_ be a bounded open set in R3 . We consider an elastic
solid  C R3 such that

an{xeR? x| >R} =9n{xeR}; x| >R},

Q=R}\K)u,
where R > 0 is a fixed constant and R$ = {x € R3;z3 > 0}. We assume that { satisfies the cone
condition.

Let W*P(Q2) be the usual Sobolev space of order k in LP(R). Suppose that the Lamé coefficients
A(x) and p(x), and the density p(x) satisfy the following:



(A1) X, p, p € WLo(Q).
(A2) There exist positive constants m and M satisfying
0 <m < A(x), p(x), p(x) < M
for x € Q.

(A3) Let \g and po be the two Lamé parameters in a homogeneous, isotropic, elastic half-space.
We denote the density of the elastic half-space by pg. Suppose that

A) =X, u(x)=po, p(x)=po
for x € Bg = {x € R% |x| > R}.
(A4) There exist positive constans C' > 0 and a > 0 such that
™ DZ(A(x) = Xo)| < C
for |a| <1 and x € Q.

‘We consider an inhomogeneous isotropic elastic medium which occupies the perturbed half-space
Q. As is well known, the stress tensor o(u) = (03;(u))1<i,j<3 is given by

aij(u) = AX)(V - w)bi; + 2p(x)Ei;(w)

and the deformation tensor £(u) = (£;;(0));; ;<3 is given by

_ 1 [ Ou; 6’ulj
&ijlw) = 2 (axj + 82,‘) ’

where d;; is the Kronecker’s delta and u = *(u;(x), u2(x), u3(x)) is the displacement at position
x € Q.
Put

1 < a
Lu); = ——— ) ——o0;j(u).
( ) ,o(x) ; 327_7‘ 3( )
Consider the elastic operator
1.
Lu = 5 divo(u) = {(Lu)i}i=1,23

with a boundary condition o(u)v|gn = 0, where v is the exterior normal at x € 9Q. Here the trace
o(u)v|gn = 0 means the following generalized sense:

[ ewsmot)dx = [ {307 w)(T-9)+ 20080 (0)65 () dx =0 (L1)
Q Q

for u € HY(R,C3%) N L*(Q, £,C?) and v € H'(, C3), where

L9, £,C3) = {u e L*(Q,C3); Lu e L*(Q,C?)}



and H™(Q, C%) = Wm2(Q, C3).
As in [3), elastic operator Lu = Lu in L%(2, C3, p(z)dz) with a domain

D(L) = {u e H}(Q,C3 N L}, £,C3); o(u)r|so = 0}

is a positive self-adjoint operator, the spectrum o(L) is [0,00), continuous spectrum ocont(L) =
[0,00), and continuous singular spectrum os.(L) = @. In addition, the elastic operator L has no
positive eigenvalues embedded in (0, 00) under the assumptions (A1), (A2), and (A4) (see Sini [20]).
Thus the absolutely continuous spectrum oac(L) is [0, 00).

1.2 Main results

Before stating our main theorems, let us introduce some notations. Put Bg = {x € R3, |x| < R}.
Let us define the B-B* space in Q as

B=B(Q,C% ={uc L (2C%; |uls < oo}

with

(o]
lalls = > 2l 2y, = {x €R®;rjm < [x| <r;}NQ,
=0

where r; = 27(j > 0), 7_1 = 0. Then the norm of the dual space B* is equivalent to

1 1/2
u € B* < ||ul[g~ = sup (—] |u(x)|2dx) < 0.
r21 \ R Jongy
The closure B of L2(2) in the norm of B* consists of functions u(x) satisfying

1 2,
}%1_1)!0103; . [u(x)|*dx = 0.

Note that the relation between the space B and the weighted L2-space is as follows:
L»*cBcLP?cl*c > cBycB cL>®
for s > 1/2. Here the weighted L? space L>° is defined as
u e L¥(Q) <= [lulls = |1 + [x])*ull 20)-

Let 82 = {x € R3,|x| = 1} and §! = {z. € R?|z.| = 1}. The following result is for the
construction of the generalized Fourier transform.

Theorem 1.1. For A € (0,00), there exists a bounded operator
FQ) : B— h:=[L3S2)]° x L3(SY)

having the following properties:



1. F(X) defined by (F£)(A) = F(A)f is uniquely extended to a partial isometric operator with
initial set Hac(L) ( the absolutely continuous subspace for L), and final set

L*((0,00); L*(S%); p(Ap)dX)

L2((0,00); L2(S%) ; p(As)dA)

L2((0,00); L*(S%); p(As)dA) |’
L2((0,00) ; L*(SY); p1d))

"-‘Z:

where p(Ny) = B/Tf ,#=P,S and p1 = 3. Moreover F diagonalizes L:

(FLE)N) = MFH(N), YA€ (0,00), Yfe D(L).

2. For f € Hae(L), the inversion formula holds:
N
f=s— lim / FoO) (Frf)(N)p(p) dA
N—oo J3 /N

N
£ 3 s gm [ RO BEONR0)
b=SV,SH

N
+s— lim / FrO)*(Frf)(M)p1 dA,
N—oo 1/N

where Fp(X), Fsv(A), Fsu(A), Fr(X) are the components of F(X).

3. Let us denote the set of bounded operators from a set A to a set B by B(A,B). Then for
A € (0,00), we have F(A) € B(B; h) and F(A\)* € B(h;B). Moreover, the operator F(\)* is
an eigenoperator of L in the sense that (L — \)F(A)*f =0 for any f € h.

We next state a result of the asymptotic expansion of the resolvent. In order to state the result,
let us define vectors dp(w), dsy (w) and dgy(w) as

w1 ] ) @1 ]
dP(w) =w={w| € S%., dsV(UJ) = ﬁﬁ.[ wa | dSH(w) = rxl:[

s [

for w € §2 and define dg)(y), £=1,2, as

—iVl —iVléRg
dg) =1 i |, dg) (v) = | ivaérs
CRP -1
for v € St

For a vector a = {a;}i=123 in R3, we put & = *(a1, a2, —as). Then, vectors dp, dsy and dgn
‘are orthonormal bases in R3.

It should be mentioned that for a direction of the wave propagation w = (wx,w3) € Sﬁ_, vectors
dp(w), dsv(w) and dgu(w) are expressed as directions of P-wave displacement, SV-wave displace-
ment, SH-wave displacement, respectively.



Let ¢p, cg, cr be propagation speeds of P-wave, S-wave and Rayleigh wave in Rﬁ_. In what
follows, the asymptotic relation u ~ v means that

lim % / ) V()P dx =0, Bf={xcR%; x| < R}. (1.2)
BR

R—o00
Theorem 1.2. Let A > 0. Then the following follows:
1. For any X € (0,00), the limit
lim(R(\ + ie)f, g) := (R(A £ i0)f, g), Yf,geB

£

exists.
2. There exists a constant C > 0 such that
[R(A £ i0)f||p- < Cliflls, A€ (0,00).

3. For f € B and A € (0,00), the boundary value of the resolvent of L admits the following
asymplotic expansion

giVAr/e eVar/e
R(A +40)f ~ C (fp()\)f)dp(so) + C

(fsv()\)f)dsv(@
)\r
+ C (fsa(/\)f)dsaﬂp)
et /\r. /cr
2 ™33 By(Fr(VE)dR (¢4),

=

where C = ™/4(2p0)~Y/2 and, 7, and Ej are constants depending only on cp, cs and cg.

This theorem shows that the resolvent R(A +40) is expanded in terms of the generalized Fourier
transform F (), in addition, its expansion describes the behavior of Rayleigh surface waves near
the boundary.

We finish this subsection by the characterizing the stationary B*-solutions to (L — A)u = 0 and
giving the asymptotic expansion of the B*-solutions. In order to state the results, let us introduce
a function space h(\):

h(X) ={p €h : [lpllpp) <},
||‘P||3,(,\) = P(/\P)||90P||§2(53_ )+ 9(/\s)||¢sv||§2(si )
+ P(/\S)"SOSH”%z(g) + Pl"S"R”%ﬂ(Sl)y

,b=P S and p; = 5. We note that

o0
Il = /0 £, 5 4.

where p(\,) = 2

Cb



Theorem 1.3. Let A € (0,00). Suppose that u satisfies (L — A)u = 0. Then u € B* if and only if
u=F(A)*O for some © € h(}).

Theorem 1.4. Let A € (0,00). Suppose that u € B* satisfies (L — A)u = 0. Then there exists
£ = (f5 (i) &) (i) }(li)) € h(}) such that

SV SH’
w) 2 7 () + E2 i a0+ E0T ()
g f/_/ -ﬁfwsmf,‘;)d%)(%)
- 0400 - S a0 - S A 0)
=1

where dg_) () = dy(—s, 3) (f = P, SV, SH) and, 7, > 0 and E; are constants depending only on
¢p, cs and cg. Moreover,

X Tx
r = |x|, 30=;, T = |24, ‘f’*=_,r
*

for R3 > x = (x4,23). Furthermore, there ezists a unitary operator S(A) on h()) such that
£ = (A,

The operator S()) is called the S-matrix. It will be shown that S(A) is unitary equivalent to
the S-matrix constructed by means of the time-dependent method. Remember that body waves
are three-dimensional spherical waves propagating in the elastic body €2; Rayleigh wave is a two-
dimensional spherical wave propagating along the boundary and it exponentially decays in a di-
rection to z3. This is a reason that the asymptotic analysis of the solutions to the elastic wave
equation is difficult. Our theorem shows that the leading term of the asymptotic expansion of the
B*-solutions is described as a sum of spherical P-waves, S-waves, and Rayleigh waves in the same

topology (c.f. [6]).

1.3 Structure of this paper

In section 2, we summarize our results on the asymptotics of solutions to stationary elastic wave
equation in R3. After introducing generalized eigenfunctions for elastic operator Lo in R3, the
generalized Fourier transform for Ly are constructed. We show that this Fourier transform is a
bounded operator from B to h. In addition, applying the stationary phase method on the sphere,
we derive an asymptotic expansion of the Fourier transform in B*.

Next by using the Mourre theory, the limiting absorption principle in the B-B* space is proved. In
order to obtain asymptotic expansions for the resolvent Ry(\+10), we apply the uniform stationary
phase method (e.g. Lewis [17]) to integral representations for Rp(A + 0). Because the generalized
Fourier transforms have singularities a.long the cone dSgy, the usual stationary phase method is
not applicable.

From these results and the stationary scattering theory, we establish the characterization of
B*-solutions to (Ly — A)u = 0 and we give an uniform asymptotic expansion of the B*- solutions.



Asymptotic behavior in a neighborhood of the boundary 6]E°SV is described in terms of a Fresnel
type integral. As was done by Lewis [17], this method is valid to obtain a leading term of the uniform
expansion of an integral with a stationary point near the endpoint of the integral. However, in our
case, the remainder terms of the expansion become infinite at the boundary BlEgV. The introduction
of B*-space makes it possible to remove this divergence difficulty.

2 Elastic waves in R}

In this section, we study asymptotic properties of the solutions to stationary elastic wave equation
in a homogeneous, isotropic, elastic half-space R?;, = {z € R3; 23 > 0} with a free boundary. Let
po be the density of elastic half-space R?,,. We denote the two Lamé constants by Ao and pg. Note
that body-wave speeds cp and cg in elastic half-space ]Ri are represented as

c?,:AO-I-Q#D, cé:ﬂ.
Po P0o
‘We consider the elastic operator
Lou=-20FH0gg gy B4y
0 po

in R3 with a domain
_ 1p3 3. 0 -
D(Lo) = {u € H'(RE, C%); Lou € Ho, a°()o| gy =0},
where the stress tensor 0°(u) of the elastic half-space R3 is a 3 x 3 matrix with the (ij)th entry
a% (a) = Xo(V - u)dij + 2p0&;5(n)

and vy is the exterior normal at x € 9R3. Here we used a notation Ho = L%(R3, C3, ppdx). Note
that the trace o°(u)wo| sr3 = 0 means generalized sense (1.1). As in [3], the elastic operator Lo is
¥

an absolutely continuous positive self-adjoint operator in Hg whose spectrum is [0, co).

2.1 Generalized eigenfunctions in R}

Although generalized eigenfunctions for Ly were given in [3], we use representation of those given
in [12] due to convenience for our study. In order to describe the generalized eigenfunctions, We
introduce some notations. Let {j,£} = {P,S, R}. The ratio of speed ¢; to speed ¢, is denoted by
cje = cj/ce. For k € RY, we put k = |k|w,w € S2 and
1/2 1 2
je(k) = (cBlkI? = ka[2) " 73e(w0) = ( — )

€)= (1kul? — celkl?) Y Ajglws) = (Junl® - cje)‘/z,

where wy = ]’% Transformations (j, and g:sp are defined as

o= (5) = (i)
{sp:iw= (Z;) - (W;:Ew*)> )
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We note that e
dP(CSP(w))Z( o )), &SV(CPS(W))=( Tiom w*).

'YSP(W* —|w*[

Letting C, = (2m)~3/ 2p 1/ 2, generalized eigenfunctions ®p, ®gv; 8%y, Bsy and P are given as
follows:

1. For (x,k) € R3 x R and w = k/[K|,

@P(x’ k) _ Cpeik"z‘ {e—ikamap(w) + eﬁps(k)xsng)(w)asv(cps(w))

—ermnw)dpw)],
where
Aw|(Bs — 2]ws]?)ws
) = (e =)

(chg — 2wa[?)? + 4fws Pwzyps(wi)’
(chg — 2|ws[*)? — 4w Pwzyps(wi)
(chg — 2|ws[?)? + 4w 2wz yps(ws)

1@ (w) =

2. For (x,k) € R} x Egy and w = k/|k,
By (x, k) = Cpe' {e—ikmdsv(w) +emp (w)dsv (@)

+ei£sp(k)ﬂ=3”g),(w)dp((sP(w))} )

where
7 (w) = (1 = 2fwu|?)? — 4w *wsysp(w)
v (1 — 20wa[?)? + 4w Pwzysp(w)’
3 4 Wi 1-2 W 2 w3
29 ) = Al = 2

T (1 20w ]?)? + 4w Pwsysp(ws)”
3. For (x,k) € R} x E};, and w = k/[K|,
8%y (x,k) = et {emRmdgy () + 579 ) (w)dsv ()
+e~65p M9 ()dp(Csp() }

where
7?(5) W) = (1 — 20w [*)? — difws [PwsVsp(ws)
v ) = 200, P + dilw Paossp ()
(8) (w) = 4w (1 — 2Jwa|*)ws
Nsv (1 — 2|ws[?)? + 4i|ws 2wz vgplws)”

4. For (x,k) € R} x R} and w = k/|k|,

Sgy (x, k) = Cpeik. T (eik:;::s + e—ik;;za )dSH (w) .
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5. Let cp be the Rayleigh wave speed. Note that cg < ¢g < cp. For (x,p) € R} x R? and
v=p/lpl,

Dr(x,p) = QL:IPI%eip'I* { Rle—lplénpzsdg)(y) + Rze—lplﬁnsmadg)(,,)} ,

where
Ry =2-ckg, Ry=-2gp

and N is a normalizeing constant such that

00
4x? fo W r(x, p) Ppodas = 1.

Here we used notations Zry = /1 — ¢k, (f = P, S).

A function ®p describes reflection of plane P-wave at a free surface SR?,’_. More precisely, the
function ®p consists of a sum of

incident P-wave: e ¢ #s%3dp(w), reflected P-wave: —-eik’zn}@ (w)dp(w),
reflected S-wave: e+ Ps®asy 3 ()i oy (Cpg(w)).

Similarly to ®p, functions ®gy and gy describe reflection of S-wave, in additlon, ®p represents
Rayleigh surface wave. Here we should mention that the function e« e‘esP(k)%n v(w)d p(Csp(w))
given in the representation of <I> describes reflected P-wave propagating in a region IE%V and ex-
ponentially decays in a direction to z3. In other words, the reflected P-wave generated by incident
SV-wave in the region E%;, travels along the boundary; this wave is termed evanescent wave.

2.2 Generalized Fourier transform for L,

We denote the characteristic function of a set A as x(A). As is shown in [3], letting
UF )0 = [ F260 R uGms,
+
U009 = [ {x(Bsv) B3y T+ x(By) 88, e 1| - s,
+
U 0)00) = [ FsnGe k) - ulx)podx,
+
UFa)) = [ el - uixmdx
+

for u € CP(R3, C3), then operators Ug (b = P,SV, SH) are extended as a partial isometric operator
from Ho to L?(R3). Similarly, Uf is extended as an partially isometric operator from Ho to L%(R2).
Thus the Fourier transform Uy associated with the elastic operator Ly can be defined as

Uou= YU, U5V u, U u, U, u € Hyp.



The Fourier transform Up is a unitary operator

Us : Ho — Ho — LAR3;C%))° x L3R C?)
such that
& k[2U u
&IK*UFVu
ci|k|2UsHu
chlpl*Ugtu

Uo (Lou) =

for u € D(Lyg) (see Theorem 3.6 in [3]).
We now consider the restriction of the Fourier transform onto the upper half-sphere. Let us
define operators Ug (# = P,SV,SH,R) as
(U WD) = UsH(VApw),  [UgNDW) = U (VAsw) wesi, b=S5V,SH,
UgFWH) = (UsH(VAry), veSs,
where A > 0 and /X = v/A/¢j. These operators UA()) are well defined for f € C§°(R%,C?). The
operator Ug()\)* (t = P,SV,SH, R) formally adjoint to Ug (X) is given by the formula

UFO)"1) () = [ ®rlo, v/Apu) ) s
(UFO)9) ) = [, Brlx,v/Xa)o(w) dv

for any f € L?(S2) and g € L*(S'), respectively. In the same way, operators U§" (\)* and U ())*
are given.

The following statement shows that the vector-valued operator Up()) and Up(A)* can be extended
to bounded operators from B to h and from h to B*; we denote them as B(B; h) and B(h; B*),
respectively.

Theorem 2.1. For any A > 0, we have
Us(X) € B(B; h), Up(A\)* € B(h; B*),

where P
f
_ 1Y
Ug(V)f = UﬁgH()\)f ’
Ug(ME
forf € B and
gp
G = (UF 00", USY (0%, U 00", UE ') |
9r

= Y U™

§=P,SV,SH,R

12



for g € h. Moreover, following estimates hold for A > 0:
TS Vel sy < CAT2 £, (2.1)
UM llzar) < CX(Ells, (22)
and
TS Flise £ CAT2) £l agsays
IEN) gl < CA 4l gllzas,
where the positive constant C does not depend on .
A standard argument allows us to prove
Theorem 2.2. For f, g € B,
(£,9) = p(X) (Uo(N) £, Uo(N9)p, »

where p(My) = 32%, §=PSandp = 3.

We next give an asymptotic expansion for Up(A\)*g. Let us introduce some notations. We denote
a reflection operator J as

7. 1(@) = f(=pusps) for p € S,
“gv) — g(-v) for v € SL.

We define the scaling K¢, {k,£} = {P, S} as
(Kje9)(p) = 9(pje) = g(ciepn, /1 = lejespul?)

for ¢ € Si. Remember that constants Ng, R1, R and &gy, f = P, S are introduced in section 2.1.
We set

02 1/2
Ssv = {w = (we,w3) € 85 ; wg > (gp - 1) leosl o
s

2 1/2
Sy = w=(w,,,w3)eS_2,_;0<w3<(£—1) wa] ¢ -
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Theorem 2.3. For g = *(gp,gsv,9sH,9r) € h and for A > 0,

C ivApr
Uo(A)*g = \/—/’\’—‘;: CT {(ng’)gp)(tp) +Epn$ ()gsv (<psp)} dp(p)

C e’i AsT
\/;‘—‘; - {X(SSV)C?Jsﬂ?‘)/(w)fP(wps)

+ (x(Ssv IR ) + xS (9)) Fsv ()} dsv ()

C iv/AsT
+ T (osndsn) (¢)

—+

ei RT*

2
+D e VARTE R, (g a9 ()
; VT ¢ ( RER )

T e~iVApr . T e—iVhsr
ol T (gpdp) (¢) + =225 ——J (gsvdsv) (¢)
Vap T Vis T

m e~iVAsr . _ 2 e~ VARTs v ®
_~po_ J d D “VARTTI R, T d %)
+ Do T (9smdsH) (p) + ; N Ry (gR R)(<P)
where
C e-iﬂr/? D e—in-/4N _ B
po = \/27r—p0; _’E R T1 = CRP, T2 =CRS.

The proof is based on the following stationary phase method for L?-functions on the sphere (see
eg [7]).
Lemma 2.1. Let u > 0. Then for any p € L*(S"1),

tipzw N ei,ur N _ e—i,ur .
[ et do = O molei) + O S ) (23)

where r = |z|, & = z/r and C = e~(=D7i/4(27)(n—1)/2,
Lemma 2.2. Assume that a(x,w) € CO(R™ x S*1) satisfies

|0g85a(z,w)| < Capla) ™.
Then for any ¢ € L2(S™1),

eim’ R R
(M)(T)/za(x’ £)p(2)
. e—i;.tr R R
+C (—WEG(% —2)p(-2), (24)

/s"-l eFWa(z, w)p(w) dw ~ C

ur

where r = |z|, & = z/r and C = e~ Vm/4(2)(n=1)/2,
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2.3 Uniform boundedness for the resolvent and asymptotic expansions

In [3], the limiting absorption principle (LAP) for the resolvent of the elastic operator Lo was
proved in a weighted L? space, by passing to the partial Fourier transform, and reducing the issue
to a boundary value problem for a 1-dimensional operator. In this subsection, we prove LAP by
adapting Mourre’s commutator calculus to the boundary value problem.

Theorem 2.4. Let Ry(z) = (Lo — 2). Then we have
1. For any X € (0,00), the limit
lim(Ro(A + ie)f, g) := (Ro(A £ i0)f, &), "f,geB
exists and Ro(X % 0) € B(B; B*).
2. There exists a constant C > 0 such that

[Ro(A £0)f|s- < Cliflls, A€ (0,00).

We next show that the resolvent Ro(A =% ¢0) is expanded in terms of the Generalized Fourier
transform Up()). Each terms of asymptotics correspond respectively to the outgoing body waves
(P-wave and S-wave) and Rayleigh surface waves.

Theorem 2.5. Let A > 0. Then for any £ € B we have

ei\/ Apr

(Ro(A + i0)f)(x) ~ C(P) (UF (Nf)dp)(p)

.
ivVAgr N
+C(8) T — (U WDAsv)(v)

ei\/AgT

+ O (WET D) dsn)(v)

2 VAR
€
+CR)Y —=
=1 *

Tx
e~ VAreas Re((Ug?(A)f)dg))(%)’

where o = X/, T = [X|, Ox = Tu/Ts, T» = |24| and

=1 [Ty = _ 1 fm . i
C(b)"cf 2,00’b_P,S’ C(R)—c%\/;./\fﬁe .

Remark 1. Taking complex conjugate, one can easily obtain the asymptotic expansion of Ry(A—i0)f.

The strategy of the proof is as follows:
o We split the resolvent Ry(z)f into two parts:
Ro(2)f = ®1(Lo)Ro(2)f + ®2(Lo)Ro(2)f, z=A+1ig,e>0,

where ®; € C§°(R) is a cut-off function with support in a neighborhood of Rez = ); a function
Py is defined as &3 = 1 — P;.

15
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o We show that
@2(Lo)Ro(2)f € By

for any f € C§°(R2; C3). The proof of this estimate will be found in [9]

o In order to evaluate the leading term of the asymptotic expansion of Ry(\ + 0)f, we rewrite
the resolvent Ry(z)f into the following integral form:

R(x)f= Y, By,

t=P,SV,SH,R

where
Bea0)0) = { iy (eDe (CUIL?“‘) )}
RS I W—(Jm( ) ) (%) dps
B @06 = { 05"y (—‘E—"I’%?fﬂ) beo
C

- ijw (Jsvz(#)fsv)(x)

1= 70 C#

SH
(Bsu(2)f)(x) = { wsHy (%) } ®)
3 o0 ”2 .
=Cny, /0 Z%:‘T:;(JSHJ(#)fSH)(X) du

BaI) = { W (M)} x)

(cklp® - 2)
2 oo .
=S R [ e ) 09
=1

and Jy;(z) are integral operator over the partial sphere given in subsection 2.2. Here we
abbreviated Ugf as fy.

In order to give asymptotic expansions of By(z)f, we first evaluate the asymptotic expansion of
Jie(2). Next we apply the residue theorem to the integral and take limit as ¢ — 0 by using the
uniform estimate on the resolvent. In order to evaluate the asymptotic expansion of Jy¢(z), we use
a uniform stationary phase method in [17] instead of the usual stationary phase method because
" we need to obtain the asymptotic expansion where the stationary point lie in a neighborhood of the
boundary of the integral regions.

2.4 Asymptotics of solutions in R3

Following the stationary scattering theory (e.g. Isozaki [8]), we arrive at the characterization of
B*-solutions to Lou = A\u.
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Theorem 2.6. Let A > 0. Suppose that u satisfies
(L() - )\)u =0.

Then u € B* if and only if
u=Up(\)*e

for some © € h.

From Theorem 2.3, we obtain an asymptotic expansion of the B*-solution of (Lo — A)u =0 in
terms of spherical waves. Recall that ¢, = (o1, ¢2), where ¢; are the components of the unit vector
¢ to the half-sphere S2 and that _ € S%, and ppg € S2 are defined as

o =(—pxp3),  ©Ps = (CPSPx [cPSPH))s

similarly for wgp.

Corollary 2.1. Let A > 0 . Suppose that u € B* satisfies Lou = Au. Then we have

iVApT
wz) = %—e - {(nﬁf)gp)(so) +023P7?§°2)(‘P)QSV(SOSP)}dP(<p)
ivAgr
* 55\_; - r : {X(Ssv)ésﬂgs‘)/(so)fp(%w)

+ (x6sv IR ©) + xS f5v ()} dsv ()

C,, Vst
+ \/3"_; — (9sndsn) ()
2 _iv/ART.
€ - T
+DY" N eVArTezs (gadg)) (4)
=1 *
C, e~i/Xpr . C,y € WAsT
—_A”; J (QPdP) (¥)+ \/—/\% —J (gsvdsv) (¥)

C_ —ivAsr . 2 — i/ ART
+—el J (9sudsn) (9) + DY, eTe_‘A_RT’xSRzJ (ngg)) (ps)

VAs T =

fO'I" some (gP, gSV’gSHng) € h; where
e—im/2 . emim/4 -
On = Vomg D= tm  m=fm m=ins

This result shows that any B*-solution of Lou = Au is approximated in terms of outgoing
spherical body waves and Rayleigh surface wave, and incoming spherical body waves and Rayleigh
surface wave; outgoing P-wave is described as a sum of reflected wave generated by the incident P-
wave and reflected wave generated by the incident SV-wave, and outgoing SV-wave is also described
as a sum of reflection waves. This is consistent with the phenomenon known as the seismic wave
propagation.



Our next result provides an asymptotic representation of the B*-solution uniform in a neigh-
borhood of the critical circle 8Sgy. We see that the smooth transition near the critical circle is
described by the Fresnel type integral Fr(t):

o0 i o2
Fr(t) = / e " ds.
t
We set

¥(s,0) = lpsls + p3V1 — 82, = (ps,p3) €S

a(|e«|) = sgnlcsp — lex) V1 —Y(csp, ), B(s) =V1-s,

zp(s)  ,
Fe(z,s) = / e~ dt
za(s)

for 0 < s < 1, where sgn(z) denotes the signum function.

Theorem 2.7. Let A > 0 . Suppose that u € B* satisfies Lou — Au = 0. Then for some
(9P, 9sv, 9sH, 9R) € h, we have

= Var
% C T b (~vinallpaD)) o (@)ar(ees)

+ (Fr (—‘/;’\1/4a(|“’*i)) ”a(gz\;("o) + gt(\/; )‘1/4: 90*)??(5) (90)) st(so)} dsv ()

eiVAPT
Lo ¢ { (nf9p)(¢) + ke (£)gsv (vsp)} dp(p)

Cpo —\/—'r z3
+ 7= s (QSHdSH)(‘P)'l'D; \/r—* RTE Rg( Rd )(%)
C~ e~VApr R
+ \/,'\%e J(gpdp)(y)
F e—i AsT
+ \/Tls 24 (—ﬁﬁs/ 4oz(lsoaxl)) (gsvn$ydsv)(®)
Cr e~VAsr—————
+ ﬁ : Fe(vVird* 0u) I (gsvdsy) ()
Cp € \/Tsr
+ \/—- ——J(gsnds)(¥)
—a\/_r‘
DY S———eVAannR, (gpd})) (~p.)
> (9ndf?)

where r = |z, ¢ = /7, v = |T|, Px = T4 /T4 and
e—in/2 ein/4

C,Oo = m, C = —7|-CP°

18



Remark 2. Theorem 2.7 implies Corollary 2.1 due to the asymptotics of the Fresnel type integrals:
(v allp.D) = VR iss) +0 (1), r=lal oo
for any fixed ¢ =€ S% \ 8Sgy. Noting that if ¢ € 8Sgy, then a(|¢.|) = 0, we see that
Fe(~VPY a(lpu))) = Fr(0) = G4
for ¢ € 8Sgy, which describes the asymptotic approximation on the critical circle OSgy for the
reflected S-wave generated by incident P-wave. Thus, our expansion describes the complicated

wave phenomenon near the critical circle. It can be also observed that the leading term of the
asymptotic expansion of B*-solution in a neighborhood of the boundary zz = 0 is the Rayleigh

surface wave of the form e~V@sg=iVar. /+/T; the leading term of them away from the boundary.

z3 = 0 is the body wave of the form e~V /r. Hence, Theorem 2.7 gives the uniform asymptotic
expansion with respect to directions.
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