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BOUNDEDNESS OF FUNCTIONS OF SCHRODINGER
OPERATORS ON OPEN SETS

KOICHI TANIGUCHI
DEPARTMENT OF MATHEMATICS -
CHUO UNIVERSITY

ABSTRACT. This paper is a resume of the paper “Boundedness of spectral multipli-
ers for Schrédinger operators on open sets” by Iwabuchi, Matsuyama and Taniguchi.
The purpose is to overview the results in the paper, namely, LP-estimates and gra-
dient estimates for functions of Schrédinger operators on an arbitrary open set of
d-dimensional Euclidean space.

1. INTRODUCTION

This paper is a resume of Iwabuchi, Matsuyama and Taniguchi [15].

Let  be an open set of R%, where d > 1. We consider the Schrodinger operator

d 82
Hy=-A+V(z) = Z

V(z) on L*(Q)

with the Dirichlet boundary condition, where V() is a real-valued measurable func-
tion on ). When Hy is self-adjoint on L%({2), an operator ¢(Hy) can be deﬁned on
L*(2) by

o) = [ (3 dBa, ()
for any Borel measurable function ¢ on R, where {Epg, (A)}\er is the spectral res-
olution of the identity for Hy. This paper is devoted to proving LP-boundedness
of (Hy) for 1 < p < oo, and uniform LP-estimates for @(6Hy) with respect to a
parameter 6 > 0. If Hy = —A on R?, then p(—A) is a Fourier multiplier, whose
LP-boundedness is well-known. In this sense, p(Hy) is a generalization of Fourier
multiplier, and it is expected that its LP-boundedness is a fundamental rule in study-
ing function spaces and PDEs on domains (see [1,4,6,9,14,16,19,23]).

Let us introduce some notations used in this paper. We denote by B(X,Y’) the
space of all bounded linear operators from a Banach space X to another one Y. When
X =Y, we denote by B(X) = B(X,X). We use the notation D(T) for the domain
of an operator . We denote by S(R) the space of rapidly decreasing functions on R.
We denote by x g the characteristic function of a measurable set E. For a self-adjoint
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operator T on a Hilbert space, we denote by o(T") the spectrum of 7. We define the
inner product (-,-) of L?(Q) by

(u,v) :=/u(x)mdx, u,v € L}(Q).
Q2 .

2. MAIN RESULTS
In this section we state the results. For this purpose, we suppose that the potential
V satisfies the following condition:

Assumption A. V is a real-valued measurable function on ) such that
V=V,-V., V>0, VoL () and V_e Kyi),
where K4(Y) is the Kato class of potentials.

Following Simon (see [22, Section A.2]), let us give the definition of K4(Q2) as
follows:

Definition (Kato class of potentials). We say that V belongs to the class K4(S2)
if

¢

lim sup M dy =0 ford >3,
d—2

0 2eQ Jan{[z-y|<r} |z — yl

J timsup [ log(le -y IV (y)ldy =0 ford=2,
Qn{|z—y|<r}

r—=0 zeQ

sup/ [V (y)|dy < oo ford=1.
Qn{lz—yl<1}

\ z€Q

If V satisfies assumption A, then it is well-known that —A + V has a self-adjoint
realization on L2(Q2), and we denote by Hy its realization with the domain

D(Hy) = {u € HY(Q) | VViu € LXQ), Hyu e L2(Q)} ,
where H}(Q) is the completion of C5°(Q) with H'(€)-norm. Moreover Hy is semi-
bounded, and the infimum of o(Hy) is finite. Hence
(Hyu,u) > inf o(Hy)|lull72(0)

for any u € D(Hy). For the details, see appendix A.

We shall prove the following:

Theorem 2.1. Let ¢ € S(R). Suppose that the potential V satisfies assumption A.
Then p(Hy) is extended to a bounded linear operator on LP(SY) for any 1 < p < oo.
Furthermore, the following assertions hold:

(i) There exists a constant C > 0 such that
HSD(GHV)”B(LP(Q)) <C . (2.1)
forany 0 <6 <1.
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(ii) Assume further that V_ satisfies

V_(y) s .
dy < d>3,
2eh /Q Tyt W <Tap-y 7= 2.2)
V. =0 ifd=1,2.

Then the estimate (2.1) holds for any 6 > 0.

Corollary 2.2. Let ¢ € S(R). Suppose that the potential V satisfies assumption
A. Let m be a non-negative integer, and let 1 < p < q < co. Then H{}¢(Hy)
is extended to a bounded linear operator from LP(Q) to LI(SY). Furthermore, the
following assertions hold:

(i) There exists a constant C > 0 such that
4l Ly,
1 H ©(0Hy)|| (e (0,19 (02)) < €O 3G (2.3)
forany0< 6 <1.

(i) Assume further that V_ satisfies (2.2). Then the estimate (2.3) holds for any
6 >0.

Remark. We note that the potential like
V(z) ~ —clz|™ as|z| 300, ¢>0 (2.4)
is excluded from assumption (2.2) on V. The potentials such as (2.4) are very inter-

esting. However, the uniform boundedness (2.1) for any 6 > 0 in Theorem 2.1 would
not be generally obtained, since

lim [le_tHVHLp_,Lp =00
t—=00

for some p # 2 which was proved in [12,13].

Furthermore, we show the following result on gradient estimates for ¢(Hy).

Theorem 2.3. Let p € S(R). Suppose that the potential V satisfies assumption A.
Then @(Hy) is extended to a bounded linear operator from LP(2) to W'P(Q) for any
1 < p < 2. Furthermore, the following assertions hold:

(i) There exists a constant C' > 0 such that
IVo(0Hy)|lsws @y < CO (2.5)

forany0< 6 <1.
(i) Assume further that V_ satisfies (2.2). Then the estimate (2.5) holds for any
6> 0. :

Let us give some known results on Theorems 2.1 and 2.3. When = R¢, there are
many results on LP-estimates for p(0Hy) under the assumption that the potential
is non-negative on R? (see, e.g., [9,11,23]). On the other hand, when the potentials
are admitted to be negative, several results are known; Jensen and Nakamura dealt
with the Schrodinger operator with potential whose negative part is of Kato class
(see [16,17]), and then D’Ancona and Pierfelice also dealt with the same type of
potentials satisfying (2.2) (see [4]). Theorem 2.1 is a generalization of the results on
LP-estimates for p(0Hy) in [4,16,17]. We mention the results in the more general
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setting. There are several studies on LP-estimates for more general operators ¢(L),
where L is a non-negative self-adjoint operator having the property that the integral
kernel of semigroup {e*L};-, has a Gaussian upper bound (see [5,10,19,20]). Among
other things, there is a result on the estimates involving a parameter § > 0; Duong,
Ouhabaz and Sikora proved uniform LP-estimates for ¢(#L) with respect to 6 > 0,
where ¢ € H*(R) with compact support for some s > d/2 (see [5]).

As to Theorem 2.3, the problem is closely related to LP-boundedness of operators
Ve tHv and VH; /2. When V is non-negative, the results of [3,20] imply the estimate
(2.5) for p < 2. On the other hand, the situation of the case p > 2 is more complicated
(see [2,3,7,18,20,21]).

One of crucial tools to prove Theorem 2.1 is Gaussian upper bounds for semigroup
e v In this paper we derive Gaussian upper bounds under assumption on V in
Theorem 2.1. To prove Theorem 2.1, we use amalgam spaces on §2, and show the
estimates for the resolvent of Hy and ¢(Hy). This idea comes from Jensen and
Nakamura [16,17]. Furthermore, this paper reveals that the gradient estiamtes (2.5)
in Theorem 2.3 is derived in a similar way to Theorem 2.1.

This paper is organized as follows. In §3, we state the result on Gaussian upper
bounds for e *v and the outline of its proof. In §4, we prepare two lemmas to prove
Theorem 2.1. In §5, the proofs of Theorem 2.1 and Corollary 2.2 are given. In §6, we
give the outline of proof of Theorem 2.3. In appendix A, we mention self-adjointness
of Hv.

3. GAUSSIAN UPPER BOUNDS FOR e tHv

In this section we shall prove pointwise estimates for the kernel K (¢, z,y) of semi-
group {7V}, generated by Hy. These estimates are fundamental tools in proving
Theorems 2.1 and 2.3. Throughout this section we use the following notation:

- for d > 3
WS Ty iz
and »
Viy
Vv =8su —d for d > 3.
[ ”Kd(n) zeg o |z = yl¢? Y =

Then we have the following:
Theorem 3.1. Suppose that the potential V satisfies assumption A. Then the fol-
lowing assertions hold:
(i) There ezist two constants w > —inf o(Hy) and C > 0 such that

d

z—y|?
0< K(t,z,y) < Ot-Sevte= 5t a.e.x,y €N (3.1)

for anyt > 0.
(i) Assume further that V_ satisfies (2.2). Then there exists a constant C =
Cav > 0 such that

S
0< K(t,z,y) <C -5t a.e.x,y €N (3.2)
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for any t > 0. Here the constant C in (3.2) is written as

(2m) "% ifd>3
C=Cayv=11-IIV-llkum /v -
(47)% ifd=1,2.

In the rest of this section, let us state the outline of proof of Theorem 3.1.

The following lemma, is crucial in the proof of Theorem 3.1.
Lemma 3.2. Suppose that the potential V satisfies assumption A. Let V and V_ be
the zero extensions of V and V_ to R?, respectively. Let Hy and Hy  be the self-

adjoint eztensions of —A +V and —A — V_ on L*(R%), respectively. Then for any
non-negative function f € L%(Q), the following estimates hold:

(e f)(z) 20 aezeq, (3.3)
(e f) (z) < (e_tﬁ"/f) (r) aezxz€Q, (3.4)
(e-ﬂ'fv 7 ) (@) < (e_tﬁV- K ) (@) aeze (3.5)

for any t > 0, where f is the zero extension of f to RY.

For the details of proof of Lemma 3.2, see [15, section 3]. Let us turn to proof of
Theorem 3.1.

Proof of Theorem 8.1. We adopt a sequence {j.(z)}e>o of functions on R? defined by

letting
. 1 [z d
Je(z) = ;]<Z)’ z € R%,
where )
iy
j(z) = Age -1 for |z| < 1,
0 for [z| > 1
with

, -1
Ay = (/ e 1-l=f? dac) )
lz|<1

As is well-known, the sequence {jc(z)}.>0 enjoys the following property:
Je(- —y) = 8, inS'(RY ase—0, (3.6)
where ,, is the Dirac delta function at y € Q. Let y € 2 be fixed, and let K (t,z,y) be

the kernel of e "7~ where we denote by Hy; the self-adjoint extension of —A — V_
on L*(RY). Taking € > 0 sufficiently small so that supp je(- — y) C €2, and applying
(3.3)—(3.5) from Lemma 3.2 to both f and f replaced by j.(- — y), we get

0< / K(t,z,2)j(z —y)dz < / K(t,z,9)j.(z —y)dz aezeQ.
) R4

Noting (3.6) and taking the limit of the previous inequality as € — 0, we get
0< K(t,z,y) < K(tz,y) aex,ycQ
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for any ¢ > 0. Finally, by using the pointwise estimates:

. ayl?
K(t,z,y) < Ct % 5 aez,y€q

for any ¢ > 0 (see Proposition B.6.7 in [22]), we obtain the estimate (3.1), as desired.
Thus the assertion (i) is proved.

Finally, we prove the assertion (ii). We recall Proposition 5.1 in [4] that if d > 3,
then

K(t,z,y) <

@mt)"? e (_ (@nt) 2 z_&!,z)
1= V-l kamey/a 1= V-l ga)/7a
for a.e. z,y € Q and any ¢t > 0. When d = 1,2, we have

- 2
K(t,z,y) < (4nt)~%2e” W a.e.z,y €

for any t > 0. By the above estimates, we conclude (3.2). The proof of Theorem 3.1
is finished. a

4., KEY LEMMAS

In this section we shall give outlines of proof of the estimates for the resolvent of
Hy and ¢(Hy) in amalgam spaces. These lemmas play an crucial role in the proof
of Theorem 2.1.

Following Fournier and Stewart (see [8]), let us give the definition of scaled amalgam
spaces on 2 as follows.

Definition (Amalgam spaces). Let 1 < p,q < 0o and § > 0. The space IP(L%)g is
defined by letting

IP(L9)g = IP(L9)g() := {f € L;loc(ﬁ)\ Z 1 e (cpimyy < oo}
neZd
with norm
1
(S 1) for1<p<e,
1 flliezayy = \neze

sup || fllza(csmy) for p= o0,
neZd
where Cp(n) is the cube centered at 6'/*n (n € Z%) with side length 6*/2:

Cy(n) = {x = (x1,22,+ ,x4) €Q ‘ _nlla.xd|xj - 6%714_” < 0;}
j=l,

Let us give a remark on the properties of I[P(L9)g-spaces. The spaces [P(L%)y are
complete with respect to the norm || - ||;p(ze),, and have the property that

IP(L%)y — LP(Q) N L)
for any 6 > 0, provided 1 < p < ¢ < .
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4.1. Estimates for (Hy — z)7".
Lemma 4.1. Let 1 < p < g < 0o, and 3 be such that

d(1 1
>5(-1):

Suppose that the potential V' satisfies assumption A. Let z € C with
Re(z) < min{—w, 0},

where w is the constant as in Theorem 8.1. Then (Hy — 2)7F is extended to a
bounded linear operator from LP(Q2) to IP(L?)y with 8 = 1. Furthermore, the following
assertions hold:

(i) There exists a constant C depending on d, p,q, B and z such that

||(9HV - Z)_B“B(LP(Q),LG(Q)) < co s %_%), (4.1)

1

”(eHV - z)_ﬂ“B(LP(Q),lP(LQ)g) < 09—% %_E (4'2)
forany 0 < 0 < 1.
(i) Assume further that V_ satisfies (2.2). Let z € C be such that
Re(z) < 0.
Then the estimates (4.1) and (4.2) hold for any 6 > 0.

Outline of proof of Lemma 4.1. The following formula is well known: For any M >
—info(Hy) and 8 > 0,
1 (o o]
Hy + M) = ——/ tP-le=Mie—tHv gy
Uy + 7= 18) Jy

(see, e.g., (A9) in page 449 of Simon [22]). Combining this formula with Theorem
3.1, we can prove Lemma 4.1 along the argument of proof of Theorem 4.1 in [15] (see
also [17]).

4.2. Estimates for o(Hy).

Lemma 4.2. Suppose that V' satisfies assumption A. Then the following assertions
hold:

(i) Then there exists a constant C > 0 such that
l(@HY)|lBur(z2)) < C (4.3)

forany0<6< 1.
(ii) Assume further that V_ satisfies (2.2). Then the estimate (4.3) holds for any
6> 0.

Let us state the outline of proof of Lemma 4.2. For this purpose, let us introduce
a family &, of operators.

Definition. Let o > 0 and 6 > 0. We say that L € (= Hayp) if L € B(L*(Q))
and

Ll = sup |- ~63nl Lxcyn <
L, sup |+ =62n|*LXCy(n) sy < %
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To give the proof of Lemma 4.2, let us prepare the following two lemmas. The
following lemma show a sufficient condition for L2-functions to be bounded in I* (L?),.

Lemma 4.3. Let 0 > 0, and let L € &, for some a > d/2. Then there exists a
constant C > 0 depending only on a and d such that
1—d

_d 4
12 Al <C (Il + 0 IENE Il say ) 1o,
for any f € I*(L?),.
For the details on the proof of Lemma 4.3, see Lemma 6.2 in [15].

The following lemma states that ¢(Hy ) belongs to &7, for any a > 0.

Lemma 4.4. Let ¢ € S(R) and o > 0. Suppose that the potential V satisfies
assumption A. Then the following assertions hold:

(i) The operator p(6Hy) belongs to &, for any 0 < @ < 1. Furthermore, there
exist a constant C > 0 such that

llp(@HV), < C6% (4.4)

forany0<6<1.
(i) Assume further that V_ satisfies (2.2). Then the same assertion as in the
assertion (i) holds for any 6 > 0.

For the details on the proof of Lemma 4.4, see Lemma 6.3 in [15].

Proof of Lemma 4.2. We prove only the assertion (i), since the proof of (ii) is the
same as (i). Let 0 < § < 1. By Lemma 4.4, the operator p(6Hy) belongs to 7, for
any a > 0. Choosing « > d/2, and applying Lemma 4.3 to (6 Hy), we estimate

(0 Hy) fllo 2y,
<C (||¢(9HV)I|B(L2(9)) + 672 p(6Hy) || 2= ||<P(9Hv)||;f;}(n))) [1£llz2(z2)6
for any f € I*(L?)p. Hence, noting from (4.4) in Lemma 4.4 that
le(6HY)| Bz2@) < C

and . ,
llp(0HY)ll2= < CO%,
we conclude (4.3). Thus the proof of Lemma 4.4 is finished. a

5. PROOF OF THEOREM 2.1 AND COROLLARY 2.2

In this section we prove Theorem 2.1 and Corollary 2.2. First let us turn to proof
of Theorem 2.1.

Proof of Theorem 2.1. First we prove the assertion (i). Let 0 < § < 1. It suffices to
show L'-estimate for ¢(6Hy). In fact, if L'-estimate is proved, then L*®-estimate is
also obtained by duality argument, and hence, the Riesz-Thorin interpolation theorem
allows us to conclude LP-estimates (2.1) for 1 < p < 0.
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Let us proceed the proof of L'-estimate. Going back to the definition of I*(L?),,
we estimate

l(6Hy) fllrey = Y, I9OHY) fllxcom

nezd

< 3 1Com)|E (O Hv) £l 2(cotm) (5.1)

neZd
< 6% lp(6Hy) £l z2yes
where we used the inequality:
|Co(n)|* < 65.
Here, given a positive real number 3, we choose ¢ € S(R) as
B = (\+ MPp(N) for A € o(Hy),
where M is a real number such that
M > max{w, 0},

where w is the constant in Theorem 3.1. Then, using assertions (i) in Lemmas 4.1
and 4.2, we estimate

le(@HY) fllin L2y, = H‘P(HHV)(GHV + M)P(6Hy + M)_ﬂf“,l(p)o
= |60 Hy ) 6Hy + M) £ 12,
<C||(6Hv + M)"ﬂf||l1(L2)a
<CO™4| fllrace.
Therefore, combining the estimates (5.1) and the above estimate, we conclude that
lp(0HV) fllzs @) < ClIfllz e

for any 0 < § <1 and f € L}(Q).

The assertion (ii) is proved in the same way as assertion (i) by using assertions
(ii) in Lemmas 4.1 and 4.2 instead of assertions (i) in Lemmas 4.1, respectively. The
proof of Theorem 2.1 is complete. O

In the rest of this section, we prove Corollary 2.2.

Proof of Corollary 2.2. We prove only the assertion (i), since the assertion (ii) is
proved in the same way as assertion (i). Let 0 < § < 1. Let M be a real number
such that

M > max{w, 0},

where w is the constant in Theorem 3.1. Given m € NU {0} and 8 € R satisfying
d/1 1
od(20),
2\r 4¢
we choose ¢ € S(R) as

B(A) = X"\ + M)Pp(N\) for A € o(Hy).
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By using Lemma 4.1 and Theorem 2.1, we estimate

| H ¢(0HY )| 51e(2),L9(0)
=|Hy@(0Hy)(0Hy + M)?(6Hy + M)~ |51s(02), L2(s0)
<0~™(|B(OHY) || sza@yll(OHy + M) ™| 5(r @), Lo
<CoiGD™,

The proof of Corollary 2.2 is complete. a

6. PROOF OF THEOREM 2.3

In this section we state the outline of proof of Theorem 2.3. For this purpose, we
prepare the following lemma.

Lemma 6.1. Suppose that V satisfies assumption A. Then the following assertions
hold:

(i) Then there exists a constant C > 0 such that
V(0 H)|la 22y, < CO3 (6.1)

forany0<6<1.
(ii) Assume further that V_ satisfies (2.2). Then the estimate (6.1) holds for any
6 > 0.

Lemma 6.1 follows from Lemma 4.3 and the following lemma in the same way as
Lemma 4.2.

Lemma 6.2. Let ¢ € S(R). Suppose that the potential V satisfies assumption A.
Let o > 0. Then the following assertions hold:

(i) The operator Vp(0Hy) belongs to o, for any 0 < § < 1. Furthermore, there
exist a constant C > 0 such that

IVe6H)ll, < €673
for any 0 < 6 < 1.
(i) Assume further that V_ satisfies (2.2). Then the same assertion as in the
assertion (i) holds for any 6 > 0.

For the details on the proof of Lemma 6.2, see Lemma 7.1 in [15].

Proof of Theorem 2.3. We prove only the assertion (i), since the proof of (ii) is similar
to (i). Let 0 < @ < 1. First we prove L-estimate:

IVo(OHy)|lsw2@y) < CO3, (6.2)
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where the constant C' is independent of 6. Since @(6Hy)f € D(Hy) for any f €
L?(Q), we estimate

Ve (0HY) f||72()
= [ (Vo005 - Vpl01)1 + VIcOH ) = Vip(oti)1F) da

—(Hyo(0Hy)f, 0(0Hy)f) + /n (Vo = V)lo(0Hy) | de (6.3)

<(Hvo(0H) 1, w(OH)1) + [ V-Ie(0H) I do
=I+1II
Then, by using Corollary 2.2, we estimate I as
I < ||[Hyp(0Hvy)f| L2 lle(0Hv) fll 2(0)
< CO7Y(fll72(q)-
As to the second term II, by using the inequality (A.1) in Lemma A.2, we have
11 < €| Vp(0Hy) |72y + bell(0Hy) |72
for any € > 0. Noting that ! > 1, and using (2.1) in Theorem 2.1, we get
bellp(6Hy) fll720) < Cbb™ | flI 320

(6.4)

whence
11 < el|[Ve(6Hy) |72y + Cb07 | FlIZ20- (6.5)
Here we choose € as 0 < £ < 1. Then, combining the estimates (6.3)-(6.5), we obtain
the estimate (6.2). In the case of assertion (ii), using the inequality (A.2) instead
of (A.1), and proceeding the similar argument to the above, we obtain the estimate
(6.2) for any 6 > 0.
Hence, if L'-estimate
IVe(0HY) |5z @) < co3 (6.6)
is proved, then we conclude the assertion (i) by the interpolation theorem. Therefore
it sufficient to show L!-estimate (6.6).
Ll-estimate (6.6) is proved in the same way as Theorem 2.1. In fact, letting
f € L}(f), and going back to the definition of I*(L?)g, we estimate

IVeOHY) fll@ = Y, Vo(0HV) || L1 (comy)

neZd

< Z |Ca(n) /2| V(0 Hv) f|| 12(Co(my) (6.7)

neZd
< 0%V p(6Hy) flli 1),
Here, given 8 > 0, we choose ¢ € S(R) as
BN = A+ M)Pp()\) for A € a(Hy),
where M is a real number such that
| M > max{w, 0},
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where w is the constant in Theorem 3.1. Then, using assertions (i) in Lemmas 4.1
and 6.1, we estimate

IV @(0Hy) ez, = ||V (OHy)OHy + MY (0Hy + M) |, 1.
= ||V¢(0Hv)(9HV + M)—Bf”ll(LZ)g
—1 -
<CO72 ||(0Hy + M) P £ |1 12,
_d_1
<CO™ 4| fllrca)-
Therefore, combining the estimates (5.1) and the above estimate, we conclude that
-1
[Ve(0Hy) flliva) < CO72||fllr@)-
Thus the assertion (i) is proved. The proof of Theorem 2.3 is finished. a
APPENDIX A. (SELF-ADJOINTNESS OF SCHRODINGER OPERATORS)
In this appendix we mention self-adjointness of Schrodinger operators with the
Dirichlet boundary condition under assumption.
The self-adjointness of Hy is assured by the following proposition.

Proposition A.1. Suppose that the potential V satisfies assumption A. Then the
following assertions hold:

(i) There exists a unique semi-bounded self-adjoint operator Hy on L*(2) with

domain
D(Hy) = {u € H{Q) | v/Viu € I¥(Q), Hyu € L2(Q)}
such that

<Hvu,v>=/QVu($)~Vv(x) dx-|-/QV(x)u(x)mdx

for any u € D(Hy) and v € H}(Q) with /Viv € L*(R).
(i) Assume further that V_ satisfies
V_(y) Ars .
dy < d>3,
AL e
Vo=0 ifd=1,2.

Then Hy is non-negative on L?(2).

Proposition A.1 is proved by using the theory of quadratic forms and the following
lemma. The following lemma states that potentials of Kato class are relatively form
bounded with respect to the Dirichlet Laplacian —A.

Lemma A.2. Suppose that the potential V belongs to K4(QY). Then the following
assertions hold:

(i) For any e > 0, there exists a constant b, > 0 such that

/Q V(@)@ de < e[Vl + bellul220) (A1)
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Jor any u € H}(Q).
(i) Let d > 3. Assume further that V satisfies

V(y)
1% = su / ——Z— dy < 0.
” “Kd(n) zeg q |z — yld_z Y

Then

I'd/2 - 1|V
[ V@h@Pa < @2 = DIVika® g2, (A.2)
Q 472
for any u € H3(Q).

For the more details on Proposition A.1 and Lemma A.2, we refer to [15, Section
2].
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