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Stability of Delaunay surfaces as steady states
for a geometric evolution equation

Yoshihito Kohsaka
Graduate School of Maritime Sciences, Kobe University

1 Introduction

Let I'; C R3 be a evolving surface with respect to time ¢. The surface diffusion equation
V=-ArH on I}y 1)

is one of the geometric evolution laws, where V is the normal velocity of 'y, H is the mean
curvature of I'y, and Ar, is the Laplace-Beltrami operator on I';. In our sign convention, the
mean curvature H for spheres with outer unit normal is negative.

The mean curvature flow

V=HoT (2)

is a well-known geometric law and represented as the L2-gradient flow for the area functional
of I';. This implies a variational structure that the area of the surface I'; decreases with
respect to time ¢. On the other hand, the surface diffusion equation (1) is the H~!-gradient
flow for the area functional of I';, so that this geometric evolution equation has a variational
structure that the area of the surface I'; decreases with respect to time ¢ whereas the volume
of the region enclosed by the surface T'; is preserved.

In this paper, we consider the following problem. For ¢, : R, — R, set

s = {(¢+(Inl),n)" |n € R?},

Q={(z,m)"¢-(In)) < = < ¢+(Inl), n € R?},
BQ = H_ U H+.

Note that II1 are the axisymmetric surfaces. Let us assume that I'; C € and the motion of
I'; is governed by
V=-Ar,H on Ty,
(Nr,, N, )gs = cosfy on Ty NIy, 3)
(VrtH, I/i)]Ra =0 on Ft N Hi,
['¢|t—0 = To.
Here, N, and Ny, are the outer unit normals to Iy and I, respectively, and vy are the
outer unit co-normals to 9y on 'y N II.



Let I, be the steady states for (3) and H, be the mean curvature of I',. Then T, satisfies

Ar H,=0on T,,
(VF*H*,Vi)Rs =0 on F* ﬂl'[i.

Multiplying H, by the both side of the equation Ar, H, = 0 and applying the Green’s formula,

we obtain
Ve 2|72,y = 0.

Thus we see that the steady states of (3) are the constant mean curvature surfaces (CMC
surfaces). In this paper, we only consider the axisymmetric CMC surfaces, which is so called
the Delaunay surfaces, as the steady states I'.. For an axisymmetric perturbation from Ty,
we derive the eigenvalue problem corresponding to the linearized problem for (3) and obtain
the criteria of the stability of T',.

As regards the results on the stability of the Delaunay surfaces as the variational problem
for the capillary energy, we refer to Athanasscnas [2], Fel and Rubinstein [6, 14], and Vogel
[15, 16, 17, 18, 19]. Concerning the results on the stability as steady states for the surface
diffusion equation, we refer to Abels, Garcke, and Miiller [1], Depner [5], and LeCrone and
Simonett [12].

2 The eigenvalue problem

Let ', be a axisymmetric steady states of (3) and set
F* = {(CL‘*(S), ’y*(S) Cos Cv y,(S) Sin C)T ' s€ [07 d]v ( € [0) 27]-]}1

where s is the arc-length parameter of a generating curve (z.(s),.(s))T. In the following
theorem, we introduce the representation formula of the Delaunay surfaces with a non-zero
constant mean curvature.

Theorem 2.1 ([9, 13]) Let H, be a constant satisfying H, # 0 (assuming H, < 0). Then
a generating curve (x.(s), y«(s))7 of the Delaunay surface with a constant mean curvature
H, is given by

s 1— Bsin(2H,(c — 7))
o \/1+ B?-2Bsin(2H,(c — 7)) 7 (4)

1
ya(s) = —2—H—\/1 + B% — 2Bsin(2H,(s — 7)),

z.(8) =

where B > 0 and 7 € R are constants.

The Delaunay surface is a cylinder for B = 0 (Fig. 1), an unduloid for 0 < B < 1 (Fig. 2),
a series of spheres for B = 1 (Fig. 3), and a nodoid for B > 1 (Fig. 4).
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Figure 1: Cylinder (B = 0)

Figure 2: Unduloid (0 < B < 1)

Figure 3: Serics of spheres (B =1)
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Figure 4: Nodoid (B > 1)

Applying an axisymmetric perturbation v(s,t) for the Delaunay surfaces I', and lincariz-
ing the nonlinear problem for v(s,t), we have

v = —-;—AF*L[v] for (s,¢) € [0,d] x [0,T],
0sv + (km, escby — kr, cotf)v =0 for s =0,d,t € (0,7, (5)
9sL[v] =0 for s =0,d,t€0,T),

where L[v] = Ar,v + |A. >0 with

1 1 N\
A= o {ono) + b AP = (-t + (2)
* % Yx
and .
b+ (ys) "1 ron
Rr. = : ’ Rr, = —Z, Y, +x*y*'
T {4 (fa(y)2R
Note that xp_ and ky_ are the curvature of 2 = —¢_(y) at y = 3.(0) and z = ¢, (y)

at y = y.(d), respectively, and rr, is the curvature of the generating curve (z.(s),y.(s))”.
Taking account of the fact that v is independent of (, we have

1
Arp,v = Z/_* {0s(y05v) } .

‘or this linearized problem the corresponding eigenvalue problem is given by
—Ar, Liw] = Aw for s € [0,d],
Osw £ (ki cscfy — kr, cotf)w =0 at s =0,d, (6)
OsLw] =0 at s =0,d.

We say that the steady states I'y is linearly stable under an axisymmetric perturbation if and
only if all of eigenvalues of (6) are negative.



Set

£ = {w € H\(T,)

d
/ wy*ds=0},
0

(w,1) = 0)},

where (H'(T',))* is the duality space of H*(T.) and (-, -) is the duality pairing (H*(T',))* and
HY(T,). Also, set

X = {we (H'(.))"

w satisfies

D(A) = {w € H3(T,)

Osw % (km, cschy — kr, cotf1)w =0 at s =0,d,

d
and/ wy*ds=0}
0

and define the linear operator A : D(A) — X by

(Aw, ) = /0 L] o uds (w e D(A), § € £).

Taking the symmetric bilinear form

d

Iwq, wo] = / {35w185w2 - |A*|2w1w2} Ys ds
0

+ yu (K1, esc by — kr, cot 6 Jwyws|,_,

+ y.(km_ cscb_ — kr, cot 0_)w1w2|

=0’

and the H-inner product

d
(’11)17 wZ)—l = / aéruwl as'u'wz y*d57
0

where u,, is a weak solution of

—Ar, Uy, = w; for s € (0,d),
Osty, =0 at s =0,d

for w; € X, we obtain
(Aw,¥)_1 = =Iw,y] (¢ € E).
For the linear operator A and its eigenvalues, we have the following properties.
(P1) The operator A is self-adjoint with respect to the H~!-inner product.

(P2) The spectrum of A contains a countable system of real eigenvalues.
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(P3) Let {A}nen be eigenvalues of A with Ay > XA > A3 > ---. Then {\,},en are
characterized by
I I
O | S W, Alw,w]
wee\{0} (w, w)_1 wes,,_, wewh\[0} (w, w)

Here, &, is the class of subspaces of £ with n-dimension and W+ is the orthogonal
subspace of W with respect to the H~!-inner product.

(P4) The eigenvalues of A depend continuously on &, &r,, , d, and 64, and are monotone
decreasing with respect to r, .

Concerning proofs, see [5, 8] for (P1) and (P2), and [4, Chapter VI] for (P3) and (P4).

3 Criteria of Stability

If the maximal eigenvalue \; for (6) is negative, the steady states T, are linearly stable under
an axisymmetric perturbation. First, we show the following lemma.

Lemma 3.1 Set
Ay = kng csc Oy — kr, cot by,

Then there cxisté m > 0 and 6 > 0 such that
Iw,w]| >0 (we&\{0}),
provided that A_;A, > m and d < 4.

Regarding a proof, see [10].

Lemma 3.1 implies that there exist m > 0 and § > 0 such that the maximal eigenvalue
A1 is non-positive, provided that kn_,xn, > m and d < 6. That is, all of eigenvalues are
non-positive. According to (P4), the eigenvalues depend continuously on the parameters and
are monotone decreasing with respect to xp,. Thus we want to know the condition for the
parameters that the zero is an eigenvalue for the eigenvalue problem (6). Now we consider
the zero-eigenvalue problem

Ar,Liw] =0 for s € [0,d], (7)
Osw + (K, cscly — kp, cotOr)w =0 at s =0,d, (8)
OsLlw] =0 at s =0,d. 9)

Multiplying L[w] by the both side of (7) and integrating it by parts with (9), we have

185 Liw]||72r,y = 0.



Hence L{w] must be constants, so that we can obtain the solutions of (7) satisfying the
boundary condition (9) if we solve

Liw] =0, L[w]=1(#0). (10)

Let wy, wy be fundamental solutions of L[v] = 0 and w; be a solution of L[v] = 7. Then a
solution of (7) satisfying the boundary condition (9) is represented by

w(s) = cywi(s) + cowa(s) + csws(s), (11)

where ¢; (i = 1,2,3) are arbitrary constants. Deriving the condition of parameters that w
given by (11) is a non-trivial solution satisfying the boundary condition (8) and

d
/ vy.ds =0,
0

it gives the condition of parameters that the zero is an eigenvalue for (6). That is, the zero
is an cigenvalue if and only if the parameters satisfy

wj(0) — A_wy(0) wp(0) — A_wz(0) wy(0) — A_ws(0)
wi(d) + Aywi(d) wy(d) + Aywy(d) wi(d) + Ayws(d) | _ 0, (12)

d d d
/ w1 Yads / W Yy dS / w3 Y dS
0 0 0

where Ay = kp, csc Oy — kp, cot 61 Setting

d d d T
— T —
w(s) = (wi(s), wa(s),ws(s))", I(d)= (/0 wy y*ds,/o W y*ds,/o ws y,,ds) ,
(12) is equivalent to
AYkn_kn, + BYkn_ + BYkn, +C¥ =0, (13)

where

AY = — (w(0) x w(d), I(d))s,

B2 = {~(w(0) x w/(d), T(d))go + (w(0) x w(d), I(d)gorr. (d) cotb, } sinb.,

BY = {(w'(0) x w(d), I(d))gs + (w(0) x w(d), I(d))gerr. (0) cot 6_} sinb_,

C% = {(w'(0) x w'(d), I(d))rs

— (w(0) x w(d), I(d))gskr, (d)~r, (0) cot 64 cot 0 } sin 6, sin 6_.

Then we obtain the following three representaitons of (13).

-4

BY w)2
(13) < Ko = -—+ (A )

Av BY\’
o ()
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0 of
%

(I) (B*BY — A*C¥ > 0) 44)) (111)

Figure 5: The configurations of (I), (II), and (III).

(I) If A¥ # 0 and BBY — A*C¥ = 0,
@ o {o () ()0

(13) & BYn_ + BYp, +C* =0.

(II) If A® = 0,

The coefficients A%, BY, and C" depend on the configurations of the steady states I'..
Thus, let us derive w; when I', are the Delaunay surfaces with non-zero constant mean
curvature. Since the generating curves (7.(s), v.(s))7 are given by (4), the coefficient |A,|?
in the operator L{w] and «r, in the boundary condition (8) are

4H?{B*(B — sin(2H,(s — 7))? + (1 — Bsin(2H.(s — 7))?}
(14 B? -~ 2Bsin(2H.(s — 7)))? ’

_ 2BH.(B —sin(2H,(s — 7))

* " 14 B?—2Bsin(2H,(s — 7))’

|A*|2 =

Kp

Solving L{w] = 0 and L[w] = 1(we choose 1 as v in (10)), we obtain

wy(s) = cos(2H.(s — 7))
N T ir B 2BsmH.(s = 7))

ws(s) = sin(2H, (s — 7)) + 2H, { 1+ B

2
B
T '2'711(3) wi(s),

I(s) - %12(3)} , (14)

ws(s) =



where
8 1
I(s) = Ii(s; H., B, :=/ . do,
1(s) = s 0= ) AR p =)
I(s) = Ix(s; Hy, B,7) := / \/1+ B? - 2Bsin(2H,(c — 7)) do.
0
Set . .
: Hf =—-H,(>0), a=H:T+Z’ B=H;L7-—Z

and let a € [-7/2,7/2), 8 < 0, and

—g+m7r<H;"s—a<—g+(m+1)7r (meNuU{0}) for B+#1,
O0<Hls—B<m for B=1.

Then I1(s; —H}, B,7) and Iy(s; —HH}, B, 7) are represented by

Ii(s;—H},B,7)

m{mx(m + (~1)"F(sin(H¥s — a); k) — F(sin(—a);k)} (B # 1),

e oo (2572) e ()} -

12(5; _H:—7 B7 T)

%35{21%57(@ + (-1)™E(sin(H}s — a); k) — E(sin(~a); k;)} (B#1),

—Ij—+{cos,6 —cos(Hfs—B)} (B=1),
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where k = 2¢/B/(1 + B), K(k) and E(k) are complete elliptic integrals of the 1st and 2nd
kind, and F(n; k) and E(n;k) are incomplete elliptic integrals of the 1st and 2nd kind. In

this paper, the elliptic integrals are given by

! 1
K —
W= Jeras
1— k22

K 1
F("’k):/o Vs s R e

Substituting (14) for (13), we are led to

1— k2¢2

AP(H},B,d,7)kn_rn, + BP(HY, B,d, 7,6, )sn_ + BP(HF, B,d, 7,0 )rg,
+CP(HF, B, d,T,04,0_) = 0.

(15)



The precise forms of AP, B2, and CP are obtained by using Maple 17. Here, we show only
the form of AD:

AP(H},B,d, )
- m [(H220 ~ B2 12 cos(2H7) cos(2H (d — 7))
—4(HN?*(1 + B) 1 Iy cos(2H} 1) cos(2H} (d — 7))
+ 3(H)?I3 cos(2H 7) cos(2H} (d — 7))
+2H} (1 + B*)I,{ Psin(2H} ) cos(2H (d — 7)) + Q cos(2H; 7) sin(2H} (d — 7)) }
—4H}BL{Pcos(2H}(d — 7)) — Q cos(2H; 1)}
— AH} L{Psin(2H} 1) cos(2H; (d — 7)) + Q cos(2H} 7) sin(2H} (d — 7)) }

+2PQ{1 + sin(2H/ 7)sin(2H} (d — 7))}

P(H},B,7) = /1+ B? - 2Bsin(2Hi),

)
— (P? + Q?) cos(2HT) cos(2H (d — 7))

where

Q(HY, B,d,7) = \/1+ B* + 2Bsin(2H(d — 7)).
Moreover, by the help with Maple 17, we have
BP(H}, B,d,r,6,)B2(H],B,d,7,0_) — AP(H}, B,d, )CP(H},B,d,T,64,0.)

= mlﬁ(H;)“PQ [H:{(l + B%)(1 +sin(2H 7) sin2H (d — 7))) — (P? + QA }h

+ Hf (3 —sin(2H] (d — 7)) sin(2H] 7)) I,
— Peos(2H} 7) sin(2H (d — 7)) — Qsin(2H*7) cos(2H; (d — T))] >0,
Theorem 3.1 Set
D(kny, HY, B, d,1,64)
= AP(H}, B,d,7)ku_ru, + B?(H,B,d, 7,0, )kn_ + BP(HF, B,d, 7,0_)km,
+ CP(H],B,d,1,604,6-),
and let ¢, be the value of Hd which is the 1st zero-point of AP. If the parameters
ko, HY, B,d, 7,0, satisfy
BP(H},B,d,7,6-)
AP(Hf, B,d, 1)
then the Delaunay surfaces are linearly stable under an axisymmetric perturbation.

D(kn., HF B, d,7,05) >0, kn_ > — and Hfd<q, (16)

Theorem 3.2 If H}d > ¢1, then there are no pairs of (kn_, k) such that the Delaunay
surfaces are stable.
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0 1 2 3 0 1 2 3 0 1 2 3

H}d=~ 16348 H}d ~ 24759 Hfd = 4.7764
A part of unduloids (B = 0.75).

P T 2

0 1 2 3 1 2

H}d =~ 1.3089 Hfd=1.2720
A part of sphere. A part of nodoid (B = 1.05).

Figure 6: The Delaunay surfaces with §_ = g and 6, = g

4 Examples

Concerning criteria of stability for cylinders and unduloids with 7 = «/(4H}) under 6, =
7/2, see [10, 11]. In this paper, we consider the stability of unduloids, sphere, and nodoid
given by Fig. 6.

For unduloids in this setting, we can obtain ¢; = 2.6310 by the help with Maple 17. Thus,
by Theorem 3.2, the unduloid with H}d ~ 4.7764 is unstable. In the cases H;}'d =~ 1.6348 and
Hd = 2.4759, the criteria of the unduloids are given by Fig. 7. By Theorem 3.1, unduloids
are stable under an axisymmetric perturbation, provided that (xp_, xn, ) is included in the
gray parts in Fig. 7. For H}d ~ 1.6348, (kn_, km, ) = (0,0) is included in the gray part, so
that the unduloid with H}d ~ 1.6348 is stable under an axisymmetric perturbation. On the
other hand, for H}d = 2.4759, (kn_, km, ) = (0,0) is not included in the gray part. Thus the
unduloid with H}d = 2.4759 is unstable.

For sphere in this setting, we consider the problem in the interval [0,2.3561]. In this
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I

Hfd =~ 1.6348 H}d = 2.4759
Figure 7: The criteria of unduloids with Hd =~ 1.6348 and HJd ~ 2.4759.

Figure 8: The criterion of the sphere with Hd =~ 1.3089.
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Figure 9: The criterion of the nodoid with H}d = 1.2720.

interval, we have no value of H}Fd which is the zero-point of AP. Thus we can jude the
stability by using Fig. 8. (kn_, s, ) = (0,0) is included in the gray part, so that the sphere
with Hd ~ 1.3089 is stable under an axisymmetric perturbation.

For nodoid in this setting, we can obtain ¢; =~ 2.3389 by the help with Maple 17. The
criterion of the nodoid with Hd ~ 1.2720 is given by Fig. 9. Then we see that (kn_, kn, ) =
(0,0) is included in the gray part. Thus the nodoid with I7}d ~ 1.2720 is stable under an
axisymmetric perturbation.
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