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1 Introduction

Let G be a real Lie group and p : G — GL(p,R) a smooth representation (i.e a homo-
morphism and a smooth mapping). For map-germs f,g : (R*,0) — (R?,0), we say that f
and g are K[p(G)]-equivalent if there exist a diffeomorphism germ ¢ : (R",0) — (R",0) and
a smooth map germ M : (R*,0) — (G, M(0)) such that f o ¢(z) = p(M(z))g(z), for any
z € (R*,0). We also say that f, g are C[p(G)]-equivalent if ¢ = 1g». In the case when G is a Lie
subgroup of GL(p, R), the above equivalence is exactly the same as G-equivalence introduced by
Tougeron [17]. In [6, 7, 8], Gervais investigated the basic properties of G-equivalence. Tougeron
and Gervais mentioned that there might be several examples of G-equivalence depending on G.
However, they only gave the above two cases as examples in their contexts. After the papers
of Gervais appeared, Damon has published paper which give a quite general framework for
the theory of singulairties of smooth map germs [1]. Since G-equivalence is included in the
framework of Damon, nobody has investigated it until now. One of the reasons why the notion
of G-equivalence has not been paid attention is that there have been no interesting examples.
If G is connected , then p(G) is a Lie subgroup of GL(p,R) by the theorem of Yamabe, so
that the basic frameworks for the above equivalence follows from those in [6, 7, 8]. If we adopt
G = GL(p,R) and p = 1g(r), then K[Gl-equivalence is K-equivalence and C[G]-equivalence
is C-equivalence in [15] respectively. If G = {I} C GL(p,R) and p = ¢ is the inclusion, then
K[G]-equivalence is R-equivalence. In [6, 7, 8] Gervais only mentioned these cases as examples
of G-equivalence. In this paper we give several interesting examples of K[p(G)]-equivalence. In
particular, there exist applications to quantum chemistry and spintronics in [16]. The repre-
sentations of Lie groups are essentially needed for those examples.

On the other hand, we consider other equivalence relations among map-germs. For map-
germs f,g : (R®,0) — (RP,0), we say that f and g are A[p(G)]-equivalent if there exist
diffeomorphism germs ¢ : (R™,0) — (R™,0) and ¢ : (R?,0) — (RP, 0) such that Jy(y) € p(G)
for any y € (R?,0) and fo¢ = ¢ og. Here J,(y) is the Jacobian matrix of ¢ at y € (R?,0). We
also say that f, g are £;[p(G)]-equivalent if ¢ = 1gn. We remark that if G = {I}, then A[l]-
equivalence is R-equivalence. Moreover, A[GL(p, R)]-equivalence is A-equivalence. However,
Alp(G)]-equivalence does not imply K[p(G)]-equivalence, generally.
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For a diffeomorphism germ 9 : (R?,0) — (R?,0), we can show that there exist function-
germs ;; : (R?,0) — R, (i, =1,...,p) such that (¢;;(y)) € GL(p,R) and

Y(y) = (Z Y1 (Y)Y, - - ,Z Vi (¥)y5)

for y = (y1,...,4p) € (R?,0). We say that 1 is a p(G)-diffeomorphism if (¢;;(y)) € p(G). For
map-germs f, g : (R",0) — (RP,0), we say that f and g are A*[p(G)]-equivalent if there exist
a diffeomorphism germ ¢ : (R*,0) — (R",0) and a p(G)-diffeomorphism germ % : (R?,0) —
(R?,0) such that f o ¢ = 1 o g. We also say that f, g are L*[p(G)]-equivalent if § = 1g.. We
remark that if G = {I} and p = ¢ is the inclusion, then .A*[I]-equivalence is R-equivalence.
Moreover, A*[G L(p, R)]-equivalence is A-equivalence in [15]. By definition, if f, g are A*[p(G)]-
equivalent, then these are K[p(G)]-equivalent. We remark that A*|G L(p, R)]-equivalence always
induces a geometric subgroup of A and K in the sense of Damon [1] (cf. §4). However, there
are no good examples of such equivalence except trivial cases (i.e. R and .A) so far.

We can also consider the following mixed equivalence of the above equivalence relations. We
consider pairs of map-germs (f1, f2) : (R*,0) — (R? x RY,(0,0)) and two representations of
Lie groups p; : G; — GL(p,R), p2 : G2 — GL(q,R). We say that (f1, f2) and (g1, 92) are
(K[p1(G1)], Alp2(G2)))-equivalent if there exist a diffeomorphism-germ ¢ : (R?,0) — (R™,0),
a map-germ M : (R*,0) — (p1(G), M(0)) and a diffeomorphism germ % : (R?,0) — (R, 0)
such that Jy(y2) € p2(Ga), f10 ¢(z) = M(z)g:1(z) and fo o ¢(z) = 9 o go(z) for any (z,y») €
(R™ x R, (0,0)). However, we do not give detailed descriptions here. _

In [11] the basic framework for the study of K[p(G)]-equivalence and A[p(G)]-equivalence. In
this paper we only give several examples of these equivalece. This paper depends on the joint
project concerning on applications of singularity theory to quantum physics and chemistry with
Masatomo Takahashi and Hiroshi Teramoto.

We assume that all map-germs and manifolds are class C* unless stated otherwise.

2 Examples of K[p(G)]-equivalence I: . : G — GL(p,R)

In this section we consider examples of K[p(G)]-equivalence for G C GL(p,R) and p = ¢ :
G — GL(p,R) is the inclusion map. Actually K[p(G)]-equivalence is G-equivalence in the
sense of Tougeron [17]. Even in this case, there are several nontrivial important examples. The
detailed investigations for these examples will be appeared in elsewhere.

Example 2.1 (Flags of varieties) We consider that

An 0 ... 0

Aot Ao

G=Tp)={ A= A ER i =1,2, 100 App # 0

Aot App e App
and ¢ : T*(p) < GL(p,R) is the inclusion map. For f = (f1,...,fp) : (R*,0) — (R?,0),
define V;(f) = NiZ]£71(0), j = 1,...p, so that we have Vi(f) D Va(f) D --- D V,(f). Then a

i=1J4
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flag variety with respect to f is defined to be

FV(f) = /), Va(f), - - Val(£)-

For f,g : (R*,0) — (R?,0), we say that FV(f), FV(g) are flag K-equivalent if f,g are
K[T*(p)]-equivalent. By definition, if FV(f), FV(g) are flag K-equivalent, then there exists
a diffeomorphism germ ¢ : (R*,0) — (R",0) such that ¢(V;(f)) = (Vi(g)) as set germs for
i=1...,p.

Example 2.2 (Hypersurface arrangements)

A 0 ... 0
0 X ... O

G=D*(p)= A= . L. . )\iER,i=1,2,)\1A2'”Ap#O
00 ...\

and p : D*(p) C GL(p,R) is the inclusion map. For f = (f1,..., f,) : (R",0) — (RP,0), define
V(fi)= f10),i=1,...p. We call AV(f) = (V(f1),---V(f,))) a hypersurface arrangememt.
We say that AV(f), AV(g) are arrangement K-equivalent if f,g are K[D*(p)]-equivalent. By
definition, if AV(f), AV(g) are arrangement K-equivalent, then there exists a diffeomorphism
germ ¢ : (R®,0) — (R™,0) such that ¢(V(f;)) = (V(g;)) as set germs for i =1,...,p.

For fi(z1,22) = 21, fo(21,22) = IE? —z% and g(1,2) = 22, g2(21, %) = $‘;’ —933a f=(f,f2)
and g = (g1,92) are not K[D*(2)]-equivalent (i.e. AV(f) and AV(g) are not arrangement
K-equivalent) but K-equivalent.

Example 2.3 (Functions on varieties)
) G'={1}EBGL(p—1,R)={((1) g) ]AeGL(p—l,R)},
) G=(l+,GL(p—1,R))={(; Z) |A€GL(p—1,R)}.

In the case of (1), for f = (f1,..-,fp),9 = (91,---,9p) : (R*,0) — (R?,0), f, g are K[{1} &
GL(p—1,R)]-equivalent if and only if there exists a diffeomorphism germ ¢ : (R®,0) — (R",0)
such that f; o ¢ = g; and

(f? od,..., fp o ¢)8p—1 = (92, o ’9P>5p—1'

We define a variety V(fa,..., fp) = Moo fi1(0). If f,g are K{{1} ® GL(p — 1,R)]-equivalent,
then there exists a diffeomorphism germ ¢ : (R*,0) — (R",0) such that f; o ¢ = g; and
&(V(g2,-..,9p) = V(fo,...,fp) as set germs. Moreover, we consider the case (2). Then
f,g are K[(1*,GL(p — 1,R))]-equivalent if and only if there exists a diffeomorphism germ
¢ : (R*,0) — (R",0) such that

f1°¢_gl € (f2o¢y“':fp°¢>5p_1 and <f2°¢1""fp°¢)5p—l = (921"'1911)6,,_1-
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It follows that ¢(V(g2, L. ,gp)) = V(fQ, R fp) and f; o ¢|V(gz,...gp) = gl]V(gz,---,gp)'

We consider (f,h),(g,h) : (R*,0) — (R x R*~!,(0,0)). We say that (f, k), (g, h) are Ryp)-
equivalent if there exists a diffeomorphism-germ ¢ : (R™,0) — (R, 0) such that f = go ¢ and
(h10¢, ... hy_108)e, = (ha,...,hy-1)g,. In [10, Lemma 1.3], it has been shown that (f, k), (g, k)
are Ry(n)-equivalent if and only if (f. k), (g, k) are K[{1} ® GL(p — 1, R)]-equivalent. Moreover,
K[{1} ® GL(g,R)]-equivalence was also investigated in [2].

We also consider

G = (1*,GL(¢,R)) = {((1) ;’1’) | beR’, Ac GL(q,]R)} C GL(1+¢,R).

Then f,g are K[(17, GL(q,R))]-equivalent if and only if there exists a diffeomorphism germ
¢ : (R*,0) — (R™,0) such that

fiod—g1 € I(fao ¢) and I(fz 0 ¢) = I(g2),

where I(fo) = f5(9M,)E,. It follows that ¢(V(g2)) = V(f2) and fi o ¢ly(g) = g1|v(g,). For
(f,h),(g,h) : (R*,0) — (R xRP1,(0,0)), (f, h), (g, h) are K[(1*, GL(g,R))]-equivalent if and
only if there exists a diffeomorphism germ ¢ : (R™,0) — (R™, 0) such that fo¢—g € I(ho¢) and
I(ho@) = I(h). In this case we have ¢(V(h)) = V(h) and f o @|v) = glv(n). Therefore, Ryn)-
equivalence can be regarded as R-equivalence among function germs around a fixed variety V (h)
which is described by K[{1} & GL(g,R)]-equivalence. On the other hand, K[(1*, GL(q,R))]-
equivalence induces R-equivalence among function germs on a fixed variety V(h).

3 Examples of K[p(G)]-equivalence II: p: G — GL(p,R)

In this section we give two important applications when the representation p : G — GL(p,R)
is definitely needed.

Example 3.1 (Traceless Hermitian matrices) We consider the special unitary group G =
SU(m) and the set of traceless Hermitian matrices:

Hermo(m) = {X € M,,(C) | X* = X, Trace X =0},

where X* is the adjoint matrix of X. The Lie algebra of SU(m) is the set of traceless Hermitian
anti-symmetric matrices:

su(m) ={X € M,,(C) | X* =-X,Trace X =0 }.

Both of su(m) and Hermo(m) are R-vector spaces with m? — 1-dimesion. It is easy to show
that X = A+iB € Hermo(m) if and only if —iX = B — iA € su(m) for A, B € M,(m,R).
We define a mapping ¢ : su(m) — Hermo(m) by ¢(X) = —iX. Then we have . }(Y) = iY.
Moreover, it is known that there is a positive definite scaler product on su(m) defined by
(X,Y) = Trace XY*. We can also define a a positive definite scaler product on Herm ¢(m)
by (X,Y) = TraceXY*. Then we have (¢X,:Y) = Trace (—iX)(—iY)* = Trace(—iX(iY™*)) =
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Trace XY* = (X,Y), so that ¢ is an isometry. Since Trace AX A* = Trace X for A € SU(m)
and X € M, (C), we have AX A* € Herm((m) for A € SU(m) and X € Herm o(m). We now
define the adjoint representation Ad : SU(m) — Iso (Hermo(m)) by Ad(A)(X) = AX A* for
X € Hermg(m), where Iso (Hermg(m)) is the group of isometry over Herm ¢(m). For p = m?—1,
let © = {031,...0p} be an orthonormal basis of Herm ¢(m) with respect to (, ). We now fix the
orthonormal basis ¥ = {0y, ...0,} of Hermg(m), then we have an isometry ¢x, : Herm o(m) —
RP defined by ¢35, zi0:) = Y(@1,-..,2p) = z, where R” is the Euclidean space with the
canonical scaler product. Therefore we have the canonical identification of Iso (Herm ¢(m)) with
SO(p) depending on the orthonormal basis ¥ = {0y, ... 0,}. By using the isometry @5, we have
a Lie group homomorphism py, : SU(m) — SO(p) defined by ps(A)(y) = ¢s 0 Ad(A) o ¢5'(v)
for any A € SU(m) and y € R?.

On the other hand, let f,g: (R* 0) — (Hermo(m), O) be C*-map germs. We say that f, g
are SU(m)-equivalent if there exists a map germ A : (R",0) — SU(m) and a diffeomorphism
germ ¢ : (R™*,0) — (R™) such that f o ¢(z) = A(z)g(x)A*(z) for z € (R™,0). Then we have
the following proposition.

Proposition 3.2 Let & = {01,...0,} be an orthonormal basis of Herm o(m) with respect to
(, ), where p=m? — 1. Then f,g: (R",0) — (Hermo(m),0) are SU(m)-equivalent if and
only if ¢s o f,ds 0 g : (R*,0) — (R?,0) are K[px(SU(m))]-equivalent.

In [16], the case m = 2 (i.e. p = 3) has been considered. For any H € Herm((2), there exist
hi € R, (i =1,2,3), such that

hs  hy—ihs
H=12 .
‘/_(h1+ih2 —hs )

In this case we have Pauli matrices defined by

oy o _fo i\ _ _(10
Tt o) o) o —1)

which are 2 x 2-traceless Hermitian matrices. We can show that (;,7;) = 26;;, so that & =
{01,02,03} is an orthonormal basis of Herm(2), where o; = 3;/v/2. Then we have H =
h1o1 + haog + hgos. 1t follows that we have pg : SU(2) — SO(3). On there other hand,
—iX = {§; = —io1,02 = —i02,d3 = —io} is an orthonormal basis of su(2). Then we also have
the adjoint map Ad : SU(2) — SO(3) defined by Ad(A)(Y) = AY A* for Y € su(2). It is
classically known (cf.[19]) that p_;=(SU(2)) = SO(3). This fact is known that Spin(3) = SU(2)
(cf. [12]). For any A € SU(2), we have ¢ o Ad(A) = Ad(A) o, so that px(SU(2)) = SO(3).
Therefore, for any f : (R”,0) — (Herm ¢(2), O), there exist f; : (R*,0) — (R,0), (¢ =1,2,3),
such that f(z) = fi(z)o1 + fo(z)o2 + fo(z)os. Then ¢x o f(z) = (fi(2), f2(z), fs(x)). By
Proposition 2.1, f,g: (R",0) — (Herm ((2), O) are SU(2)-equivalent if and only ¢s o f,ds0g
are K[SO(3)]-equivalent. We emphasize that f can be considered as a quantum mechanical
Hamiltonian for energy levels crossing problems appearing spintronics and quantum chemistry,
etc [9]. In [16], a classification of f : (R%,0) — (Herm ¢(2), 0) by SU(2)-equivalence is given.
The detailed arguments will be appeared in elsewhere.
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On the other hand, there is another important quantum mechanical Hamiltonian in [9] as
follows:

fi(z) 0 fo(@) +ifs(z)  falz) +ifs(z)
H(z) = 0 fi(z) —fa(z) +ifs(z) falz) —ifs(x)
fo(z) —ifs(z) —falz) —ifs(x) —f(z) 0 7
fa(z) —ifs(z)  folz) +ifs(x) 0 —fi(z)

where f; : (R?,0) — (R,0), i = 1,2,3,4,5, are function-germs. We remark that this is a
4 x 4-traceless Hermitian matrix. This Hammiltonian matrix is called Type J in [9]. We have
the canonical embedding ¢ : SU(2) x SU(2) — SU(4) defined by ¢(A;, Ay) = A1 & A2, so that
SU(4)-equivalence among f : (R®,0) — Herm ((4) induces SU(2) x SU(2)-equivalence among
f: (R*,0) — Herm(4). The set of the matrices of the above form is a R-linear subspace of
Herm ¢(4), so that we now determine this space. Our matrix has the form

x 0 To +1T3 T4+ iTH
H= 0 1 —Z4+1iT5 Ty —1Z3 *
- Tg — 'i.’L‘3 —X4 — ’I:.’L‘5 —Z1 0 ’ ( )
Ty — 15 To +1%3 0 —

forz; e R,7=1,2,3,4,5. Let H;(4) be the set of Hermitaian 4 x 4-matrices of the above form.
Then we can show that H;(4) is an R-linear subspace of Herm ¢(4) such that dimg H;(4) = 5.
Moreover, for a Hamiltonian H(z) of Type J, we have a map-germ f : (R*,0) — H;(4).
Then we can show that SU(2) x SU(2)-equivalence among map-germs f : (R*,0) — H;(4)
is well-defined. It is also known that SU(2) x SU(2) = Spin(4) (cf. [12]). Let H be the
skew field of quaternions. Then we have a representation of SU(2) x SU(2) defined by the
linear isomorphism X — A; X Aj for (A1, A2) € SU(2) x SU(2) and X € H. Since there is
an isometry H = R*, we have a representation p : SU(2) x SU(2) — GL(4,R) such that
p(SU(2) x SU(2)) = SO(4). Moreover, this representation is a double covering over SO(4). We
can show that there exists an isometry ¢ : H;(4) — H and show the following proposition:

Proposition 3.3 For f,g: (R*,0) — H;(4), f,g are SU(2) x SU(2)-equivalent if and only
if Yo f,og are K[{1} & SO(4)]-equivalent.

We will give a classification of map germs f : (R™,0) — H;(4) by SU(2) x SU(2)-equivalence
in the forthcoming paper.

Example 3.4 (Traceless real symmetric matrices) We consider the special orthogonal group
G = SO(m) and the set of traceless real symmetric matrices:

Symo(m) = {X € M,(R) | X =X, Trace X =0 }.

In this case dimSym(m) = ﬂ%’*—l) — 1. We also have the positive definite scaler product
(X,Y) = Trace XY for X,Y € Symgo(m). Since Trace AXA = Trace X for A € SO(m)
and X € Symg(m), the adjoint mapping Ad : SO(m) — Iso(Sym(m)) can be defined by
AD(A)(X)= AX%Afor A € SO(m) and X € Symo(m). For p= ﬂ";—“l-l, let ¥ = {o1,...0,}
be an orthonormal basis of Symo(m). Then we have an isometry ¢s : Symo(m) — RP. It
follows that we have a Lie group representation ps : SU(m) — SO(p) defined by ps(A)(y) =
¢ 0 Ad(A) o 3" (y) for any A € SO(m) and y € R?. We also have the following proposition.
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Proposition 3.5 Let & = {o1,...0,} be an orthonormal basis of Sym(m) with respect to
(,), wherep = '—"% ~1. Then f,g: (R*,0) — (Symo(m), O) are SO(m)-equivalent if and
only if gz o f,ds 09 : (R*,0) — (RP,0) are K[ps(SO(m))]-equivalent.

In the case when m = 2, p = 2. Then we have -

cosf) —sinf
SO(2) = .
0@) {(sine cos @ ) ‘0€R}

We consider 6; = 71/ V2 and 8, = o3/ V2, then T = {61, 62} is an orthonormal basis of Sym ¢(2).
In this case we have

Ad; A = cos 206, — sin205;, Aby'A = sin 205, + cos 206,

—siné
for A= cosd —sin . Therefore, the representation matrix of Ad(A) with respect to X is

sin@ cos@

cos26 sin26 cos¢p —sing
0(2). M f B=
—sin20 cos26 € 50(2). Morcover, for any sing cos¢

that ps;(A) = B. This means that px(SO(2)) = SO(2). In this case a map germ f : (R*,0) —
Symy(2) is also considered to be a quantum mechanical Hamiltonian matrices, which is called
a Type I'in [9]. In this case the matrix valued map germ f : (R™,0) — Sym,(2) has the form

_ 1 [fz) fi(z)
19=7 (fl(m —fa(x)) |

so that we have f(z) = fi(z)81 + f2(z)d3. Therefore, we have ¢5x o f(z) = (f1(x), f2(z)) € R2.
Then we say that f, g : (R",0) — Sym,(2) are SO(2)-equivalent if there exist a diffeomorphism
germ ¢ : (R*,0) — (R™,0) and a map germ A : (R",0) — SO(2) such that g o ¢(z) =
A(z) f(z)*A(z) for any z € (R”,0). Then we have the following proposition.

, we choose 0 = —¢/2,s0

Proposition 3.6 Let f,g : (R*,0) — Symy(2) are map germs. Then f,g are SO(2)-
equivalent if and only if ¢s o f,¢x o g are K[SO(2)]-equivalent.

Let us consider

f(z1,22) = % (ﬁf _x;z) .

In this case the energy functions (i.e. the eigen value functions) are Ei(z1,Z2) = £+/z2 + 72,
so that the graphs of E.(z;,z;) form a cone with the vertex at the origin. This a special
case of quantum mechanical Hamiltonian of the Dirac equation for massless Dirac Fermions.
In this case this cone is called a Dirac cone and the origin is called a Dirac point. The Dirac
point plays an important role in the theory of topological insulaters and the theory of photo-
chemical reaction controls. In [11] we give a classification of f : (R™,0) — Sym,(2) by
SO(2)-equivalence for lower codimensions.
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4 Examples of A[p(G)]-equivalence

~ Example 4.1 (Divergent diagrams of function-germs) G = D*(p).
In this case f = (fi,... fp) : (R*,0) — (R2,0) is considered to be a divergent diagram of
function-germs

(R,0)

f1

®",0) % (R,0)
o

(R,0)

Then A[D*(p)]-equivalence is considered to be the isomorphism among divergent diagrams of
function-germs. This is not a geometric subgroup of A in the sense of Damon [1]. In particular,
the divergent diagrams of function germs for p = 2 was classified by formal diffeomorphism-
germs in [14].

Example 4.2 (Strict equivalence among divergent diagram)

G={1}®GL(p—1,R) = {((1) g) ]Ae GL(p—l,R)}.

We can show that f, g are A[{1}®GL(p—1,R))]-equivalent if and only if there exist diffeomorphism-
germs ¢ : (R™,0) — (R?,0) and 9 : (R*71,0) — (RP1,0) such that fi(z) = g1 o #(z) and

b((Fa(@),- -, fp(2))) = (920 $(2), - - -, p © H(2)).

This is a geometric subgroup of A in the sense of Damon [1]. However, a functional moduli
appeared for very low dimensions (cf. [4]). In order to avoid functional modulus, we consider
G = (17,GL(p—1,R)). Then f, g are A[(17, GL(p— 1, R))]-equivalent if and only if there exist
diffeomorphism-germs ¢ : (R?,0) — (R™,0), % : (RP1,0) — (RP~!,0) and a function-germ
a: (RP71,0) — (R, 0) such that fi(z) + a(fo(x), . . . fo(z)) = g1 o #(z) and

b(f2(2), - -, fp(2))) = (920 $(x), ..., gp © $(2))-

In [4] a generic classification of f : (R%,0) — (R3,0) with respect to A[{1} ® GL(2,R)]-
equivalence is given.

Example 4.3 (Volume preserving diffeomorphisms) G = SL(p,R).

We consider the special linear group SL(p,R). In this case sl(p) is the Lie algebra of traceless
p X p-matrices. A diffeomorphism germ ¥ : (R?,0) — (R?,0) with J,(y) € SL(p,R) for any
y € (R?,0) is a volume preserving diffeomorphism germ. We can show that A[SL(p,R)] are
not geometric subgroups of A in the sense of Damon [1]. However, the group SL(p,R) is big
enough to have nice geometric properties (cf. [3]).
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Example 4.4 (Isometries) G = SO(p).

We can show that f, g : (R*,0) — (RP,0) are A(SO(p)-equivalent if and only if there exists
a diffeomorphism germ ¢ : (R*,0) — (R™,0) and an isometry ¢ : (R?,0) — (R?,0) such
that fo¢ =1 og. For n = 2,p = 3, this equivalence was used in [5, 13, 18] for the study of
differential geometry of singular surfaces in R3. This is not a geometric subgroup of A in [1].
However, it iduces important geometric invariants for sigular surfaces.

A  A*[p(G)]-equivalence

In this appendix we consider A*[p(G)]-equivalence. Here, we use the notations and definitions
given by Mather [15].

For a map germ f : (R*,0) — (RP,0), we define wf : 8(p) — 0(f) by wf(n) =no f.
We define £,-submodules of §(p) by

6*[p(G))o(p) = {Z Z(nu(y)y; (mi;(y)) € dpe(g) for y € (R?,0) }

i=1 j=1

We also define an R-vector subspace 6*[p(G)](p) = R? @ 6*[p(G)]o(p) of 8(p). Then we can show
that (¢, wf,0(n), 0*[p(G)]o(p), 6(f)) is a mixed homomorphism of finite type over f*: €, — &,
in the sense of Mather [15]. We denote that

TL(G(F) = wf (@ [p(G)](P)), TL [p(G)(f) = wf(6"[p(G)o(p)),

T A" [p(G)(f) = tf(6(n)) + TL[p(G)(f) and TA*[p(G)I(f) = tf (Mab(n)) + TL* [o(G)](f)-

In this case, A*[p(G)]-equivalence for any p : G — GL(p,R) induces a geometric subgroup of
A in the sense of Damon [1].

Example A.1 (G = SO(p)) We now consider p = 2. In this case we have

P1S0@)n(2) = {ZZ(%(M i (Zzgg ZEZD € 50(2)(€) for y € (R2,0) }

i=1 j=1

Since s0(2) is the Lie algebra of anti-symmetric matrices,

(z;g’; Z;jg“g) € 50(2)(&) if and only if 711 (y) = ma(y) = 0, Mma(y) = —na(v)-

It follows that
1502 = {10 (s -z ) |10 €&r}.
For f = (fl:f‘i’) : (Rn’o) i (R2>0)’ we have

TL(SO@)(f) = wf(BISO2)o(2) = <( o1~ hay O f) >f e
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and
T.L*[SO2)](f) = < (f 2g-of- fl f) > &)

On the other hand, let f = (fy,..., fp) : (R*,0) — (R?,0) be a map germ. By the similar
arguments to the above case, we have

re18001) = ({ (53, o gy o) [12i<isn})

and
retsonIn = e ({(sgor gy o7) [1i<isef) .

By definition, A*[p(G)]-equivalence among map-germs implies K[p(G)]-equivalence. How-
ever, we have the following problems:

(1) Are there intersting examples?

(2) What is a geometric meaning of A*[p(G)]-equivalence?
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