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ON RELATIVE SUFFICIENCY OF RELATIVE JETS
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1. Introduction

One of the most important local aspect of singularity theory is the analysis of the conditions
under which a map-germ is finitely determined or sufficient and the degree of it’s determinacy.
More recently there has been much interest in studying mappings or varieties with non-isolated
singularities. Any mapping realisation of a C%-sufficient jet has an isolated singularity, and
the zero-set of any mapping realisation of a V-sufficient jet also has an isolated singularity.
Therefore the above works on sufficiency of jets only deal with the isolated singularity case.
Implicit Function Theorem and Morse Lemma may be regarded as results on sufficiency. The
notion of sufficiency of jets also has applications to the bifurcation problems in Differential
Equation. Hence this notion has been explored by many researchers in the 1970s and 1980s (see
C. T. C. Wall [36] for the survey of this field).

On the other hand, the works on characterisations of sufficiency of jets relative to a given
closed set have been also started, e.g. Siersma [25], L. Wilson and Sun [26], S. Izumiya and
S. Matsuoka [10], L. Kushner and B. Terra Leme [19], V. Grandjean [9], V. Thilliez [28], X.
-Xu [38] and so on. This relative case includes the non-isolated case. The goal of this paper is
to carry on the study of germs of differentiable mappings (R",0) — (R?,0), or more generally
families of such mappings with non-isolated singularities. We consider the following situation,
for given closed set germ ¥ in (R™,0), we define the notion of map jets relative to ¥ and using
the group of homeomorphisms or diffeomorphisms which preserve or which fixes X, to define the
2-CO-sufficiency, X-V-sufficiency and I-SV-sufficiency for mappings jets. Finite (respectively
infinite) determinacy is a way to express the stability of smooth map-germs under polynomial
(resp. flat) perturbations. Let &, denote the ring of C* function-germs at the origin in R®
and m its maximal ideal. Consider the ideal of flat germs m® = (., m*. A map germ f of
(&n)P is said to be finitely determined if there is some integer k, such that for any h in m¥,
f -+ h is equivalent to f i.e. there exists a germ of C°-diffeomorphism at the origin ¢ such that
f+h=fop. (resp f is infinitely determined if, for any element h of m®, there exists a germ
@ of C*°-diffeomorphism at the origin such that f + h = f o ¢.) This can be indicated by

f4+mFC foR®, (resp. f+m™® C foR™)
where R°° denotes the group of germs at the origin of C*°-diffeomorphisms of R"™.
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CHARACTERISATIONS OF SUFFICIENCY OF RELATIVE JETS

In the relative case (which includes the isolated singularities), one fixes a closed set germ
¥ and considers the equivalent relation on the map germs defined by homeomorphisms (or
diffeomorphisms ) which fix (or preserve) X ( for example, one considers germs with a préscribed
singular locus X.) We can generalise the action of the groupe R", of germs of C” diffeomorphisms
by taking the subset R} (respectively RE™) of diffeomorphisms which preserve ¥ the set of
elements ¢ of R™ which preserve X, that is ¢(X) C X (respectively which preserve ¥ pointwise,
that is p(x) = z for any z € ). Remark that RE™ is a subgroup of R”, but it’s not always the
case for RY;. In what follows we will consider only the equivalence according to the subgroup
'Rgﬂx. For example, Let & =R~ = {2 € R, z < 0}. If f; : R — R is defined by fi(z) = z°
then any function g which coincides with f; on X, is R%o’ﬁx-equivalent to f. Now if fy is the
identically zero function, then there are functions which are identically zero on ¥ and are not
even topologically equivalent to fo. In these examples f is finitely determined but f5 is not.

An example of non finitely determined function germs is given by f : R? — R, defined by
f(z,y) = (2 + ¥?)?, but any function which coincides with f on = = {(z,y) € R?, y < 0}, is
’R,go’ﬁx—equivalent to f.

Before we describe the main results, we recall the conditions characterising the aforementioned
sufficiencies and their related results in the non-relative case, in order to expose the difference
between the two cases. For simplicity, we mention them for r-jets sufficient in C” functions.
Let f: (R",0) — (R,0) be a C” function germ. The r-jet of f at 0 € R®, 57 f(0), has a unique
polynomial representative z of degree not exceeding r. We do not distinguish the r-jet j” f(0)
and the polynomial representative z here.

Kuiper-Kuo condition. There is a strictly positive number C such that
Il grad z(z)|| = Clle|"
holds in some neighbourhood of 0 € R™.

The Kuiper-Kuo condition is equivalent to the C%-sufficiency of z in C” functions (N. Kuiper
[14], T.-C. Kuo [15], J. Bochnak and S. Lojasiewicz [4]).

Kuo condition. There are strictly positive numbers C, o and @ such that
|| grad ()| > Clle|I™*
in HP(f;@) N {llz]l < a}.

Here HZ(f;w) denotes the horn-neighbourhood of f~1(0) of degree r and width @ (see §2.2
for the definition). The Kuo condition is equivalent to the V-sufficiency of z in C" functions
(T.-C. Kuo [17)).

Condition (K). There is a strictly positive number C such that
lzllll grad z(z) || + | f ()| = Cll=||"
holds in some neighbourhood of 0 € R™.

This condition is the Kuo condition in a different way.

Thom type inequality. There are strictly positive numbers K and 8 such that

2
Tig— +1f (@) > K|el*
i<j

— s —
8.7:]' ‘7(9.7,‘,'

for ||z]| < B.
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CHARACTERISATIONS OF SUFFICIENCY OF RELATIVE JETS

At almost the same time as Kuiper and Kuo, R. Thom proved in [29] that the Thom type
inequality implies the CO-sufficiency of z in C”-functions. Using the curve selection lemma, we
can show the equivalence between the Thom type inequality and condition (Kx) ([1]). Now, we
recall the Bochnak-Lojasiewicz inequality ([4]).

Bochnak-Lojasiewicz inequality. Let f : (R",0) — (R,0) be a C¥ function germ, and let
0 < 8 < 1. Then ||z|||| grad f(z)|| > 6| f(z)| holds in some neighbourhood of 0 € R™.

This inequality plays a very important role in proving that the Kuo condition, or in fact
condition (IN( ) is equivalent to the Kuiper-Kuo condition in the analytic case. It follows that
V-sufficiency in C" functions is equivalent to C%-sufficiency in C” functions, and we can see that
Thom had proved an equivalent result to the Kuiper-Kuo theorem.

The Kuiper-Kuo condition, the Kuo condition, condition (I~( ) and the Thom type inequality
are r-compatible in the sense of [1] (see also Definition ?7). Therefore we can replace z with f
in those conditions.

We can consider the conditions for r-jets sufficient in C"™+1 functions, corresponding to the
Kuiper-Kuo condition, the Kuo condition and condition (I? ). We call them the second Kuiper-
Kuo condition, the second Kuo condition and condition (I? %), respectively. The first 4 conditions
in the C" function case and the last 3 conditions in the C™*! function case can be generalised
to the mapping case.

On the other hand, V. Kozyakin in [12] gave a reformulations for the Kuo condition and
Thom’s type inequality, from the viewpoint of the stability of the solution of a polynomial
equation. His reformulations are related to (I? ) and are given in term some limit conditions.
They may be less geometric than the Lojasiewicz inequality conditions but simpler to check.

The usual verification of the Kuiper-Kuo condition, or the Thom condition, may be reduced
to the problem on evaluation of the rate of growth of a polynomial about one of its roots, which
is equivalent to calculation of the so-called local Lojasiewicz exponents of a polynomial. Recall,
that according to the Lojasiewicz theorem for any polynomial p : R® — R with p(0) = 0 there
are constants C, a > 0 such that |p(z)| > C|z|* in a neighbourhood of the zero root. The least «
for which the above inequality holds is called the local Lojasiewicz exponent for p and is denoted
by Lo(p). If the zero root of p is isolated then such a least value of o exists and is rational.
Moreover, in this case Lo(p) < (d — 1)" + 1 where d is the degree of p. There is quite a number
of publications devoted to evaluation of the Lojasiewicz exponent.

We present here some of the results obtained in a recent work with S. Koike (for the proofs and
related results see [2] ), and examples to illustrate. At the end we discuss some open problems.

2. Preliminaries

Throughout this paper, let us denote by N the set of natural numbers in the sense of positive
integers. Let £[5(n,p) denote the set of C* map-germs : (R",0) — (R?,0), let j” f(0) denote the
r-jet of f at 0 € R™ for f € £;)(n,p) (s > 1), and let J"(n,p) denote the set of r-jets in E[5(n, p).
Throughout this paper, ¥ is a germ of a closed subset of R™ at 0 € R™ such that 0 € X. Then
we denote by RE the group of germs of homeomorphisms ¢ : (R®,0) — (R",0) at 0 € R® which
fixes X, namely ¢(x) = z for all z € X. Finally we denote by d(z,X) the distance from a point
z € R™ to the subset 3.

We consider on £[g(n,p) the following equivalence relation:

Two map-germs f,g € E[(n, p) are r-Z-equivalent, denoted by f ~ g, if there exists a neigh-
bourhood U of 0 in R™ such that the r-jet extensions of f and g satisfy ;" f(ENU) = j7¢(ENU).
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CHARACTERISATIONS OF SUFFICIENCY OF RELATIVE JETS

We denote by ;" f(X;0) (or simply j”f(X)) the equivalence class of f, and by J%(n,p) the
quotient set &5 (n,p)/ ~ -

Remark 2.1. (1) In the case where & = {0}, an r-jet j7f(0) has a polynomial realisation for
any f € &y)(n,p). But this property does not always hold in the relative case. In fact, let
f:(R,0) = (R,0) be a C* function defined by

1
e Zsinl ifz#£0
flx) = °
0 if z=0.

Let ¥ = {:Z | m € N}U{0}. Then f(;%) = 0 for even m, but f(-%) # 0 for odd m. Therefore,
for any r € N, 57 f(X;0) does not have even a subanalytic C"-realisation.

(2) Let f € &j(n,p), and let T be a germ of a closed subset of R™ at 0 € R™ such that 0 € X.
Then j” f(X;0) has a C"-realisation f whose restriction to R® \ ¥ is smooth, namely of class C*®
(Theorem 2.2, page 73 in J.-C. Tougeron [31]).

Let us introduce some equivalences for elements of J§(n,p).

Definition 2.2. (1) We say that f,g € £5j(n,p) are T-C0-equivalent, if there is ¢ € RE such
that f =go.

(2) We say that f,g € £g(n,p) are T-V-equivalent, if f71(0) is homeomorphic to g~1(0) as
germs at 0 € R” by a homeomorphism which fixes f~1(0) N X.

(3) We say that f,g € &jg(n,p) are E-SV-equivalent, if there is a local homeomorphism
h € Gy, such that h(f~1(0)) = g~1(0).

Let w € J4(n,p). We call the relative jet w T-CC-sufficient, =-V-sufficient, and -SV-
sufficient in Eq)(n,p) (s 2 r), if any two realisations f, g € €j(n,p) of w, namely j"f(%;0) =
j"9(%;0) = w, are X-CC-equivalent, ¥-V-equivalent, and L-SV-equivalent, respectively.
Notation: Let f,g : U — R be non-negative functions, where U Cc RN is an open neigh-
bourhood of 0 € RY. If there are real numbers K > 0, § > 0 with Bs(0) C U such that
f(z) < Kg(z) for any z € B;(0), where Bs(0) is a closed ball in RY of radius & centred at
0 € RY. Then we write f 3 g (or g == f). If f 2 g and f = g, we write f ~ g.

2.1. Relative Kuo condition and relative Thom'’s type inequality. We suppose now on
the germ ¥ fixed, and introduce the relative notions to ¥ of the Kuo condition and the Thom
type inequality. We first give the notion of the relative Kuiper-Kuo condition. The original
condition was introduced by N. Kuiper [14] and T.-C. Kuo [15] as a sufficient condition of
CO-sufficiency of jets in the function case.

We denote by d(v, V) denote the distance from the tip of the vector v € R¥ to the vector
subspace V C R*. Let L € L(R", RP) a linear maps, L = (L, ...,Lp) and let v; = grad L;
(where the gradient is taken with respect to the standard inner product). Let V; be the span of
the v;, with j # ¢, and let

k(L) = mjind('u]-, Vi).

be the Kuo distance ([17])

Remark 2.3. Note that: k(L) = 0 if and only if L € S where S is the set of critical linear maps
(those of rank less than p); so x(L) is a measure of how close L is to being critical.

For a differentiable map germ f : (R™,0) — (RP,0), let us define:
&(f,z) = r(df (z))
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CHARACTERISATIONS OF SUFFICIENCY OF RELATIVE JETS

where df (z) € L(R™, RP) denotes the derivative of f at z.
In the case where p = 1, (f, z) = || grad(f)(z)|-

Definition 2.4 (The relative Kuiper-Kuo condition). A map germ f € &(n,p), n > p, satisfies
the relative Kuiper-Kuo condition (K-Ky) if

w(df (2)) X d(z, Z)™
holds in some neighbourhood of 0 € R™.

Definition 2.5 (The second relative Kuiper-Kuo condition). A map germ f € Er(nyp), n > p,
satisfies the second relative Kuiper-Kuo condition (K —Kg) if there is a strictly positive number
d such that

k(df(2)) % d(z,T)"°
holds in some neighbourhood of 0 € R™.

For a map germ f € &£,)(n,p), we denote by Sing(f) the singular points set of f.

Remark 2.6. For a map f € £y(n, p) satistying the relative Kuiper-Kuo condition or the second
relative Kuiper-Kuo condition, we have Sing(f) C ¥ in a neighbourhood of 0 € R™. Therefore
these conditions include the case where £ = Sing(f), as a special case.

We next give the notion of the relative Kuo condition. The original condition was introduced
by T.-C. Kuo [17] as a criterion of V-sufficiency of jets in the mapping case.

Definition 2.7 (The relative Kuo condition). A map germ f € &(n,p), n > p, satisfies the
relative Kuo condition (Kx) if there are strictly positive numbers C, o and @ such that

K(df (z)) > Cd(z, =)™
in #7(f;®) N {||z|| < a}, namely
w(df() % d(, =)
on a set of points where ||| 3 d(.,Z)".

In the definition 2.7, HZ(f; @) denotes the horn-neighbourhood of f~1(0) of degree r and width
w,

HE(f;0) = {z € R : | f(2)|| < @ d(=,%)"}.

The notion of this horn-neighbourhood was introduced in [16].
We have also a variant of the previous condition:

Definition 2.8 (The second relative Kuo condition). A map germ f € &jyq)(n,p), n 2 p,
satisfies the second relative Kuo condition (K$) if for any map g € Er+1)(n,p) satisfying
J779(%;0) = j"f(X; 0) there are numbers C, a,é and w (depending on g), such that

k(df (z)) > Cd(z, £)™°
in Hr41(g;@) N {||zl| < a}, namely
K(df(.) Z d(.,B) 8

on a set of points where |lg(.)|| 3 d(.,Z)!.
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Remark 2.9. 1) For a map f € &(n,p) satisfying the relative Kuo condition or the second
relative Kuo condition, in a neighbourhood of 0 € R™, the intersection of the singular set of
f, Sing(f), and the horn neighbourhood H2 (f;®@) is contained in %, namely

Sing(f) N #Hy (f; @) C .

In particular, in a neighbourhood of 0 € R”, grad fi(z), . . ., grad f(z) are linearly independent
on f71(0)\ Z.

2) For a map f € &p(n,p) satisfying the second relative Kuo, we have for any map g €
Er41)(n, p) satisfying j7g(X;0) = j7f(%;0), in a neighbourhood of 0 € R”, the intersec-
tion of the singular set of f, Sing(f), and the horn neighbourhood HZ,,(g; @) is contained
in ¥, namely Sing(f) N HZ, ;(g;®) C . Since ||(f — 9)(z)|| 3 d(z, Z)™+!, we have f~1(0) C
H§+1(g;11_]), then, in a neighbourhood of 0 € R™, gradfi(z),...,gradf(z) are linearly inde-
pendent on f~1(0) \ . :

Definition 2.10 (Condition (Kx)). A map germ f € &ry(n,p), n > p, satisfies condition (Ksx)
if
d(z, L)k(df (z)) + | ()]l Z d(z, X)"

holds in some neighbourhood of 0 € R™.

Remark 2.11. 1) Condition (Kx;) was introduced in [1], in the case & = {0}, in the proof of the
equivalence between V-sufficiency and SV-sufficiency.

2) It is easy to see that condition (I?z) and the relative Kuo condition (Ky) are equivalent.

3) The relative Kuiper-Kuo condition (K-Ks), the relative Kuo condition (Kx), and condition
(Ks) are invariant under rotation.

Definition 2.12 (Condition (IA{'}&: ). Amap germ f € E1q)(n,p), n > p, satisfies condition (I?g)
if for any map g € £, 11j(n, p) satisfying j7g(Z;0) = ;7 f(Z;0) there exists § > 0 (depending on
g), such that

d(z, T)x(df (z)) + llg(2)|| & d(=, )1 ~°
holds in some neighbourhood of 0 € R™.

Remark 2.13. (1) The second relative Kuiper-Kuo condition (K-K3), the second relative Kuo
condition (K%), and condition (I?%) are invariant under rotation.

(2) This condition can be equivalently written as: for any map g € &j1y)(n,p) satisfying
J79(2;0) = j" f(%; 0) there exists § > 0 (depending on g), such that

d(z, Z)x(dg(2)) + llg(@)ll % d(z, =)+~
holds in some neighbourhood of 0 € R™.

Definition 2.14 (The relative Thom type inequality). A map germ f € £p(n,p) (n > p),
satisfies a relative Thom type inequality (Tx) if there are strictly positive numbers K, and a
such that

Tr(f,z) > Kd(z,Z)* for |z| <8,

namely
I(f,) Z d(., 2)*

In [2], we give various equivalent formulations of these condition.
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3. Relative C%-sufficiency of jets

We state in this section the main results the proofs and further details one should consult
[2]. Let us recall that X is a germ of a non-empty, closed subset at 0 € R such that 0 € £. In
this section we give criteria for Z-C-sufficiency of relative r-jets in C" mappings and in C7+1
mappings, and compute some examples on relative C%-sufficiency of jets using the criteria.

3.0.1. Relative C° sufficiency of r-jets in C" mappings. In this subsection we give a criterion of
T-C%sufficiency of r-jets in C™ mappings, using the relative Kuiper-Kuo condition.

Theorem 3.1. Let r be a positive integer, and let f € E;y(n,p) wheren > p. Then the following
conditions are equivalent.

(1) f satisfies the relative Kuiper-Kuo condition (K-Kx;), namely
K(df(z)) % d(z,B)"

holds in some neighbourhood of 0 € R™.
(2) The relative r-jet §7 f(2;0) is T-CO-sufficient in & (n,p).

3.1. Relative C° sufficiency of r-jets in C"*! mappings. In this subsection we give a
criterion of I-C%sufficiency of r-jets in C™*! mappings, using the second relative Kuiper-Kuo
condition.

Theorem 3.2. Let r be a positive integer, and let f € Epy1)(n,p) where n > p. Then the
following conditions are equivalent.
(1) f satisfies the second relative Kuiper-Kuo condition (K-K%), namely there is a strictly
positive number § such that
w(df (@) % d(z, )"
holds in some neighbourhood of 0 € R™.
(2) The relative r-jet 57 f(Z;0) is T-CO-sufficient in Er+1)(n, p)-

3.2. Z-CO-sufficiency of jets in the function case. In this subsection we restate Theorems
3.1, 3.2 in the function case. Related to these results, we shall discuss in the next section
.if the Bochnak-Lojasiewicz inequality holds in the relative case, and the relationship between
the relative C%-sufficiency of jets and the relative V-sufficiency of jets through the relationship
between the relative Kuiper-Kuo condition and condition (Ks).

Theorem 3.3. (1) Let r be a positive integer, and let f € Eyj(n,1). Then the inequality

lgrad £ (@) % d(z, )"
holds in some neighbourhood of 0 € R™ if and only if the relative r-jet 57 f(Z;0) is £-CO-sufficient
in &y (n, 1).
(2) Let r be a positive integer, and let f € Ep1qj(n,1). Then there is-a strongly positive number
& such that the inequality

» Il grad £ (2)|| % d(z,£)"~°
holds in some neighbourhood of 0 € R™ if and only if the relative r-jet j™ £ (2;0) is B-CO-sufficient
mn 5[,,+1] (n, 1).

Remark 3.4. X. Xu also has obtained in [38] a result that the inequality in Theorem 3.3 (1)
implies =-C%sufficiency in Ery(n, 1).
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Example 3.5. Let f: (R%,0) — (R,0) be a polynomial function defined by
f(z,y) =2,
and let ¥ := {z = 0}. Then we can easily see that d((z,y),Z) = |z|, and
lgradf(z, y)|l % lef?
in a neighbourhood of (0,0) € R%. Tt follows from Theorem 3.3(1) that j3f(%;0) is X-C°-
sufficient in £j3(2,1).
Example 3.6. Let f,, : (R2,0) — (R,0), m > 3, be a polynomial function ([16]) defined by
Fm(z,y) =2 — 3ay™.
Then we have grad fm (z,y) = (3(z% — y™), —3may™1).
(1) Let X := {(0,0)}. Then we have d((z,%),Z) = ||(z,y)ll, and
3m_

llgrad fom (z, )1l Z Nz, )21
in a neighbourhood of (0,0) € R2. We can check the above inequality, dividing a neighbourhood
of 0 € R? into the following three regions:

A= {3]e® —y™| < |zI’}, B:={3]z” < yI"}, R*\(AUB).

m—1

By the Kuiper-Kuo theorem [14, 15], j3 2 f(0) is CO-sufficient in 5[37?1](2, 1) if m is odd,
and jsTmf(O) is CO-sufficient in E[aTm] (2,1) if m is even.
(2) Let X := {z = 0}. Then we can see that

_2

(3.1) lgrad fm (2, y)ll Z |2~
in a neighbourhood of (0,0) € R?.

We can show (3.9) as follows. Let A : (R,0) — (R2,0) be an arbitrary analytic arc on R?
passing through (0,0) € R?, not identically zero, denoted by

At) = (apt® + - ,bst® +---).

In the case where A(t) = (0,bst° + - - -), bs # 0, A is contained in ¥, and d((z,y),Z) = |z| =0

on A. Therefore we have
llgrad fm (z, y)|| % |2l

on A. Thus we may assume after this that ax # 0.
In the case where 2k < ms, we have

lgrad fm (2, v)|| Z [t1%*, |2| ~ [t[*
on A. Therefore we have
llgrad fm (z, 9)|| 2 ||

on A near (0,0) € R?.
In the case where 2k > ms, we have

af, _ 2(m—1) 2
llgrad fm (2, y)|l > Ia_;,n @, y)| 2 R0 TR = (G, o) el

on \. Therefore we have ||grad fm (z,y)| Z |w[3'% on A near (0,0) € R
Thus we have (3.9) in a neighbourhood of (0,0) € R2.
Note that oy, o5,
m ok g8\ — ¢ m ok 48\ _ B-2)k
—(t",t°) =0 t*,t%)| = 3mlt m
TR, ) 0, | ()] = Sl
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in the case where 2k = ms. Therefore it follows from Theorem 3.3(1), (2) that ;3 f,,(Z;0) is not
¥-CO-sufficient in &3(2,1) but X-C-sufficient in E4(2,1) for any m > 3.
(3) Let ¥ := {y = 0}. Then, using a similar computation to the above one, we can see that

3m _
lgrad fm (z, y)1| 22 lyl 2

3m—-1

in a neighbourhood of (0,0) € R2. It follows from Theorem 3.3(1), (2) that j~ 2z f(;0) is
2-CO-sufficient in S[@] (2,1) if m is odd, and jaTm f(Z;0) is X-CO-sufficient in €[3Tm](2, 1)ifm
is even.

3.2.1. Thom’s (t)-condition and Lojasiewicz exponent.

Definition 3.7 ( see [30], [34]). Let r € N. Suppose X and Y are Cl-submanifolds of a C"-
manifold M and yo € ¥ N X; then (X, Y) is (") regula at yp if T a C"-submanifold of M and
T thy, Y implies T rh X near yo.

Proposition 3.8. Suppose P = {S;} is a finite collection of manifolds whose union is a closed
set S C R® x R™. Let M be an n-dimensional C*-transversal to P (that is, N th Sj, for all
j)- Let d(y, S) denote the distance fromy to S. If k > 1 and P is (t')-regular, then for every
compact set K C M, there is a constant C > 0 such that

d(y, S)>C-d(y,NNS), forallye K
We use this proposition to compute the Lojasiewicz exponent in certain situation:

Example 3.9. Let f, : (R?,0) — (R,0), m > 3, be a polynomial function defined by fi,(z,y) :=
23 — 3zy™. Then we have gradfn(z,y) = (3(2? — y™), —3may™1).

fz has two braches z = :ty%, and fy has one.

Remark that the “horn neighbourhoods” |z — +y% | < %Iyl%, and |z| < %]y]% are disjoint.

(1) Let £ := {y = 0} Since any point (z,y) lies outside one of "horn neighbourhoods” you

have |fo] 2 [y™ = d(z, Z)™ and |fy| % [y]°% = d((z,y),5)*F . Thus

lerad fm(z, 9)ll % d((z,), ) F

3m—1

and then j% f(%;0) is £-C%-sufficient in smer;(2,1) if m is odd, and JFf(3;0) is
¥-CO-sufficient in 8[37'"](2’ 1) if m is even.

(2) Now, {y = 0} is transverse to the branches of {f = 0}, and {f = 0} Nn{y =0} = {(0,0)},
then by the previous proposition, we can conclude that

3m _
lgrad fm (2, )l & Iz, »)I 7~

3m-—1

in a neighbourhood of (0, 0) € R2. By the Kuiper-Kuo theorem j~ 2 f(0) is C%-sufficient
in 8[%] (2,1) if m is odd, and j3Tmf(0) is CO-sufficient in 8[3Tm](2, 1) if m is even.
(3) Let ¥ := {z = 0}. Then we can see that

—2
llgrad fm(z, y)l| Z |2f*~

in a neighbourhood of (0,0) € R2. It follows from this that j3 f,,(Z;0) is B-CO-sufficient
in £4(2,1) for any m > 3.
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4. Relative V-sufficiency of jets

4.1. Relative V-sufficiency of r-jets in C” mappings. In this subsection we discuss the
relationship between the Kuo condition and V-sufficiency of r-jets in C” mappings which are
relative to the closed set ¥ C R™ such that 0 € X.

Theorem 4.1. Let r be a positive integer, and let f € Ej(n,p) where n > p. Then the following
conditions are equivalent.

(1) [ satisfies the relative Kuo condition (Ks).
(2) f satisfies condition (Ks).
. (8) The relative r-jet j" f(£;0) is ©-V-sufficient in Eyy(n,p).

Theorem 4.2. Let r be a positive integer, and let f € Ey(n,n). Suppose that j" f(%;0) has a
subanalytic C-realisation and that T is a subanalytic closed subset of R™ such that 0 € . Then
the following conditions are equivalent.

(1) [ satisfies the relative Kuo condition (Kx).
(2) f satisfies condition (Kx).
(8) The relative r-jet 5" f(X;0) is X-V-sufficient in £,y(n,n).

Remark 4.3. In the non-relative case C%-sufficiency of r-jets in &r(n, 1) is equivalent to V-
sufficiency of r-jets in £j(n,1). The Bochnak-Lojasiewicz inequality takes a very important
role in the proof of the equivalence. Therefore it may be natural to ask whether the Bochnak-
Lojasiewicz inequality holds also in the relative case. More precisely, if we let f : (R",0) — (R, 0)
a C*% function germ, then we ask whether the following inequality

d(z, T)|lgrad f (z)|| Z /()|

holds in a neighbourhood of 0 € R™. If this Bochnak-Lojasiewicz inequality holds in the relative
case, then it follows that the relative Kuiper-Kuo condition (K-Kx) and condition (I?}:) are
equivalent like in the non-relative case. But we give an example below to show that conditions
(K-Kyx) and (I?z) are not necessarily equivalent in the relative case. As a result, we can see
that the Bochnak-Lojasiewicz inequality does not always hold in the relative case, and it follows
from Theorems 3.1, 4.1 that -V-sufficiency of r-jets in £p,j(n, 1) does not always imply z-C0%-
sufficiency of r-jets in £(n,1).

Example 4.4. Let us recall the situation in Example 3.6(2). Namely, fm(z,y) = 2° — 3zy™,
m >3, and ¥ = {& = 0}. Let r = 3. In this setting, the relative Kuiper-Kuo condition is
lgrad fm(z, ¥)|| % |23~ in a neighbourhood of (0,0) € R2. But as seen in Example 3.6(2),
the above inequality does not hold along an analytic arc A(t) = (t™,t%) for m > 3. In other
words, the relative Kuiper-Kuo condition (K-Kx) is not satisfied. Therefore, by Theorem 3.1,
33 fm(Z;0) is not B-CO-sufficienct in &3(2,1). On the other hand, condition (I~{z;) is

|zl llgrad fm (2, Y| + | fm (2, 9)| Z Il

in a neighbourhood of (0,0) € R2. We show that f,,, m > 3, satisfies this condition. Let
A(t) = (agt* +-+- ,bst® + - - ) be an analytic arc passing through (0,0) € R? as in Example 3.6.
Then we may assume aj # 0, and |z| ~ |t|*.
In the case where 2k < ms, we have
|zl llgrad fm (2, )| 2 3|zl|2® ~ y™| > |2||z|* = [¢]*]¢|** = [¢/**

on A near (0,0) € R,
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In the case where 2k > ms, we have
|zl|grad frm(z, )| > 3lal|z® — y™| > |2l|y|™ 2z 1tF[8]2* = |2
on X near (0,0) € R2.
In the case where 2k = ms and ay # bs, we have
|z l|grad fm(z, y)[| > 3lallz® — y™| & |zl|zf® = [tF[¢** = |¢[*
on A near (0,0) € R2.
In the case where 2k = ms and a; = bs, we have
| fa(2,9)| = |2° — 3zy™| = |zl|2® — 3y™| % |al|al® = [¢]*[¢** = |¢**

on X near (0,0) € R2. On any analytic arc ), condition (I~{ ) is satisfied. Therefore we can see
that f,, m > 3, satisfies condition (Ks). It follows that conditions (K-Ks) and (Kyx) are not
necessarily equivalent in the relative case. In addition, by Theorem 4.1, we see that 53 £, (Z;0)
is X-V-sufficient in £3)(2,1) for any m > 3. Incidentally, the Bochnak-Lojasiewicz inequality
does not hold along an analytic arc A(t) = (t™,t%) for m > 3.

Remark 4.5. Tt is well-known that the Kuiper-Kuo condition and V-sufficiency of jets are equiv-
alent for function-germs. But, by Example 4.4 and Theorem 4.1, we can see that they are not
always equivalent in the relative case.

4.1.1. Relative V-sufficiency of r-jets in C*™*! mappings. In this subsection we give some char-
acterisations for the relative r-jets to be I-V-sufficient in C™*! mappings.

Theorem 4.6. Let r be a positive integer, and let f € Ejp1q1(n,p), n > p. If f satisfies condition
(KL), then the relative r-jet, j" f(Z;0) is -V -sufficient in Er+11(n,p).
Example 4.7. Let f: (R®,0) — (R,0), n > 3, be a polynomial function defined by
f(@1,22,...,20) = 23 — 3z123.
and ¥ := {z; = 22 = 0}. Then we have
grad fm(2,y) = (3(zf — 23); ~152123)
and d(z,¥) = ||(z1,x2)||. From the computation in Example 3.6(1),
- _1
lgradf (@)l z d(z, )"~
in a neighbourhood of 0 € R™. Therefore, by Theorem 3.3(2), j7f(X;0) is I-Cl-sufficient in
5[8](7'7', 1).
15 5 5
Now, since g(z) = 23 —3z125+27 = (v1—23)%(x1+223) is a realisation of the jet 57 f(X;0) in

&71(n, 1), which is not I-V-equivalent to f; therefore §7f(2;0) is not =-V-sufficient in Em(n,1).
The proof can be carried out like in [11].

Corollary 4.8. Let r be a positive integer, and let f € Epy1)(n,p), n > p. If there exists § > 0
such that

d(z, 2)r(df () + |f @) % d(z, =)™+ ~°
holds in some neighbourhood of 0 € R", then j" f(%;0) is X-V-sufficient in &, 1)(n,p)-

Remark 4.9. In the non-relative case C%-sufficiency of r-jets in Er+17(n, 1) is equivalent to V-
sufficiency of r-jets in &4y (n,1), too. But this does not holds in the relative case, namely we
give an example below to show that ©-V-sufficiency of r-jets in C™*! functions does not always
imply £-CO-sufficiency of r-jets in C™t1 functions, either.
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Example 4.10. Let f: (R%,0) = (R,0) be a polynomial function defined by
flz,9) = (x - 9°)* + 4",
and let ¥ = {z = 0}. Then we have gradf(z,y) = (2(z — ¥%), —6y%(z — ¢°) + 10¢°). Let
A(t) = (axtf + -+ ,bst® + - --) be an analytic arc passing through (0,0) € R? as in Example 3.6.
Then we may assume a # 0, and then |z] = Jt|*.
In the case where k < 3s, we have [|gradf(z,y)|| > 2|z — ¥3| > |z| on ) near (0,0) € R2.

In the case where k > 3s, we have||grad f(z,y)|| > 2|z — 33| > |y|® > |z| on A near (0,0) € R2.
In the case where k = 3s, |z| = |y|3. Therefore we have

-2
If(@)] = (@~ 9°)* +4"° 2 4% = |a]*"3

on ) near (0,0) € R2.
On any analytic arc A, |zl|||gradf(z,y)|| + |f(z)] = |z[4‘§ holds near (0,0) € R2. Therefore
the above inequality holds in a neighbourhood of (0,0) € R2. It follows from Corollary 4.8 that
§3f(%;0) is ©-V-sufficient in Eq(2,1).

Let A(t) := (t3,¢). Then |z| = |t|> = |y| on A. Therefore we have

lgradf(z, y)ll = [1(0,10¢%)[| = 10}¢[® = 10|
on A near (0,0) € R2. By Theorem 3.3(2), 5%f(Z;0) cannot be =-C%-sufficient in &g(2,1).

We gave a sufficient condition for the relative r-jets to be =-V-sufficient in C™*! mappings.
We next give a necessary condition.

Definition 4.11 (X-Regular Horn neighbourhood). Let f € £(n,p) and d € N.
We say that Hq(f) is Z-regular if for some w > 0,

w(df () % d(z, B)*
for z € Hq(f;w), x near 0.

Remark 4.12. For germ f € &y (n,p), n > p, the following conditions are equivalent:

1) Hy(f) is S-regular
2) f satisfies condition (Ky).

Proposition 4.13. Let r be a positive integer, and let f € Epyq)(n,p), n > p, such that the
relative r-jet j" f(£;0) is X-V-sufficient in Ey1)(n, p). Then for any realisation g of 5" f(X;0)
in Ejpi1)(n, p), the horn neighbourhood Hr11(g) is -regular.

5. Rigidity and Relative SV-determinacy

Let £(n)P, n > p, be the set of C*™ map-germs : R® — R? at 0 € R", and let £ be a germ of
closed subset of R™ such that 0 € . We say that f € £(n)P is finitely & — SV-determined (resp.
finitely 3 — V-determined) if there is a positive integer k such that for any g € £(n)? having the
same k-jet as f at 0 € R®, g is ¥ — SV-equivalent (resp. ¥ — V-equivalent) to f. Concerning
finite SV-determinacy or finite V-determinacy, lots of characterisations have been obtained in
the case of isolated singularities (see J. Bochnak - T.-C. Kuo [3]).

Let ¢ = (¢1,...,¢p) : R* = RP, n > p, be a C* map-germ at 0 € R™. We denote by Ix ()
the ideal of £(n) generated by 1, ...,@p and the Jacobian determinants

D(o1,...,¢p) ()

1< <...<p <
D(.’I:il,...,.’tip) ( P )’
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D(S”l:---;‘ﬁp) (.’E)

2 7
and we let Z(p, ) := Z e i) + Zgoj(m)z. In the case where n > p,
11302y Vip

1<i1 <. <ip<n =1
we define also the ideal of £(n), denoted by Ir(p), generated by ¢1,...,¢p and the Jacobian
D(p1,...,0p,
D((Z1 if p)) =)
? 7"+l

define the ideal IT(y) of £(n), as the ideal generated by only ¢y, ..., pp.

Recall that for 1 < s < o0, m§; is the ideal of £(n) of germs of (s — 1)-flat functions at X,
namely m& = {f € £(n) : 571 f(T;0) = 0}. Therefore we have, m¥ = N m.

Let  be a positive integer, and let ¢ = (¢1,...,¢p) : R®* = RP, n > p, be a C" map-germ at
0 € R". We denote by £j,j(n) be the ring of C” function-germs : R” — R at 0 € R™, by (n)?P -
the set of C" map-germs : R” — R? at 0 € R", and by £ (n)(y) the ideal of &£(n) generated
by ¥1,...,¢p.

Definition 5.1. We call ¢ € £(n)P, L-C"-rigid if there is a positive integer k for which the
following holds:
for any ¢ € £(n)P such that ¥ = j*¢ on X, there exists 7 € RE such that

Er(n)(p o) = Ep(n)(¥).
Definition 5.2. Let I be an ideal of £(n). We say that I is X-elliptic if there is f € I such that
' £(2)| > Cd(z, %)
in a neighbourhood of 0, where C and o are positive constants. We call such f an elliptic
element of I.

Remark 5.3. If the ideal I is S-elliptic and generated by fi,..., fk, then f# + ...+ f2 is an
elliptic element of I.

determinants (1 <4 <...<ipy1 < n). In the case where n = p, we

Proposition 5.4. For ¢ € £(n)? , the following conditions are equivalent:
(1) There ezist C,a, 8 > 0 such that Z(p,z) > Cd(z,X)* for |z| < B.
(2) m$ C Ik (p).
If moreover £ is subanalytic and ¢ is analytic, they are also equivalent to:
(3) m C Ip(p).
(4) The set germ at 0, Sing(p) N ~1(0), is contained in .

Definition 5.5. A germ of closed subset  of R" is called coherent if my, is a finitely generated
ideal of €(n).

This definition is inspired by the following result of W. Kucharz proved in [13]: an analytic
and semi-algebraic subset X in an open subset U of R™ is coherent if and only if mx is a finitely
generated ideal of £(n). In particular, ¥ = {0} is coherent.

Let us give a generalisation of the Bochnak-Kuo theorem in [3] as follows.

Theorem 5.6. Let 3 be a coherent germ of closed subset of R™ such that 0 € X. Then the
following conditions are equivalent for ¢ € E(n)P where n > p:

(1) For each r € N, ¢ is -C"-rigid.

(2) ¢ is finitely £-SV-determined.

(8) ¢ is finitely - V-determined.

(4) Ix(p) is T-elliptic.

(5) m® C Ix(p).

If moreover ¢ is analytic, they are also equivalent to:
(6) m® C Ir(p).
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6. Some comments and open problems

Definition 6.1. 1) A germ f € £(n) is say to be Z-elliptic on a subset X of R™ if there exists
a real number a > 0 and a neighbourhood U of 0 in R” such that for all x € U N X we have

|f(z)| = d(=z, Z)*
2) A germ f € E(n) is say to be X-flat on a subset X of R if for every real number a > 0,
f(z) = o(d(z,X)*), for z € X \ X.
3) If = {0}, we say f is elliptic (resp. flat) on X.

Remark 6.2. a) f =0 < fisflat on X =R".
b) If f is not T-elliptic on X, then there exists Y C X, such that f is X-flat on Y.
c¢) It f(0) =0 and f is not X-flat on X, then there exists Y C X, such that f is S-elliptic on Y.

Theorem 6.3. Let ¥ be a nonempty set germ of a closed set at 0 of R™. Let fi,...,fi be
elements of £(n) and k < 1. The following conditions are equivalents:

1) There exists a subset X of R®\ X, such the f; are flat on X fori € {1,...,k} and T-elliptic
forie{k+1,...,1}.

2) There exists a smooth curve g : (R,0) — (R™,0) whose germ at 0 is not flat, and such that
fiog is flat at O fori € {1,...,k} and S-elliptic fori € {k+1,...,1} and positive on R, \{0}.

3) When k =1, the ideal generated by the f; is not Z-elliptic.

This results may be seen is a generalisation of a result of Merrien-Lassalle [23], [20], in the
absolute case i.e. X = {0}, they use the Sturm theory for for equations on ordered fields, in
instance the field for fractions on Puiseux series with coefficients in R.

Corollary 6.4 (Relative curve selection lemma). For f € £(n)P such that Ix(f) is Z-elliptic
and f71(0) is not contained in ¥ ( as germs at 0).
Then there exists a smooth germ curve vy : (R,0) — (R™,0) such that v((0,+00)) C f71(0) \ =.

As an application me may improve the results of Theorems 4.2, where we get ride, in the case
n = p, of the subanalytic restriction. ‘

Open problems: The followings results are known to holds true in the case ¥ = {0}. We
suppose & a subanalytic set or definable set in some polynomially bounded 0-minimal structure
(see [7] for definition of 0-minimal structures), or more generally a germ of closed set at 0 :

1) Is there a converse to theorem 4.6 i.e. Let r be a positive integer, and let f € Epiqy(n,p),
n 2 p. If f the relative r-jet, 5" f(¥;0) is X-V-sufficient in &}, ,1)(n,p) then satisfies condition
(KD).

2) The same question for Proposition 4.13

3) For f € &y(n,p), is V-sufficiency equivalent to SV-sufficiency?

4) Find for f € &p(n,p) an analytic characterisation of 3-V-sufficiency in Egy(n,p), k > r + 2.
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