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1 Introduction

There are two styles in the study of denotational semantics for functional programming languages: modeling
programs as functions and modeling programs as strategies. While the former is good at capturing static
features of programming languages, the latter is good at capturing dynamic features of programming lan-
guages. In [9], Oosten gives a result that connects the former to the latter. He shows that the finite types
in the coKleisli category of Hypercoherence spaces [3], where programs are interpreted as strongly stable
functions, coincides with the finite types in the realizability model based on a combinatory algebra &. In
this realizability model, programs are interpreted as equivalence classes of strategies. As pointed out in [7],
we can construct & following categorical Geometry of Interaction introduced by Abramsky, Haghverdi and
Scott [1]. In this paper, we give a similar result for coberence spaces [4]. We relate the category of coherence
spaces and stable functions with a realizability model whose construction is based on categorical Geometry
of Interaction.

2 Outline

In Section 3, we recall coherence spaces and stable functions between them and we describe the cartesian
closed structure of the category Coh of coherence spaces and stable functions. In Section 4, we construct an
SK-algebra Z following categorical Geometry of Interaction introduced by Abramsky, Haghverdi and Scott
[1]. This SK-algebra consists of N-by-N matrices over the semiring NU {co}. We can regard N-by-N matrices
as representations of execution strategies of programs. In Section 5, we give a cartesian closed category
Asm(%) consisting of sets and functions “realized by £%”, and in Section 6, we show that there is a full
cartesian closed subcategory of Coh that is equivalent to a full subcategory of Asm(Z%).

3 Coherent Space

Coherence spaces are introduced by Girard [4]. We recall the definition of coherent spaces and stable functions
between them and give some basic fact about coherence spaces.

Definition 3.1. A coherent space X is a pair (|X|,<x) of a set |X| and a reflezive binary relation cx on
|X|. A clique of a coherent space X is a subset a C |X| such that x cx y for dll z,y € a. We writex ~x y
whenz oy y and T # y.

We write C(X) for the set of cliques of X and Cg,(X) for the set of finite cliques. With respect to the
inclusion order, C(X) forms a pointed directed complete poset (dcpo). We always regard C(X) as a dcpo
in this way. For some technical reasons, we only consider coherence spaces whose underlying set is at most
countable.



Example 3.1. We define a coherence space N' by
WI=N=1{0,1,2,...},
NCyM <= n=m

The depo C(N) is the following flat domain:
{3} {4}

\|/

Definition 3.2. Let X and Y be coherent spaces. A stable function f: C(X) — C(Y) is a continuous function
that preserves meets of bounded cliques:

uUv €C(X) = f(unv)= f(u)N f(v)
for all u,v € C(X).
We define Coh to be the category of coherent spaces and stable functions.
Theorem 3.1. The category Coh is a cartesian closed category.

We describe the cartesian closed structure of Coh. The terminal object 7 is given by |7| = @. The
product of coherence spaces X and ) is given by

[ x Y| =X+ V] ={(0,2) |z € X[} U{(L,y) | y € VI}

and
(3,2) caxy (jw) < (i=j=0and zoyw)or (i=j=1and zcy w).

For coherent spaces X and ), the underlying set of the exponential X = } is given by
|X = Y| = Can(X) x |V
and
(u,9) ca=y (0,9) <= (wUY €C(X) = yoy Y )Aw#d AuUd eC(X) = y~y ).

For more detail, see [5)].
As is known, there is a bijective correspondence between the set of stable functions from X to ) and the
set of cliques of X => ). A stable function f: C(X) — C()) gives rise to a clique Trace(f) given by

Trace(f) = {(u,y) € Can(X) x |Y] | u is the least clique such that y € f(u)},
and a clique u € C(X = Y) gives rise to a stable function Fun(u) given by
(Fun(u)) (v) = {y € |Y|| (v',y) € u for some v’ C v}.

We call Trace(f) the trace of f.
We give a stable function and a non-stable function.

Example 3.2. We define ppconv: CIN X N) = C(N) b

{0}, if a is not empty,
a) =
(Ppconv( ) {0’ z'fa, 18 empty.

This function is continuous. However, Qpcony s not stable since

Wpconv({(01 0)}) n ‘PpconV({(L 0} # WPCOHV((D)-
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Example 3.3. A function ggusiave: C(N x (N x N)) = C(N) given by

{0}, i{(0,0),(1,(0,1))} Ca,
pomme(a) = 1 O {0,004} Ca,
gt {0}, if{(1,(1,0)),(0,1)} Ca,

9, otherwise

is stable.

4 Geometry of Interaction

4.1 Weighted relation

We naturally extend arithmetic operations on N to operations on NU {o0}:

T+00=00+2Z=00;

o0, ifz#0,

Z-00=00T=
{o, if z=0.

We note that (NU {c0}, +,-,0,1) is a commutative semiring. We extend this binary summation to countable
summation:

Sem

iel

i€ly

> @i, if there is a finite Jo C I such that z; =0 foralli € I\ Io
0, otherwise.

We define a category WRel by:
e objects are sets;
o morphisms from X to Y are functions from X x Y to NU {oo}.
The identity idx: X — X is given by
1, ifz=2,

idx(x,x')={0 lf;v;ég;'

and composition of f: X -+ Y and g: Y — Z is given by

(9o f)(z,2) =) 9(y,2)f(z,y).

YEY

We can regard morphisms in WRel(X,Y) as weighted relations (or directed graphs) between X and Y.
WRel has countable biproducts. The zero object is the emptyset §. The biproduct of Xo, X1,Xa,... €

WRel is the disjoint sum
P xn = |J{(n,2) |z € Xu}
neN’ neN

with injections ¢;: X; — @, ¢y X given by

1, ifn=4and z =2,

ti(z, (n, "El)) = {

0, otherwise,
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and projections m;: X; = @, ¢y Xn given by

mi((n,z),2’) = {1, ifn=4and z =2,

0, otherwise.

For {fn: X5, = Ya}nen, the biproduct @, ¢y fn: Bpen Xn = D, en Ya is given by
. . iZ,Y)y ifi= ',
D fn ) (G0, Goy) = { @Y Hi=i
men 0, if i # 5.

The countable biproducts induce countable summation on hom-sets WRel(X,Y): for a countable family
{fi: X > Y}icr, we define 3, fi: X =Y by

(Z fi) (xxy) = Efi(zay)'

i€l i€l
As a corollary of [8, Theorem 3], we obtain a uniform trace operator on WRel.
Proposition 4.1. (WRel, 8, ®) has a uniform trace operator tr given by
triy (f: X®Z>Y®Z)=foo+ Y foro fl10 fro
neN
where
foo: X-Y
for1: X = Z
fio: Z->Y
fll: VA

are the restrictions of f.

4.2 SK-algebra

Following [1}, we construct an SK-algebra from a Gol situation ([1, Definition 4.1]) on WRel. We first define
a traced strong monoidal functor F: WRel - WRel by

FX=NxX
and
f(ziy)7 if n =m,
0, otherwise.

(F(f: X 2 Y))((n,2), (m,y)) = {

We define isomorphisms
a: NN N, B:NxN->N
by
1, ¢=0and 2n=m,
a((i,n),m)=41, i=1and 2n+1=m,
0, otherwise,

j (prmntm+1)

5 +m =k,

, otherwise.



(n+m)(n+m+1)

In the sequel, we write (n,m) for 7

to N.
We define pointwise monoidal natural transformations

dx: FX = X,

0x: FX =+ FFX,

wx FX—)(D,

cx: FX + FX®FX.

by

+ m. We note that (—,—) is a bijection from N x N

1, ifn=0and z =y,
d y L)y =
x((m,2),) {0, otherwise,

1,

6)((('"«,113), (m’ (k’ y))) = {0

wyx = the unique morphism from FX to 0,

17

Cx((n,z), (7:7 (ma y))) = {0

if (m, k) =nand z=1y,
otherwise,

ifi+2m=nandz =y,
otherwise,

and we define pointwise monoidal natural transformations

dy: X - FX,

8: FFX — FX,
wy: 0 — FX,

dy: FX® FX - FX.

by

iy, (n,2)) = {(1)
17

63{(("’7 (kv y))! (n: Z)) = {0

w'y = the unique morphism from 0 to FX,

L

CIX((iv (mv y))7 ('ﬂ, z)) = {0

Proposition 4.2. (WRel,N, F,o,a"18,871,d,d', 6,8, w,w',c,c) is a Gol situation.

fn=0and z =y,
otherwise,

if (m,k)=nandz=y,
otherwise,

ifi+2m=nand z =y,
otherwise,

Corollary 4.1. WRel(N,N) with a binary application

a-b=triy(@ toaoao (idy ® (8o FboB1)))

is an SK-algebra. As a consequence, for any formal exzpression e(z) generated by a variable z, elements in
WRel(N,N) and the binary application, there is Ax. e(z) € WRel(N,N) such that for any a € WRel(N,N),

(Az.e(z))-a =e(a).

In the sequel, we denote this SK-algebra by Z. Let < be the pointwise order on Z:

a<b < a(n,m) < b(n,m) for all (n,m) e Nx N.

144



145

It is easy to check that #Z forms a complete lattice with respect to this partial order. The least element
@ € Z is given by
@(n,m) =0,

and the least upper bound of {a; € Z}ie; is given by

<\/ ai) (n,m) = \/ a;(n,m).

iel i€l
By unfolding the definition of the binary application of %, we can check that (—) - (—) preserves joins.
Proposition 4.3. For dlla € %,
(-)-a a-(-):Z—- 2%
are join-preserving functions.
Lemma 4.1. For any family {r, € Z}nen, there is s € Z such that
s-x= z Tn - 2.
neN
Proof. s € Z given by
s(2n,2m) = Z ri(2n,2m),
ieN
s(2n, 2((i,mo), m1) + 1) = 13(2n, 2(mg, m;) + 1),
s(2((¢,n0), 1) + 1,2m) = r;(2(ng, n1) + 1, 2m),
s(2((3, o), n1) + 1,2((%, mo), m1} + 1) = 73(2(ng, n1) + 1,2(mg, m1) + 1)
satisfies s - ¢ =), yTn - 2. O

We define | € Z by
1, ifnisevenand m= 2<0, g> +1,

I(n,m) = 1, ifmisevenandn=2<0,§>+l,

0, otherwise.
For any a € #, we have | - a = a.
Lemma 4.2. Let r,s,5',s"” be elements of Z# such that s < s” and s’ < s”. Ifr-s=landr-s =1 and
r-s"=I,thenr-(sAs) =1
Proof. By monotonicity of - (-),
r-(sAs)<r.s=L

U ’

For any n,m € N such that I(n,m) = 1, since r- s = | and r . s = |, there are finite sequences

(k1,. .., ki), (k1,...,Kkb;) such that
r(2n,2(k1, k) +1) =1
&k, ky) =1
7(2(k1, k3) +1,2(ka, k3) +1) = 1
s’ (kb ky) =1

T(2(ki—1, ko) + 1,2(ki, kg ;) +1) =1
Sl(kéiq: kéi) =1
r(2(ki, kh;) +1,2m) =1
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and (I1,...,4;), (1, .., l5;) such that

r(2n,2{1,0) +1) =1

s"(1,1) =1

T(2(l1,lé> +1, 2<l2,lg> + 1) =1
s"(13,13) =

r(2(j1, 19 0) + 1,2(05,15;_1) + 1) =1
s"(I35-1,055) =1
r(2(lj,l’2j) +1,2m)=1
If ((By, oo o ki), (Ryy oo k) # (W) -+ 05), (B, - -+, 155)), then | = 7 - s > 21 Hence, ¢ = j and
((kly’ M 7kj)7 (kl" . 1kéj)) = ((lly- .. )lj)7 (lh" . 1112]))

In particular, 7- (s As’) > I [m]

5 The Category of Assemblies

Definition 5.1. An assembly X on Z is a set |X| equipped with a function
l=lix: [X| = P* (<)

where Pt () is the set of all nonempty subsets of Z.

Intuitively, the underlying set | X| of an assembly X is the set of “values” and ||z||x C R are “implemen-
tations” of z.

Example 5.1. We define N by

{2}, ifzisl,
Ni={l}UN, =
INI={L} Sl {{cx} , if z is a natural number

where we define ¢,, € Z by

enliy §) = 1, ifi=0andj=n,
nihJ) = 0, otherwise.

Definition 5.2. For assemblies X and Y, a function f from |X| to |Y| is realizable when there is T € Z
such that for any z € X, ifa € z||x, thenT-a € ||fz|ly. We call v a realizer of f.

We write Asm(Z) for the category of assemblies on & and realizable functions between them.
Proposition 5.1. The category Asm(Z) is a cartesian closed category.
Proof. See [6]. O
We describe the cartesian closed structure of Asm(%). The terminal object T € Asm(Z) is given by

T = {«},
Il = 2.
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For X,Y € Asm(Z), the product X x Y is given by

IX x Y| =|X|x|¥],
Iz, 9)llxxy = {rBs|r e lalx and s € lylly }.

where B s = a o (r @ s) oa~!. The first projection mxy: X x Y — X is realized by fst € % given by

1, ifn is even and m = 2(0,2n) + 1,
fst(n,m) = ¢ 1, if m is even and n = 2(0,2m) + 1,
0, otherwise,

and the second projection my y: X x Y =Y is realized by snd € Z given by

—

, if nis even and m = 2(0,2n + 1) + 1,
snd(n,m) =< 1, if miseven and n = 2(0,2m+ 1) +1,
, otherwise.

(=

The exponential X = Y is given by
X =Y|={f:1X|—= Y]] f is realizable} ,
[[flx=y = {r € Z| r is a realizer of f} .

Remark 5.1. In [6], ||(z,y)||xxy is given by

(@ Y)ilxxy = {Mk.k-7-s|7 € |zlx and s € |lylly} .

This is essentially equivalent to our definition of ||(z,y)l|xxv because there are p,q € Z such that for all
a,be %,
p-(aBHb)=Ak.k-7T-5,
qg-(Ak.k-r-s)=aBb.

We illustrate the exponential of Asm(%). The underlying set of N = N is the set of monotone functions
from N U{L} to N U{L} where we regard N U {L} as the following poset

’ X 3 4
€L
We can check this fact as follows. First, if f: {L} UN — {L} UN is realizable, then by Proposition 4.3, f
must be monotone. Next, if f: {L} UN — {1} UN is a monotone function, then r € #Z given by

1, ifn=0and m=1,
r(n,m)=41, ifn=2(0,m)+1and m=2f(k),
0, otherwise

realizes f.
To illustrate how weights work in Asm(Z%), we give an example of a function that is not realizable. We
define a function p: |N| x |N| = |N| by

0, ifzoryisO,
p(z,y)={ y

1, otherwise.
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We suppose that p is realizable and derive contradiction. If p is realizable, then there is r € % such that
r-(coBco) =co, r(cgBo)=co, - (@B c) = co r-(0B2) =0
Then, by Lemma 4.2,
S=r- (GBG)=(r-(coEBS))A(r-(&Bco)) = co.

We explain the fact that p is not realizable in terms of Game semantics [2]. The condition r-(coB@) = co
means that 7 must check whether the first argument is a value or not without throwing any question to
the second argument, and if the first argument is a value then r must return 0. Similarly, The condition
7- (@B cy) = o means that » must check whether the second argument is a value or not without querying
about the first argument, and if the second argument is a value then r must return 0. Therefore, there must
be two interaction paths in the execution of (r - (co B ¢p))(0,0):

N x N = N N x N = N
0

o o

.\0 .\0

Hence, (7 - (cn Bem))(0,0) = ¢o(0,0) = 1 must be greater than or equal to 2.

6 Simulation between Asm(%#) and Coh

Below, given a triple (X, X,6) consisting of an assembly X, a coherence space X and a bijection #: | X| —
C(X), we always identify X with the set of cliques C(X) via 6. For example, a bounded subset D C |X]|
means a subset of | X| that is mapped to a bounded subset of C(X) by 0. A finite element of | X| means an
element z € | X| such that 8(z) € C(X) is finite.

Let ¥ be an assembly given by

— _JH{=}, ifz=0,
|E| = {07 1}7 “I”E = {{|}, ifz=1.

Definition 6.1. A coherent assembly is a triple (X, X,0) consisting of an assembly X with a coherence
space X and a bijection 0: | X| — C(X) subject to the following conditions.

1. There is a family {r, € ||u|x}ue|x| such that
L] T@ = g,
® Tymw = Ty ATy for any bounded pair u,v € | X|,

¢ 1yp = Vyep Tu for any bounded subset D C | X|,

2. For any finite u € |X|, a function a,: | X| — |Z| given by
wor={y 22
is a realizable function from X to ¥.
For example, (N, N,6) is a coherent assembly where 0 is given by
6(L) =0, 0(n) = {n}.

For simplicity, for every coherent assembly (X, X,0), we fix {r, € |lullx}ue;x| and a realizer d, of o, for
each u € | X| that satisfy the conditions in Definition 6.1.



Lemma 6.1. Let (X, X,6) be a coherent assembly. For all u,v € |X]|,
uC v <= there arer € ||lullx and s € |Jv||x such thatr < s.

Proof. If u C v, then {u, v} is directed. Hence, , < r,. If there are r € |ju|x and s € ||v||x such that r < s,
then for any finite v’ € | X]|,

W Cu = dy-r=I
= dyi-s=1
= ¥/ Cw

Hence, u C v. ]

Lemma 6.2. For coherent assemblies (X, X,0) and (Y,V,€), if f: |X| — |Y| is realizable, then f is contin-
uous.

Proof. Monotonicity of f follows from Lemma 6.1. We choose a realizer p I f. For any directed subset
D C |X|, the lub |J D is mapped to f(|J D), which is realized by

p-ryp=p- (\/ ru> =\ rr

u€D u€D

For any finite v € | X|,

vgf(UD) — dv~(\/ p-ru) =1

u€D
< d,-(p-ry) =1 for some u € D
<= v C f(u) for some u € D

= vc | fu.

u€D
Hence,  (UD) = Usep £(d). o
Lemma 6.3. For coherent assemblies (X, X,0) and (Y, ),£), if f: |X| = |Y| is realizable, then f is stable.
Proof. We choose a realizer p I f. Let u,v € |X| be a bounded pair. For any finite w € | X/,
wgf(u)ﬂf(v) g dw'(p'ru)zl anddw'(p'rv)=|&nddw'(p'rqu) =1
= (Az.dy - (p' :E)) (ru /\Tv) =1
= dy - (p- (T ATo)) =1

= dw'(p-’l'unv)zl
= wC f(unu).

Hence, f(u) N f(v) = f(unNw). O

Lemma 6.4. For coherent assemblies (X, X,0) and (Y, Y,€), if f: | X| — |[Y] is a stable function, then f is
realizable.

Proof. Let T be the trace of f, i.e.,

T = {(%,y) € Csn(X) x [V| | y € f(u) and y & f() for any u' & u}.
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By Lemma 4.1, there is s € & such that

s-a= Z dy-a-T{y
(u,9)ET

foralla € Z. For any u € |X| and a € |ul|x,

s-a= Z du <@ Ty)
(v, y)eT

= Z T{v}

(v ,y)€T and u'Cu

= V T{v}

(u',y)€T and w/Cu
= Tf(u)-
Hence, s realizes f. [}
We define a category AsmC(Z) as follows.
e Object are coherent assemblies.
e Morphisms from (X, X,8) to (Y,), £) are realizable functions from X to Y.

It follows from Lemma 6.3 and Lemma 6.4 that AsmC(£) is equivalent to a full subcategory of Asm(Z%)
and is also equivalent to a full subcategory of Coh.

Proposition 6.1. The category AsmC(Z) is cartesian.
Proof. An AsmC(Z)-object consisting of
e the terminal object ({8}, |8 = {2}) in Asm(Z),
o the terminal object # in Coh,
* idg)

is a terminal object of AsmC(%). For AsmC(%)-objects (X, X,0) and (Y,),§), we define (X, X,0) x
(Y,Y,8) by

e X XY,
e A x),
o x: |X| x |Y] = C(X x V) given by
x(u,v) = {(0,2) |z € 6(w)} U {(1,v) | y € £(v)}
is a product of (X, X,6) and (Y, ),£). For (u,v) € |X| x |[Y], 7y € [|(u,v)| given by
T(uw) = Tu B7y
satisfy the conditions in Definition 6.1. For a finite (u,v) € |X| x [Y], 0uw): X x Y — X is realized by

Az.dy - (fst-z) - (dy - (snd - y)).

150
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Proposition 6.2. The category AsmC(Z%) is cartesian closed.
Proof. For AsmC(Z)-objects (X, X,8) and (Y, ),§), we define (X, X,0) = (Y,),§) by
e X=Y,
e X=),
e x:|X =Y|—=C(X =) given by
x(f) = the trace of £o fo 671,
By Lemma 6.3 and Lemma 6.4, the definition of x makes sense. We check that this is a coherent assembly.

Let uq,us,... be an enumeration of elements in Cq,(X), and let y;,9s,... be an enumeration of elements in
|Y|. For a realizable f: X — Y, we choose ry € #Z such that

rf-z=2rn,f-z
neN

where

. A2y, - T Ty}, if (tn,yn) € x(f),
™S a, otherwise.

Like in Lemma 6.4, we can show that ry is a realizer of f. It follows from the construction in the proof of
Lemma 4.1, we can choose ¢ so that r; satisfies the requirements in Definition 6.1. For (u,y) € |X = )|,
d(u,y) given by

Az dyy - (- 14)

realizes 0, ): X = Y — X. It is straightforward to generalize this construction to arbitrary finite cliques
of ¥ = Y. [}

Theorem 6.1. Let A be the full cartesian closed subcategory of Asm(Z) generated by N. Then A is
equivalent to a full subcategory of Coh.

Proof. By Proposition 6.2 and Lemma 6.3 and Lemma 6.4, the projection functors P;: AsmC(%Z) —
Asm(Z%) and P;: AsmC(Z) — Coh are fully faithful cartesian closed functors. It is straightforward to
check A is equivalent to a full cartesian closed subcategory of AsmC(Z). O
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