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1 Introduction

Among all the \mathbb{Z} bases of a lattice, some are better than others. The ones

whose elements are the shortest are called reduced. Since the bases all have

the same discriminant, to be reduced implies also that a basis is not too far

from being orthogonal.
In 1982 A.K.Lenstra, H.W.Lenstra, Jr., and L.Lovasz presented the LLL

reduction algorithm. It was originally meant to find ��short� vectors in lat‐

tices, i.e. to determine a so called reduced basis for a given lattice. H.Napias
generalized LLL reduction algorithm over euclidean rings or orders([3| ).

In this paper we define LLL reduced basis over imaginary quadratic fields.

We consider a lattice in the n‐dimensional linear space V=F^{n} , so F is an

imaginary quadratic field. F is included by the field of complex numbers.

Lenstra, Lenstra, and Lovász showed some properties about reduced bases

over real number fields. We proved these properties hold over imaginary
quadratic fields.

2 Basis reduction on \mathbb{Z}‐modules

We consider a lattice in n‐dimensional linear space \mathbb{R}^{n}
, where \mathbb{R} is the field

of real numbers.

A subset  $\Lambda$ of the  n‐dimensional real vector space \mathbb{R}^{n} is called a lattice if

there exists a basis b_{1}, \cdots

,  b_{n} of \mathbb{R}^{n} such that

 $\Lambda$=\displaystyle \sum_{i=1}^{n}\mathbb{Z}b_{i}=\{ \sum_{i=1}^{n}r_{i}b_{i} r_{i}\in \mathbb{Z}(1\leq i\leq n) \}.
* This paper is a preliminary version and a final version will be submitted to elsewhere.
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In this situation we say that the set \{b_{1}, \cdots , b_{n}\} of vectors forms a basis for

 $\Lambda$
,

or that it spans  $\Lambda$ . We call  n the rank of  $\Lambda$.

For a \mathbb{Z}Ỷ‐basis b_{1}, \cdots

,  b_{n} of  $\Lambda$ the discriminant  d( $\Lambda$) of  $\Lambda$ is defined by

 d( $\Lambda$)=|\det(b_{i}, b_{j})|^{\frac{1}{2}} \geq 0 , where (, ) denotes the ordinary inner product on

\mathbb{R}^{n} . This does not depend on the choice of the basis. And by Hadamard�s

inequality, we have d( $\Lambda$)\displaystyle \leq\prod_{i=1}^{n}\Vert b_{i}\Vert.
In the sequel we consider the construction of special bases of lattices  $\Lambda$.

For the applications and for geometrical reasons we are interested in bases

consisting of vectors of small norm. Minkowski reduced is an example of

reduced basis. The computation of a Minkowski reduced basis of a lattice

can be very time consuming. Hence, in many cases one is satisfied with

constructing bases of lattices which are reduced in a much weaker sense.

The most important reduction procedure now in use is LLL‐reduction which

was introduced in 1982 by Lenstra, Lenstra, and Lovász in a paper [2].
Let b_{1}, \cdots

,  b_{n}\in \mathbb{R}^{n} be linearly independent. We recall the Gram‐Schmidt

orthogonalization process. The vectors b_{i}^{*} (1 \leq i\leq n) and the real numbers

$\mu$_{ij}(1\leq j<i\leq n) are inductively defined by

b_{i}^{*}:=b_{i}-\displaystyle \sum_{j=1}^{i-1}$\mu$_{ij}b_{j)}^{*} $\mu$_{ij}:=\frac{(b_{i},b_{j}^{*})}{(b_{j}^{*},b_{j}^{*})},
where ( , ) denotes the ordinary inner product on \mathbb{R}^{n} . We call a basis

b_{1} , , b_{n} for a lattice LLL‐reduced if

|$\mu$_{ij}| \leq \displaystyle \frac{1}{2} for 1\leq j<i\leq n (1)

and

\displaystyle \Vert b_{i}^{*}+$\mu$_{i,i-1}b_{i-1}^{*}\Vert^{2}\geq\frac{3}{4}\Vert b_{i-1}^{*}\Vert^{2} for 1<i\leq n (2)

where \Vert \Vert denotes the ordinary Euclidean length. Notice that the vectors

 b_{i}^{*}+$\mu$_{i,i-1}b_{i-1}^{*} and b_{i-1}^{*} appearing in (2) are projections of b_{i} and b_{i-1} on

the orthogonal complement of \displaystyle \sum_{j=1}^{i-2}\mathbb{R}b_{j} . The constant \displaystyle \frac{3}{4} in (2) is arbitrarily
chosen, and may be replaced by any fixed real number y with \displaystyle \frac{1}{4}<y<1.

We state without proof several key properties of LLL‐reduced bases. The

proof is given in [2].

Proposition 2.1 [2, Proposition(1.6), (1.11), (1.12)] If b_{1}, \cdots

,  b_{n} is some

reduced basis for a lattice  $\Lambda$ in \mathbb{R}^{n} , then

(i) \Vert b_{j}\Vert^{2}\leq 2^{i-1}\Vert b_{i}^{*}\Vert^{2} for 1\leq j\leq i\leq n,
(ii)  d( $\Lambda$)\displaystyle \leq\prod_{i=1}^{n}\Vert b_{i}\Vert \leq 2^{n(n-1)/4}d( $\Lambda$) ,

(iii) \Vert b_{1}\Vert \leq 2^{(n-1)/4}d( $\Lambda$)^{1/n},
(iv) \Vert b_{1}\Vert^{2}\leq 2^{n-1}\Vert x\Vert^{2} for every x\in $\Lambda$, x\neq 0,
(v) For any linearly independent set of vectors x_{1}, x_{2}, \cdots

,  x_{t}\in $\Lambda$ we have

\displaystyle \Vert b_{j}\Vert^{2}\leq 2^{n-1}\max\{\Vert x_{1}\Vert^{2}, \cdots , \Vert x_{t}\Vert^{2}\} for 1\leq j\leq t\leq n,
where \Vert\cdot\Vert denotes the ordinary Euclidean length.
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3 Basis reduction on \mathcal{O}_{F}‐modules

Let F be a imaginary quadratic field and \mathcal{O}_{F} be the ring of integers in F,
now we consider a lattice in the n‐dimensional linear space V=F^{n}.

Let n be a positive integer. A subset  $\Lambda$ of the  n‐dimensional vector space

V is called a \mathcal{O}_{F} ‐lattice if there exists an \mathcal{O}_{F}‐basis b_{1}, \cdots

,  b_{n} of V such that

 $\Lambda$=\displaystyle \sum_{i=1}^{n}\mathcal{O}_{F}b_{i}=\{ \sum_{i=1}^{n}r_{i}b_{i} r_{i}\in \mathcal{O}_{F}(1\leq i\leq n) \}.
Suppose that a= (a_{1}, \cdots , a_{n})^{t}, b=(b_{1}, \cdots , b_{n})^{t} are vectors in \mathbb{C}^{n} . The

complex euclidean inner product of a and b is defined by

(a, b)=a_{1}\overline{b}_{1}+\cdot \cdot\cdot+a_{n}\overline{b}_{n} . (3)

Suppose that x= (x_{1}, \cdots , x_{n})^{t} is vector in \mathbb{C}^{n} . The norm of x is defined

by
\Vert x\Vert=\sqrt{(x,x)}=\sqrt{|x_{1}|^{2}++|x_{n}|^{2}} , (4)

where, x_{i}(\in \mathbb{C}) is the i‐th component of x , and \Vert x\Vert \in \mathbb{R}.

Let b_{1}, \cdots

,  b_{n}\in F^{n} be linearly independent. Similarly the vectors  b_{i}^{*}(1\leq
 i\leq n) and the complex numbers $\mu$_{ij}(1 \leq j <i\leq n) are inductively defined

by b_{i}^{*} := b_{i}-\displaystyle \sum_{j=1}^{i-1}$\mu$_{ij}b_{j}^{*} , $\mu$_{ij} := (b_{i}, b_{j}^{*})/(b_{j}^{*}, b_{j}^{*}) , where ( , ) denotes the

complex euclidean inner product on \mathbb{C}^{n} . And LLL‐reduced basis is similarly
defined by (1), (2).

From now on, we consider the imaginary quadratic field F = \mathbb{Q}(\sqrt{m}) ,

where m is a square free negative integer, R=\mathcal{O}_{F} , the ring of integers in F.

Given imaginary quadratic field \mathbb{Q}(\sqrt{m}) := \{a+b\sqrt{m} | a, b \in \mathbb{Q}\} , the

ring \mathcal{O}_{F} of integers in \mathbb{Q}(\sqrt{m}) is the following:
(i) If m\not\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d} 4) , then \mathcal{O}_{F} :=\{a+b\sqrt{m}| a, b\in \mathbb{Z}\}.
(ii) If m\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d} 4) , then \mathcal{O}_{F} :=\displaystyle \{\frac{a+b\sqrt{m}}{2} | a, b\in \mathbb{Z}, a\equiv b (mod2) \}.

For above two cases about m
,

we can prove its non‐zero absolute values

are greater than 1. So, we show below it as a lemma.

Lemma 3.1 If F = \mathbb{Q}(\sqrt{m}) , where m < 0 , we get for any non‐zero

r\in \mathcal{O}_{F}, |r|^{2}\geq 1.

This lemma implies the following proposition.

Proposition 3.2 Let F denote the imaginally quadratic field \mathbb{Q}(\sqrt{m}) and

R = \mathcal{O}_{F} be the ring of integers in F. Let b_{1}, \cdots

,  b_{n} be a basis of $\Lambda$_{f} and

b_{i}^{*} (i=1,2, \cdots , n) be as above. Then we have

\Vert x\Vert^{2}\geq \Vert b_{i}^{*}\Vert^{2} for some i\leq n . (5)
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for any non‐zero x\in $\Lambda$.

These arguments imply the following main theorem.

Theorem 3.3 Let F=\mathbb{Q}(\sqrt{m}) , where m is a square free negative integer,
If b_{1}, \cdots

,  b_{n} is some reduced basis for a lattice  $\Lambda$ in  V
,

then

(i) \Vert b_{j}\Vert^{2}\leq 2^{i-1}\Vert b_{i}^{*}\Vert^{2} for 1\leq j\leq i\leq n_{f}
(ii)  d( $\Lambda$)\displaystyle \leq\prod_{i=1}^{n}\Vert b_{i}\Vert \leq 2^{n(n-1)/4}d( $\Lambda$) ,

(iii) \Vert b_{1}\Vert \leq 2^{(n-1)/4}d( $\Lambda$)^{1/n},
(iv) \Vert b_{1}\Vert^{2}\leq 2^{n-1}\Vert x\Vert^{2} for every x\in $\Lambda$, x\neq 0,
(v) For any linearly independent set of vectors x_{1}, \cdots

,  x_{t}\in $\Lambda$ we have

\displaystyle \Vert b_{j}\Vert^{2}\leq 2^{n-1}\max\{\Vert x_{1}\Vert^{2}, \cdots , \Vert x_{t}\Vert^{2}\} for 1\leq j\leq t\leq n,
where \Vert\cdot\Vert denotes the norm defined by (4).

4 Absolute values of elements in some the

rings of integers \mathcal{O}_{F}

In case F is a rational number field or a imaginary quadratic field, for non‐

zero element of \mathcal{O}_{F} , its absolute value is greater than 1. About this, we shall

discuss about general number fields.

Let F be a number field of degree n and \mathcal{O}_{F} denote its ring of integers.
It is well‐known that \mathcal{O}_{F} is a lattice (free abelian group) of rank n . We shall

use the Pigeonhole Principle, we can prove the following lemma.

Lemma 4.1 Suppoose that  $\alpha$ and  $\beta$ are real numbers and at least one of
 $\alpha$,  $\beta$ is in \mathbb{R}\backslash \mathbb{Q} . Then there are infinitely many triads (x, y, z) of integers
such that |x-z $\alpha$|<1/\sqrt{z} and |y-z $\beta$| <1/\sqrt{z}.

Proposition 4.2 Let L be a lattice of rank n \geq  3 in \mathbb{C} . Then, for any

positive real number  $\epsilon$ , there is a non‐zero  z\in L such that |z| < $\epsilon$.

By similar way, we can prove the following.

Proposition 4.3 Let L be a lattice of rank n \geq  2 in \mathbb{R} . Then, for any

positive real number  $\epsilon$ , there is a non‐zero  z\in L such that |z| < $\epsilon$.

By these propositions, for a non‐zero element of \mathcal{O}_{F} , its absolute value is

greater than 1, if and only if F is a rational number field or a imaginary
quadratic field. We shall think this problem from other approaches using
concept of group theory. About this we shall show as the following.

12



Lemma 4.4 Let G be some additive subgroup of real number that has at least

two elements. In this case, G is either dense or cycic (has a least positive
element).

Using this lemma, we shall discuss about an absolute value of a non‐zero

element over general number fields. Let G be the ring of integers in F i.e.

G=\mathcal{O}_{F} . Then we can prove next propositions.

Proposition 4.5 Let G=\mathcal{O}_{F} be the ring of integers in F and rank n\geq 2
in \mathbb{R} . Then G is dense in \mathbb{R}.

Proposition 4.6 Let G=\mathcal{O}_{F} be the ring of integers in F and rank n\geq 3
in \mathbb{C} . Then 0 is an accumulation point in C.
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