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Abstract

The Eulerian recurrent length of a graph G, e(G) , is the maximum of the shortest

subcycle length of Eulerian circuits of G . Upper and lower bounds on the Eulerian

recurrent length of complete graphs was provided by the author as  n-4\leqq e(K_{n})\leqq
 n-3 for odd integers n\geqq 15 . In this article, the method of proving the inequality
is improved.
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1 Introduction

Let  C = v_{0} \rightarrow  v_{1} \rightarrow  v_{2} \rightarrow. . . \rightarrow  v_{m-1} \rightarrow  v_{0} be a circuit of a graph, where m is the

length of C . For any integer k , we regard v_{k} as the vertex v_{k\mathrm{m}\mathrm{o}\mathrm{d} m} in C for convenience of

discussion, where kmodm is the minimum nonnegative integer of the form k—qm with

integer q . We call a subwalk W=v_{i}\rightarrow v_{i+1} \rightarrow. . .

\rightarrow v_{j} in C a subcycle if v_{i}=v_{j} and

W is a cycle of K_{n} . The shortest subcyle length of C is denoted by s(C) . Let G be a

Eulerian graph. We call e(G) =\displaystyle \max{  s(C) | C is an Eulerian circuit of G} the Eulerian

recurrent length (ERL) of G . Let K_{n} denote the complete graph with n vertices, where

n is an odd positive integer with n \geqq 3 . Then, K_{n} is a Eulerian graph. We abbreviate

e(K_{n}) as e(n) in this paper.

We have proved the following fact. Let k be an arbitrary integer greater than 330. Let

G denote a given four‐regular Eulerian graph. Then, the problem to determine whether

e(G) \geqq  k or not is NP‐complete[l]. We also determined the ERL of complete bipartite
graphs as follows. Let K_{m,n}' denote the complete bipartite graph of vertex classes with m

and n vertices. Let m and n be even integers with 0<n<m . Then, e(K_{n,n})=2n-4
and e(K_{m,n})=2n\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}[4][2] . We also determine the ERL of complete graphs K_{n} , namely
e(n) ,

for particular small integers n by computer verification. Equation e(3)=e(5) =3

holds, and, for any  n\in \{7 , 9, 11, 13 \} , equation e(n)=n-3 holds. For complete graphs
K_{n} with odd integer n\geqq 15 , we have had the following upper and lower bounds on e(n) :

n-4\leqq e(K_{n})\leqq n-3.

The left inequality above can be obtained by showing a construction method of a Eulerian

circuit C of K_{n} with a shortest subcycle of length n-4 . The construction method is based
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on a decomposition of E(K_{n}) , the edge set of K_{n} , into Hamiltonian cycles. The Eulerian

circuit C can be obtained by aligning the Hamiltonian cycles in appropriate order, and

by joining them[2]. We will describe the method of proving the right inequality above by
solving integer programming problems in the previous article[2]. Then, we will give an

improvement of the proof by a modification to the integer programming problem.

2 Main arguments

For a circuit C of length m and an integer i, C(i) denotes the vertex on position i\mathrm{m}\mathrm{o}\mathrm{d} m in

C , and is called the i‐th vertex on C . Hence, C=C(0)\rightarrow C(1)\rightarrow\cdots\rightarrow C(m-1)\rightarrow C(0)
holds, and any two edges C(i)C(i+1) and C(j)C(j+1) are different if i<j <i+m.
For any integer i, N_{C}(i) denotes the unique integer k such that

i<k\leqq i+m, C(k)=C(i) , and C(j)\neq C(i) for anyj with i<j<k.

Hence, for any integer i, N_{C}^{1} (i) denotes the unique integer k such that N_{C}(k)=i.
Suppose that C is an Eulerian circuit of a complete graph K_{n} . An edge e=C(i)C(i+1)

is negative if either

N_{C}^{1}(i+1)<N_{C}^{1}(i) and N_{C}^{(}i ) <N_{C}(i+1)

or

N_{C}^{1}(i)<N_{C}^{1}(i+1) and N_{C}^{(}i+1 ) <N_{C}(i)

holds, and positive otherwise. A quadruple (i,j, k, l) of integers is \mathrm{a} (non‐contact) position
reversal, or PR, on C ,

if i<j<k=N_{C}(j)<l=N_{C}(i) holds. The following proposition
readily follows from the definitions above.

Proposition 1 For any Eulerian circuit C of K_{n} with n \geqq  7, the number of PR �s on

C is not less than that of negative edges on C , where two PR �s (i,j, k, l) and (i',j', k', l')
are regarded as identical if i\equiv i' (\mathrm{m}\mathrm{o}\mathrm{d} m) , j\equiv j' (\mathrm{m}\mathrm{o}\mathrm{d} m)_{f} k\equiv k' (\mathrm{m}\mathrm{o}\mathrm{d} m) , and l\equiv l'

(\mathrm{m}\mathrm{o}\mathrm{d} m) hold.

For a position reversal r= (i,j, k, l) on C, i and l are called the position reversal head

and the position reversal tail of r
, respectively.

Let  n\geqq  7 be an odd integer. Let m denote n(n-1)/2 ,
the number of edges of K_{n}.

We assume that there exists an Eulerian circuit C with s(C)=n-2 of K_{n} to prove that

e(n)\leqq n-3 by contradiction. We have the following two lemmas by tedious arguments[3].
Lemma 1 For any integer i,

n-2\leqq N_{C}(i)-i\leqq n+3

holds.

Lemma 2 For any integer i , if i is a position reversal head on C , then the following
equations hold:

N_{C}(i)-i=n+3,
N_{C}(i+1)-(i+1)=n-2 , and

N_{C}(i+2)-(i+2)=n-1.
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Furthermore, for any integer i , if i is a position reversal tail on C , then the following
equations hold:

i-N_{C}^{1}(i)=n+3,
(i-1)-N_{C}^{1}(i-1)=n-2 ,

and

(i-2)-N_{C}^{1}(i-2)=n-1.

For an integer p and a positive integer  $\mu$, S_{ $\mu$}(p) denotes the set \{p,p+1, . . . ,p+ $\mu$-1\}.
Then, A_{ $\mu$}^{C}(i) , B_{ $\mu$}^{C}(i) , and C_{ $\mu$}^{c}(i) denote the number of left positions of negative edges on

C , position reversal heads on C ,
and position reversal tails on C in S_{ $\mu$}(i) , respectively.

The following lemma follows from Proposition 1 immediately.

Lemma 3 Let n be an integer greater than or equal to 7. Let C be an Eulerian circuit of
K_{n} . Let m denote n(n-1)/2 ,

the length of C. Let  $\mu$ be a positive integer less than  m.

Then, the following two inequalities hold:

\displaystyle \sum_{i=0}^{m-1}(B_{ $\mu$}^{C}(i)-A_{ $\mu$}^{c}(i)) \geqq 0 ,
and (1)

\displaystyle \sum_{i=0}^{m-1}(B_{ $\mu$}^{C}(i)+C_{ $\mu$}^{C}(i)-2A_{ $\mu$}^{C}(i)) \geqq 0 . (2)

Corollary 1 Let n be an integer greater than or equal to 7. Let C be an Eulerian circuit

of K_{n} . Let m denote n(n-1)/2 , the length of C. Let  $\mu$ be a positive integer less than  m.

Then, there is an integer p\in\{0, 1, 2, . . . , m-1\} such that

B_{ $\mu$}^{C}(p)-A_{ $\mu$}^{c}(p)\geqq 0 . (3)

There also is q\in\{0, 1, 2, \cdots, m-1\} such that

B_{ $\mu$}^{C}(q)+C_{ $\mu$}^{c}(q)-2A_{ $\mu$}^{C}(q)\geqq 0 . (4)

Suppose that an integer p and a positive integer  $\mu$ are given. Let  x(i)=(p+i-2)-
N_{\overline{c}}^{1}(p+i-2) and y(i) =N_{C}(p+i-2)-(p+i-2) for each i \in \{0, 1, 2, . . . ,  $\mu$+3\}.
Then, the following conditions must hold by definition:

(a) \forall i\in\{0, 1, . . . ,  $\mu$+3\}, \forall j\in\{0, 1, . . . ,  $\mu$+3\}, i\neq j \Rightarrow (i-x(i)\neq j-x(j)\wedge i+y(i)\neq
 j+y(j)) ,

(b) \forall i\in\{0, 1, . . . ,  $\mu$+2\}, |x(i+1)-x(i)-1|\neq 1 \wedge |y(i)-y(i+1)-1|\neq 1,

(c) \forall i\in \{0, 1, . . . ,  $\mu$+3\}, \forall j\in \{0, 1, . . . ,  $\mu$+3\},  i\neq j\Rightarrow (|(i-x(i))-(j-x(j))| \neq
 1 \vee |(i+y(i))-(j+y(j))|\neq 1) ,

(d1) \forall i\in\{0, 1, . . . ,  $\mu$-2\}, \exists j\in\{0 , 1, 2, 3, 4, 5 \}, x(i+j)=j , and

(d2) \mathrm{V}i\in\{0, 1, . . . ,  $\mu$-2\}, \exists j\in\{0 , 1, 2, 3, 4, 5 \}, y(i+j)=5-j.
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Let X and Y denote (x(0), x(1), \ldots, x( $\mu$+3)) and (y(0), y(1), \ldots, y( $\mu$+3 respectively.
Let M_{ $\mu$}(X, Y) denote the number of left positions of negative edges in \{p,p+1 , . . .

, p+

 $\mu$-1\} . Notice that, for each i\in\{0, 1, 2, . . . ,  $\mu$+3\}, p+i-2 is a left position of a negative
edge on C , if and only if the following condition holds:

(x(i)<x(i+1) \wedge y(i)<y(i+1)) \vee (x(i)>x(i+1) \wedge  y(i)>y(i+1

Let R_{ $\mu$}(X, Y) denote the number of position reversal heads in \{p,p+1, . . . ,p+ $\mu$-1\}.
Notice that, for each i\in\{0, 1, 2, . . . ,  $\mu$+3\}, p+i-2 is a position reversal head on C ,

if

and only if the following condition holds:

y(i)=5 \wedge y(i+1)=0 \wedge y(i+2)=1.

Let R_{ $\mu$}'(X, Y) denote the number of position reversal tails in \{p,p+1, . . . , p+ $\mu$- 1\}.
Notice that, for each  i\in \{0, 1, 2, . . . ,  $\mu$+3\}, p+i-2 is a position reversal tail on C ,

if

and only if the following condition holds:

x(i)=5 \wedge x(i-1)=0 \wedge x(i-2)=1.

The problem finding the maximum value of R_{ $\mu$}(X, Y)-M_{ $\mu$}(X, Y) under the conditions

(a), (b), (c), (d1) and (d2) can be formulated as an integer programming problem. By
solving the problem, we have:

\bullet There is no position  i on C such that R7 (X, Y)>M_{7}(X, Y) .

\bullet For any position  i on C, M_{7}(X, Y)\geqq 2 holds.

Those conditions are too tight for C . Additional arguments therefore lead us to contradic‐

tion. Thus, we have proved that there is no Eulerian circuit C of K_{n} with s(C)=n-2 for

any odd integer n\geqq 15[3] . However, a modification to the integer programming problem
saves the additional arguments above as described in the next paragraph.

The problem finding the maximum value of R_{ $\mu$}(X, Y)+R_{ $\mu$}'(X,y)-2M_{ $\mu$}(X, Y) under

the conditions (a), (b), (c), (d1), and (d2) can be formulated as an integer programming
problem. By solving the problem, we have:

\bullet There is no position  i on C s.t. R7 (X, \mathrm{Y})+R_{7}'(X, Y)\geqq M_{7}(X, Y) .

It directly follows from the statement above that there is no Eulerian circuit C of K_{n}
with s(C)=n-2 . Thus, the proof have been simplified. We consider that complexity of

the integer programming problem is substituted for a part of arguments in the previous
proof.

3 Concluding Remarks

We has described an improvement of the previous proof of the upper bound on the Eulerian

recurrent length of complete graphs K_{n} for odd integers n \geqq  7 . The improvement has

been brought by a modification to the integer programming problem used for deriving a

contradiction.

The gap between the upper and lower bound on the Eulerian recurrent length of K_{n},
e(n) , for odd k \geqq  15 is still remains as n-4 \leqq  e(n) \leqq  n-3 . We conjecture that
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e(n)=n-4 holds for any odd integer n\geqq 15 . Currently, we try to verify that e(15)=11
by computer. However, we estimate the number of primitive checks on graphs required
by computer experiments for the verification according to naive methods at about 3^{45}
or more. The computer experiments, therefore, should result in failure in the current

computation environment.
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