Lattices of surjective weak weight preserving homomorphisms of digraphs

静岡理工科大学・情報学部 國持 良行 Yoshiyuki Kunimochi Faculty of Comprehensive Informatics, Shizuoka Institute of Science and Technology

abstract We introduced an extension of homomorphisms of general weighted directed graphs and investigated the semigroups of surjective homomorphims and synthesize graphs to obtain a generator of pricipal left (or right) ideal in the semigroup[11]. This study is originally motivated by reducing the redundancy in concurrent systems, for example, Petri nets. [10]. We have got the result that for a given graph our homomorphism G has freeness determined by the connection and the cycles in G.

In a general weighted directed graphs $(V_i, E_i, W_i)(i = 1, 2)$, a usual graph homomorphism $\phi : V_1 \to V_2$ satisfies $W_2(\phi(u), \phi(v)) = W_1(u, v)$ to preserve adjacency of the graphs. Whereas we extend this definition slightly and our homomorphism is defined by the pair (ϕ, ρ) based on the similarity of the edge connection. (ϕ, ρ) satisfies $W_2(\phi(u), \phi(v)) = \rho(u)\rho(v)W_1(u, v)$, where $\phi : V_1 \to V_2, \rho : V_1 \to \mathbf{R}_+$ and \mathbf{R}_+ is the set of positive real numbers.

In this paper we investigate whether for a w-homomorphism (ϕ, ρ) from a given digraph G, ρ is uniquely determined or not. As a result, it is uniquely determined if undirected graph \overline{G} obtained from G has no even cycles and no isolated vertices. Additionally we overview the lattice structure of graphs, which are ordered by surjective w-homomorphisms.

1 Preliminaries

We introduced an extension of homomorphisms of general weighted directed graphs[11]. Here we overview the extension and give new examples of them with free parameters.

1.1 Graphs and Morphisms

In this section we summarize definitions of weighted digraphs, w-homomorphisms and compositions. We denote the set of positive real numbers by $\mathbf{R}_{>0}$ and the set of nonnegative real numbers by $\mathbf{R}_{\geq 0}$.

DEFINITION 1.1 A weighted directed graph (weighted digraph, for short) is a 3-tuple (V, E, W) where

- (1) V is a finite set of vertices,
- (2) $E(\subset V \times V)$ is a set of edges,
- (3) $W: (V \times V) \rightarrow \mathbf{R}_{\geq 0}$ is a weight function.

According to custom, $(u, v) \in E \iff W(u, v) \neq 0$.

DEFINITION 1.2 Let $G_i = (V_i, E_i, W_i)$ (i = 1, 2) be the weighted digraphs. Then a pair (ϕ, ρ) is called a *(weak weight preserving) homomorphism* (for short, *w-homomorphism*) from G_1 to G_2 if the maps $\phi : V_1 \to V_2, \rho : V_1 \to \mathbf{R}_{>0}$ satisfy the condition that for any $u, v \in V_1$,

$$W_2(\phi(u), \phi(v)) = \rho(u)\rho(v)W_1(u, v).$$
(1.1)

Especially if $\rho = 1_{V_1}$, i.e., $\rho(u) = 1$ for any $u \in V_1$, then w-homomorphism is called a *strictly weight preserving homomorphism (s-homomorphism*, for short).

The w-homomorphism (ϕ, ρ) is called *injective* (resp. *surjective*) if ϕ is injective (resp. surjective). In particular, it is called a *w-isomorphism* from G_1 to G_2 if it is injective and surjective. Then G_1 is said to be *w-isomorphic* to G_2 and we write $G_1 \simeq_w G_2$. Moreover, in case of $G_1 = G_2 = G$, a w-isomorphism is called an *w-automorphism* of G. By $\operatorname{Aut}_w(G)$ we denote the set of all the w-automorphisms of G. Similarly s-isomorphism \simeq_s s-automorphism and $\operatorname{Aut}_s(G)$ are defined.

EXAMPLE 1.1 Let $G_i = (V_i, E_i, W_i)$ (i = 1, 2) be the weighted digraphs depicted in Figure 1, $W_i : V_i \to \mathbf{R}_{>0}$ be the weight functions. That is,

$$\begin{split} V_1 &= \{u_1, u_2, v_1, v_2\}, V_2 = \{u_3, u_4, v_3\}.\\ W_1(u_1, v_1) &= 1, W_1(u_1, v_2) = 2, W_1(u_2, v_1) = 3, W_1(u_2, v_2) = 6.\\ W_2(u_3, v_3) &= 3, W_2(u_4, v_3) = 9. \end{split}$$
 Any other edges are of weight 0.

Figure 1. Weighted Digraph G_1 and G_2 .

Let ϕ be the following function from V_1 to V_2 .

$$\phi \!=\! \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ u_3 & u_4 & v_3 & v_3 \end{pmatrix}$$

Then the following equations hold.

$$\begin{aligned} 3 &= \rho(u_1)\rho(v_1) \times 1\\ 3 &= \rho(u_1)\rho(v_2) \times 2\\ 9 &= \rho(u_2)\rho(v_1) \times 3\\ 9 &= \rho(u_2)\rho(v_2) \times 6 \end{aligned}$$

Solving the these equations, we have the solution (ϕ, ρ) , a w-homomorphism from G_1 to G_2 , with one parameter $r \in \mathbf{R}_{>0}$.

$$\rho = \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ 3/(2r) & 3/(2r) & 2r & r \end{pmatrix}$$

EXAMPLE 1.2 Let $G_i = (V_i, E_i, W_i)$ (i = 2, 3) be the weighted digraphs depicted in Figure 2, $W_i : V_i \to \mathbf{R}_{>0}$ the weight functions. That is,

$$\begin{split} V_2 &= \{u_3, u_4, v_3\}, V_3 = \{u, v\}.\\ W_2(u_3, v_3) &= 3, W_2(u_4, v_3) = 9.\\ W_3(u, v) &= 5. \end{split}$$
 Any other edges are of weight 0.

Figure 2. Weighted digraphs G_2 and G_3 .

Let ψ be the following function from V_2 to V_3 .

$$\psi = \begin{pmatrix} u_3 & u_4 & v_3 \ u & u & v \end{pmatrix},$$

Then the following equations hold.

$$5 = \sigma(u_3)\sigma(v_3) \times 3$$

$$5 = \sigma(u_4)\sigma(v_3) \times 9$$

Solving the these equations, we have the solution (ψ, σ) , a w-homomorphism from G_2 to G_3 , with one parameter $s \in \mathbf{R}_{>0}$.

$$\psi = \begin{pmatrix} u_3 & u_4 & v_3 \\ u & u & v \end{pmatrix}, \quad \sigma = \begin{pmatrix} u_3 & u_4 & v_3 \\ 5/(3s) & 5/(9s) & s \end{pmatrix}.$$

1.2 Composition of the w-homomorphisms

We define the composition of the w-homomorphisms. In this manuscript, we denote the composition $\psi \circ \phi$ of maps by $\phi \psi$.

DEFINITION 1.3 Let $G_i = (V_i, E_i, W_i)$ (i = 1, 2, 3) be weighted digraphs, $(\phi, \rho) : G_1 \to G_2$ and $(\psi, \sigma) : G_2 \to G_3$ be w-homomorphisms. Then the composition of these w-homomorphisms are defined by the semidirect product

$$(\phi, \rho)(\psi, \sigma) \stackrel{\text{der}}{=} (\phi, \rho) \rtimes (\psi, \sigma) = (\phi\psi, \rho \otimes (\phi\sigma)),$$

where $\rho \otimes (\phi \sigma) : V \to Q(R), u \mapsto \rho(u)\sigma(\phi(u))$. The set $Q(R)^V$ of maps from V to Q(R) forms abelian group under the operation $\otimes : (f \otimes g)(v) = f(v)g(v)$. \Box

Indeed, checking the validity of the definition.

$$\begin{aligned} W_3(\psi(\phi(u)), \psi(\phi(v))) \\ &= \sigma(\phi(u))\sigma(\phi(v))W_2(\phi(u), \phi(v)) \\ &= \sigma(\phi(u))\sigma(\phi(v))\rho(u)\rho(v)W_1(u, v) \\ &= \sigma(\phi(u))\rho(u)\sigma(\phi(v))\rho(v)W_1(u, v) \\ &= ((\phi\sigma) \otimes \rho)(u)((\phi\sigma) \otimes \rho)(v)W_1(u, v) \end{aligned}$$

hold.

EXAMPLE 1.3 Let $G_i = (V_i, E_i, W_i)$ (i = 1, 2, 3) be weighted digraphs depicted in Figures 1.1 and 1.2. The following (ϕ, ρ) is the w-homomorphism from G_1 to G_2 in Example 1.1. (ψ, σ) is a w-homomorphism from G_2 to G_3 in Example 1.2.

$$\phi = \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ u_3 & u_4 & v_3 & v_3 \end{pmatrix}, \ \rho = \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ 3/(2r) & 3/(2r) & 2r & r \end{pmatrix},$$
$$\psi = \begin{pmatrix} u_3 & u_4 & v_3 \\ u & u & v \end{pmatrix}, \quad \sigma = \begin{pmatrix} u_3 & u_4 & v_3 \\ 5/(3s) & 5/(9s) & s \end{pmatrix}.$$

Let

$$\xi=\phi\psi=egin{pmatrix} u_1&u_2&v_1&v_2\ u&u&v&v \end{pmatrix}.$$

Then if (ξ, τ) is a w-homomorphism from G_1 to G_3 , the following equations must hold.

$$5 = \tau(u_1)\tau(v_1) \times 1
5 = \tau(u_1)\tau(v_2) \times 2
5 = \tau(u_2)\tau(v_1) \times 3
5 = \tau(u_2)\tau(v_2) \times 6$$

Therefore τ is represented as below with one positive real parameter t

$$\tau = \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ 5/(2t) & 5/(6t) & 2t & t \end{pmatrix}$$

While calculating $(\phi\psi, (\phi\sigma) \otimes \rho)$

$$\begin{aligned} (\phi\sigma) \otimes \rho &= \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ \sigma(u_3) & \sigma(u_4) & \sigma(v_3) & \sigma(v_3) \end{pmatrix} \otimes \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ 3/(2r) & 3/(2r) & 2r & r \end{pmatrix} \\ &= \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ 5/(3s) & 5/(9s) & s & s \end{pmatrix} \otimes \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ 3/(2r) & 3/(2r) & 2r & r \end{pmatrix} \\ &= \begin{pmatrix} u_1 & u_2 & v_1 & v_2 \\ 5/(2rs) & 5/(6rs) & 2rs & rs \end{pmatrix} \end{aligned}$$

Thus we can check that the direct solution (ξ, τ) and the composition $(\phi\psi, (\phi\sigma) \otimes \rho)$ are identical.

For weighted digraphs G_1 and G_2 , we write $G_1 \supseteq G_2$ if there exists a surjective whomomorphism from G_1 to G_2 . Since in Definition 1.3, ϕ and ψ are sujective, $\phi\psi$ is also. Therefore $G_1 \supseteq G_2 \supseteq G_3$ holds. The relation \supseteq forms a pre-order (a relation satisfying the reflexive law and the transitive law) as shown below. Of course, the pre-order \supseteq is regarded as an order up to w-isomorphism. **PROPOSITION 1.1** [11] Let G_1, G_2, G_3 be weighted digraphs. Then,

(1) $G_1 \sqsupseteq G_1$.

- (2) $G_1 \supseteq G_2$ and $G_2 \supseteq G_1 \iff G_1 \simeq_w G_2$.
- (3) $G_1 \supseteq G_2$ and $G_2 \supseteq G_3$ imply $G_1 \supseteq G_3$.

2 Freeness of w-homomorphism

Suppose that there exists two w-homomorphisms (ϕ_1, ρ_1) and (ϕ_2, ρ_2) from G_1 to G_2 for given two digraphs G_1 and G_2 . As we have seen in the examples in the previous section, even though $\phi_1 = \phi_2$ holds, $\rho_1 = \rho_2$ is not necessarily true. Here we investigate whether for a given w-homomorphisms (ϕ, ρ) , ρ is uniquely determined or not.

DEFINITION 2.1 Let G = (V, E, W) be a weighted digraph. We call $\overline{G} = (V, \overline{E})$ a unweighted undirected graph obtained from G, if

$$v_i v_j \in \overline{E} \iff W(v_i, v_j) > 0 \text{ or } W(v_j, v_i) > 0,$$

where $v_i v_j$ is an undirected edge, i.e. we identify $v_i v_j$ with $v_j v_i$.

Let (ϕ, ρ) be a w-homomorphism from G_1 to G_2 . To determine ρ , we must solve the equation of the form.

$$W_2(\phi(v_i), \phi(v_j)) = \rho(v_i)\rho(v_j)W_1(v_i, v_j), \ (i \le j)$$

Put $x_i = \log \rho(v_i)$, $x_j = \log \rho(v_j)$, $w_{ij} = \log(W_2(\phi(v_i), \phi(v_j))) - \log(W_1(v_i, v_j))$. The equation above is written in the form:

$$x_i + x_j = w_{ij}$$

Note that when both $W_1(v_i, v_j) > 0$ and $W_1(v_j, v_i) > 0$ imply $w_{ij} = w_{ji}$, two equations $x_i + x_j = w_{ij}$ and $x_j + x_i = w_{ji}$ are identical.

So let *n* and *m* be the numbers of vertices and edges in the undirected graph $\bar{G}_1 = (V, \bar{E})$. Then these equations can be represented as $M\boldsymbol{x} = \boldsymbol{w}$, where *M* is $m \times n$ matrix whose elements are 0 or 1, the row vector \boldsymbol{x} consists of *n* variables, the row vector \boldsymbol{w} consists of *m* real numbers. It is easily seen that ρ is uniquely determined if the rank r = rank(M) of *M* is equal to *n*. Otherwise, ρ is not uniquely determined, and has n - r free parameters. So (ϕ, ρ) or ρ is said to be of freeness n - rank(M).

DEFINITION 2.2 Let G = (V, E, W) be a weighted digraph with $V = \{v_1, v_2, \ldots, v_n\}$ of ordered vertices and $\overline{G} = (V, \overline{E})$ be a undirected graph obtained from G. The $m \times n$ matrix $M_{\rm E}(G)$ is called the *edge matrix* of G, if its (k, i) and (k, j)-components are 1 when $v_i v_j$ $(i \leq j)$ is the k-th smallest edge in \overline{E} , otherwise 0.

EXAMPLE 2.1 Consider w-automorphisms of digraphs depicted in Figure 3. (1) Let (ϕ, ρ) be the automorphism of the loop *L* depicted in Figure 3(a). $2 = \rho(v)\rho(v) \times 2$, $x = \log \rho(v)$. Therefore $\rho(v) = 1$.

$$\left[\begin{array}{c}1\end{array}\right]\left[\begin{array}{c}x_1\end{array}\right] = \left[\begin{array}{c}\log 1\end{array}\right] = \left[\begin{array}{c}0\end{array}\right]$$

(2) (ϕ, ρ) is the automorphism of the digraph C_2 depicted in Figure 3 (b).

$$\phi = \begin{pmatrix} v_1 & v_2 \\ v_2 & v_1 \end{pmatrix}, \quad \rho = \begin{pmatrix} v_1 & v_2 \\ t & 1/t \end{pmatrix}.$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \log(2/2) \\ \log(2/2) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(3) (ϕ, ρ) is the automorphism of the digraph C_3 depicted in Figure 3 (c).

FACT 1 If a undirected graph G is connected and has n vertices and m edges, then n < m + 1.

FACT 2 If G is a tree with n vertices and m edges, then n = m + 1.

FACT 3 If a undirected graph G with n vertices and m edges is connected and n = m+1, then G is a tree.

THEOREM 2.1 Let G = (V, E, W) be a digraph and the undirected graph (V, E) be a tree with n vertices. Then the edge matrix $M_{\rm E}(G)$ is an $(n-1) \times n$ matrix. and any w-homomorphism from G is of freeness 1.

Proof) We prove that the row vectors of $M = M_{\rm E}(G)$ by induction on the number m = n - 1 of edges. If m = 1, then M has the only one nonzero row. Assume m > 1 and the claim is true for a tree with m-1 edges. Let v_n be a terminal vertex in G and G' be the subgraph containing all element of $V - \{v_n\}$. $M' = M_{\rm E}(G')$ has m - 1 independent rows.

M has the last row which cannot be represented as a linear combination of other rows. Therefore the rank of M is m.

$$M = \begin{pmatrix} M' & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

THEOREM 2.2 Let G = (V, E, W) be a digraph and the undirected graph $\overline{G} = (V, \overline{E})$ be an *n*-cycle. The edge matrix $M = M_{\rm E}(G)$ is an $n \times n$ matrix. If *n* is odd, then *M* is of rank *n*. If *n* is even, then *M* is of rank n - 1.

So a w-homomorphism from G is of freeness 0 if n is odd, of freeness 1 if n is even.

THEOREM 2.3 Let G = (V, E, W) be a digraph and the undirected graph $\overline{G} = (V, \overline{E})$ be a connected graph with n vertices. Let G be a connected digraph with n vertices. The rank of the edge matrix $M_{\rm E}(G)$ is n-1 or n. So a w-homomorphism from G is of freeness 0 or 1.

COROLLARY 2.1 Let G = (V, E, W) be a digraph and the undirected graph $\overline{G} = (V, \overline{E})$ be a connected graph with *n* vertices. If \overline{G} has an odd (resp. even) cycle, then the rank of the edge matrix $M_{\rm E}(G)$ is *n* (resp.*n* - 1) and w-homomorphism from *G* is of freeness 0 (resp.1).

THEOREM 2.4 Let G = (V, E, W) be a digraph, $\overline{G} = (V, \overline{E})$ be the undirected graph and V_1, V_2, \ldots, V_N be distinct connecting components with $V = V_1 + V_2 + \cdots + V_N$ and K be the number of isolated vertices. Let G_i be the subgraph of G containing all elements of V_i and $M_i = M_E(G_i)$. Then, the rank of $W = M_E(G)$ is the sum of $rank(M_i)$.

$$W = \begin{pmatrix} M_1 & \dots & 0 & \\ \vdots & \ddots & \vdots & 0 \\ 0 & \dots & M_{N-K} & \\ 0 & 0 & 0 \end{pmatrix}$$

. 6		

3 Ideals in the semigroup S

In this section we define the set S of all surjective w-homomorphisms between two weighted digraphs and a (extra) zero element 0. Introducing the multiplication by the composition, S forms a semigroup.

For a surjective w-homomorphim $x: G_1 \to G_2$, G_1 is called the domain of x, denoted by Dom(x), and G_2 is called the image(or range) of x, denoted by Im(x). Especially $Dom(0) = Im(0) = \emptyset$. The multiplication of $x = (\phi, \rho)$ and $y = (\psi, \sigma)$ is defined by

$$x \cdot y \stackrel{\text{def}}{=} \begin{cases} (\phi \psi, (\phi \rho) \otimes \sigma) & \text{if } Im(x) = Dom(y). \\ 0 & \text{otherwise.} \end{cases}$$

3.1 Green's equivalences on the semigroup S

Regarding to a general semigroup S without an identity, for convenience of notation, $S^1 = S \cup \{1\}$ is the monoid obtained from a semigroup S by adjoining an (extra) identity 1, that is, $1 \cdot s = s \cdot 1 = s$ for all $s \in S$ and $1 \cdot 1 = 1$.

In general, Green's equivalences $\mathcal{L}, \mathcal{R}, \mathcal{J}, \mathcal{H}, \mathcal{D}$ on a semigroup S, which are wellknown and important equivalence relations in the development of semigroup theory, are defined as follows:

$$\begin{aligned} x\mathcal{L}y &\iff S^{1}x = S^{1}y, \\ x\mathcal{R}y &\iff xS^{1} = yS^{1}, \\ x\mathcal{J}y &\iff S^{1}xS^{1} = S^{1}yS^{1}, \\ \mathcal{H} = \mathcal{L} \cap \mathcal{R}, \\ \mathcal{D} = (\mathcal{L} \cup \mathcal{R})^{*}, \end{aligned}$$

where $(\mathcal{L} \cup \mathcal{R})^*$ means the reflexive and transitive closure of $\mathcal{L} \cup \mathcal{R}$. S^1x (resp. xS^1) is called the *principal left* (resp. *right*) *ideal generated by* x and S^1xS^1 the *principal* (*two-sided*) *ideal generated by* x. Then, the following facts are generally true[7, 2].

FACT 4 The following relations are true.

$$(1) \mathcal{D} = \mathcal{LR} = \mathcal{RL}$$
$$(2) \mathcal{H} \subset \mathcal{L} \ (resp. \mathcal{R}) \subset \mathcal{D} \subset \mathcal{J}$$

FACT 5 An H-class is a group if and only if it contains an idempotent e, that is $e^2 = e$.

Now we consider the case of S = S in the rest of the maniscript. The following lemma is obviously true.

LEMMA 3.1 [11] Let $x: G_1 \rightarrow G_2, y: G_3 \rightarrow G_4 \in S$. Then,

- (1) $xS^1 \subset yS^1 \Longrightarrow G_1 = G_3 \text{ and } G_2 \sqsubseteq G_4.$
- (2) $S^1x \subset S^1y \Longrightarrow G_3 \sqsubseteq G_1$ and $G_2 = G_4$.
- (3) $xS^1 = yS^1 \Longrightarrow G_1 = G_3 \text{ and } G_2 \simeq_w G_4.$
- (4) $S^1 x = S^1 y \Longrightarrow G_1 \simeq_w G_3$ and $G_2 = G_4$.

Remark that any reverse implications above are not necessarily true.

PROPOSITION 3.1 [11] The following conditions are equivalent.

- (1) H is an \mathcal{H} -class and a group.
- (2) $H = \operatorname{Aut}_{w}(G)$ for some weighted digraph G.

PROPOSITION 3.2 [11] On the semigroup S, $\mathcal{J} = \mathcal{D}$.

3.2 Intersection of principal ideals

The aim here is that for given $x, y \in S$ we find a elements z such that $S^1x \cap S^1y = S^1z$ (resp. $xS^1 \cap yS^1 = zS^1$). $xS^1 \cap yS^1 = \{0\}$ (resp. $S^1x \cap S^1y = \{0\}$) is a trivial case(z = 0). We should only consider the non-trivial case.

PROPOSITION 3.3 (Intersection of Principal Left Ideals) [11] Let $G_i = (V_i, E_i, W_i)(i = 1, 2, 3)$ be weighted digraphs, $x = (\phi_1, \rho_1) : G_1 \to G_3$, $y = (\phi_2, \rho_2) : G_2 \to G_3$ be elements of S. Then there exists $z \in S$ such that $S^1x \cap S^1y = S^1z$.

COROLLARY 3.1 (Diamond Property I) [11] Let G_1, G_2, G_3 be weighted digraphs with $G_i \supseteq G_3$ (i = 1, 2). Then there exists a unique least weighted digraph G up to w-isomorphism such that $G \supseteq G_i$ (i = 1, 2).

 \square

PROPOSITION 3.4 (Intersection of Principal Right Ideals) [11] Let $G_i = (V_i, E_i.W_i)(i = 0, 1, 2)$ be weighted digraphs, $x = (\phi_1, \rho_1) : G_0 \to G_1$, $y = (\phi_2, \rho_2) : G_0 \to G_2$ be elements of S. Then there exists $z \in S$ such that $xS^1 \cap yS^1 = zS^1$.

COROLLARY 3.2 (Diamond Property II) [11] Let G_i (i = 0, 1, 2) be weighted digraphs with $G_0 \supseteq G_i$ (i = 1, 2). Then, there exists a unique maximum weighted digraph G up to isomorphism such that $G_i \supseteq G$ (i = 1, 2).

We define the notion of irreducible forms of a weighted digraph with respect to \supseteq .

DEFINITION 3.1 (Irreducible) A weighted digraph G is called a \supseteq -*irreducible* if $G \supseteq G'$ implies $G \simeq_w G'$ for any weighted digraph G'. Then G is called an \supseteq -irreducible form.

COROLLARY 3.3 [11] Let G, G' and G'' be weighted digraphs with $G \sqsupseteq G'$ and $G \sqsupseteq G''$. Then one has: If G' and G'' are \sqsupseteq -irreducible, then $G' \simeq_w G''$.

3.3 Lattice structures of \simeq_w -classes of weighted digraphs

As an application of the theory of principal ideals developed in the previous section, we deal with lattice structures of equivalence classes (\simeq_w -classes) of digraphs divided by the w-isomorphism relation \simeq_w . By [G] we denote the \simeq_w -class of a graph G. The set of all \simeq_w -class is an ordered set because \supseteq is well-defined and Lemma 1.1 holds.

Let G_{irr} be an \supseteq -irreducible form and $L([G_{irr}]) = \{[G] \mid G \supseteq G_{irr}\}$ through this section. By Corollary 3.3, the class $[G_{irr}]$ is the least element of $L([G_{irr}])$ because any other \simeq_w -class in $L([G_{irr}])$ cannot contain an \supseteq -irreducible form.

PROPOSITION 3.5 (conditional LUB and GLB) The following claims hold.

(1) Let $[G_1], [G_2], [G_3]$ be \simeq_w -classes with $[G_i] \supseteq [G_3]$ (i = 1, 2). There exists the minimum [G] such that $[G] \supseteq [G_i] \supseteq [G_3]$ (i = 1, 2), denoted by $lub([G_1], [G_2]; [G_3])$.

(2) Let $[G_0], [G_1], [G_2]$ be \simeq_w -classes with $[G_0] \supseteq [G_i]$ (i = 1, 2). There exists the maximum [G] such that $[G_0] \supseteq [G_i] \supseteq [G]$ (i = 1, 2), denoted by $glb([G_0]; [G_1], [G_2])$.

Proof) Immediate from Corollary 3.1 and Corollary 3.2.

(1) Let $[G_1], [G_2], [G_3], [G'_3]$ be \simeq_w -classes with $[G_i] \supseteq [G_3]$ and $[G_i] \supseteq [G'_3](i = 1, 2)$. If $[G_3] \supseteq [G'_3]$, then $lub([G_1], [G_2]; [G_3]) \supseteq lub([G_1], [G_2]; [G'_3])$.

(2) Let $[G_0], [G'_0], [G_1], [G_2]$ be \simeq_w -classes with $[G_0] \supseteq [G_i]$ and $[G'_0] \supseteq [G_i](i = 1, 2)$. If $[G_0] \supseteq [G'_0]$, then $glb([G_0]; [G_1], [G_2]) \supseteq glb([G'_0]; [G_1], [G_2])$.

Proof) (1) Put $[G] = \text{lub}([G_1], [G_2]; [G_3])$, $G' = \text{lub}([G_1], [G_2]; [G'_3])$. By Proposition 3.3, there exist surjective w-homomorphisms $z : G \to G_3$, $z' : G' \to G'_3$ and $u : G_3 \to G'_3$ such that $S^1x \cap S^1y = S^1z$ and $S^1xu \cap S^1yu = S^1z'$. Since $zu \in S^1xu$ and $zu \in S^1yu$ hold, $zu \in S^1z'$ and thus zu = vz' for some $v : G \to G'$ and $v \in S^1$.

(2) By the left-right duality of (1).

COROLLARY 3.4 Let $[G_1], [G_2]$ be elements in $L([G_{irr}])$. There exists the unique least (resp. greatest) \simeq_w class $[G_U]$ (resp. $[G_L]$) such that $[G_U] \supseteq [G_i] (i = 1, 2)$ (resp. $[G_i] \supseteq [G_L] (i = 1, 2)$), denoted by $lub([G_1], [G_2])$ (resp. $glb([G_1], [G_2])$).

Proof) By Proposition 3.6, $[G_U] = \text{lub}([G_1], [G_2]; [G_{irr}])$ is least. Again, $[G_L] = \text{glb}([G_U]; [G_1], [G_2])$ is greatest.

From this proposition we get the following theorem.

THEOREM 3.1 The ordered set $(L([G_{irr}]), \supseteq)$ forms a lattice with the least element $[G_{irr}]$.

References

- C. Berge. Principles of Combinatorics, volume 72 of Mathematics in Science and Engineering: A Series of Monographs and Textbooks. Academic Press, 1971.
- [2] J. Berstel and D. Perrin. Theory of Codes. Academic Press, INC., Orlando, Florida, 1985.
- [3] C. Borgs, J. Chayes, L. Lovász, V. Sós, and K. Vesztergombi. Counting graph homomorphisms. In *Topics in discrete mathematics*, pages 315–371. Springer, 2006.
- [4] M. Freedman, L. Lovász, and A. Schrijver. Reflection positivity, rank connectivity, and homomorphism of graphs. *Journal of the American Mathematical Society*, 20(1):37–51, 2007.
- [5] C. Godsil and G. Royle. Algebraic Graph Theory, volume 207 of Graduate texts in mathematics. Springer-Verlag New York, Inc, 2001.
- [6] P. Hell and J. Nesetril. Graphs and homomorphisms. Oxford University Press, 2004.
- [7] J. Howie. Fundamentals of Semigroup Theory. Oxford University Press, INC., New York, 1995.
- [8] M. Ito and Y.Kunimochi. Some petri nets languages and codes. *Lecture Notes in Computer Science*, 2295:69–80, 2002.
- [9] N. Jacobson. Basic Algebra. Vol. 1. Freeman, 1974.
- [10] Y. Kunimochi. Algebraic properties of petri net morphisms based on place connectivity. In P.Dömösi and S. Iván, editors, *Proceedings of Automata and Formal Languages*. AFL2011, pages 270–284, 2011.
- [11] Y. Kunimochi. Remarks on homomorphisms based on vertex connectitivity of weighted directed graphs. *RIMS Koukyuroku*, 2008,:86–96, Nov. 2016.
- [12] Y. Kunimochi, T. Inomata, and G. Tanaka. Automorphism groups of transformation nets (in japanese). *IEICE Trans. Fundamentals*, J79-A,(9):1633–1637, Sep. 1996.
- [13] G. Lallement. Semigroups and Combinatorial Applications. Pure and applied Mathematics. A Wiley-Interscience Publication, 1979.