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1 Introduction

In [KriOO], Kricker constructed a rational lift of the Kontsevich integral of knots in in‐

tegral homology 3‐spheres ( \mathbb{Z}‐spheres). In [GK04], he proved with Garoufalidis that his

construction provides an invariant of knots in \mathbb{Z}‐spheres. They also proved that the

Kricker invariant satisfies some splitting formulas with respect to the so‐called null‐move.

Kricker�s construction easily generalizes to null‐homologous knots in rational homology
3‐spheres ( \mathbb{Q}‐spheres). The question arises to know wether one can get splitting formulas

for the Kricker invariant of these knots with respect to null Lagrangian‐preserving surgery,
a move which generalizes the null‐move.

In [CHM08], Cheptea, Habiro and Massuyeau extended the LMO invariant of \mathbb{Q}‐spheres
to a functor defined on a category of Lagrangian cobordisms. Massuyeau [Mas15] used

this functor to obtain splitting formulas for the LMO invariant of \mathbb{Q}‐spheres with respect
to Lagrangian‐preserving surgeries.

In [Mou17], we extend the LMO functorial invariant of Cheptea‐Habiro‐Massuyeau to a

category of Lagrangian cobordisms with paths, inserting the Kricker�s idea in the construc‐

tion. We obtain a functorial invariant from which the Kricker invariant of null‐homologous
knots in \mathbb{Q}‐spheres is recovered. Following Massuyeau, we use the functoriality to obtain

splitting formulas for our invariant and, as a consequence, for the Kricker invariant. This

article is a survey of this construction.

Notations and conventions. For \mathrm{K} = \mathbb{Z}, \mathbb{Q} , a \mathrm{K} ‐sphere, (resp. a \mathrm{K} ‐cube, a genus g IK‐

handlebody) is a 3‐manifold, compact and oriented, which has the same homology with

coefficients in \mathrm{K} as the standard 3‐sphere (resp. 3‐cube, genus g handlebody).

2 Statement of the splitting formulas

We first give the definitions we need to state the splitting formulas for the Kricker lift of

the Kontsevich integral.
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Null LP‐surgeries. The Lagrangian \mathcal{L}_{C} of a \mathbb{Q}‐handlebody C is the kernel of the map

i_{*}:H_{1}(\partial C;\mathbb{Q})\rightarrow H_{1}(C;\mathbb{Q}) induced by the inclusion. The Lagrangian of a \mathbb{Q}‐handlebody
C is indeed a Lagrangian subspace of H_{1}(\partial C;\mathbb{Q}) with respect to the intersection form. \mathrm{A}

Lagrangian‐preserving pair, or LP‐pair, is a pair \mathrm{C} = (\displaystyle \frac{C'}{c}) of \mathbb{Q}‐handlebodies equipped
with a homeomorphism h:\partial C\rightarrow^{\underline{}\simeq}\partial C' such that h_{*}(\mathcal{L}_{C})=\mathcal{L}_{C'}.

Given a 3‐manifold M
,

a Lagrangian‐preserving surgery, or LP‐surgery, on M is a

family \mathrm{C}= (Cl, . . .

, \mathrm{C}_{n} ) of LP‐pairs such that the C_{i} are embedded in M and disjoint.
The manifold obtained from M by LP‐surgery on \mathrm{C} is defined as

M(\displaystyle \mathrm{C})=(M\backslash (\sqcup_{1\leq i\leq n}C_{i}))\bigcup_{\partial}(\sqcup_{1\leq i\leq n}C_{i}') .

Let M be a 3‐manifold and let K be a disjoint union of knots or paths properly
embedded in M. \mathrm{A}\mathbb{Q} ‐handlebody null in M\backslash K is a \mathbb{Q}‐handlebody C\subset M\backslash K such that

the map i_{*} : H_{1}(C;\mathbb{Q}) \rightarrow H_{1}(M\backslash K;\mathbb{Q}) induced by the inclusion has a trivial image. \mathrm{A}

null LP‐surgery on (M, K) is an LP‐surgery \mathrm{C}=(\mathrm{C}_{1}, \ldots, \mathrm{C}_{n}) on M\backslash K such that each

C_{i} is null in M\backslash K . The pair obtained by surgery is denoted (M, K)(\mathrm{C}) .

The tensor  $\mu$(\mathrm{C}) . Given an LP‐pair \mathrm{C}= (\displaystyle \frac{c^{l}}{c}) ,
define the associated total manifold C=

(-C)\cup C
� and define

 $\mu$(\mathrm{C})\in \mathrm{h}\mathrm{o}\mathrm{m}($\Lambda$^{3}H^{1}(C;\mathbb{Q}), \mathbb{Q})\cong$\Lambda$^{3}H_{1}(C;\mathbb{Q})
by associating with a triple of cohomology classes the evaluation of their triple cup prod‐
ucts on the fondamental form of C . For a family \mathrm{C} = (Cl, . . .

, \mathrm{C}_{n} ) of LP‐pairs, let

C=C_{1}\sqcup\ldots\sqcup C_{n} and set:

 $\mu$(\mathrm{C})= $\mu$(C_{1})\otimes\ldots\otimes $\mu$(C_{n}) \in\otimes_{i=1}^{n}$\Lambda$^{3}H_{1}(C_{i};\mathbb{Q})\subset S^{n}$\Lambda$^{3}H_{1}(C;\mathbb{Q}) ,

where we use the natural identification H_{1}(C;\mathbb{Q})\cong\oplus_{i=1}^{n}H_{1}(C_{i};\mathbb{Q}) .

The bilinear form \ell_{(S, $\kappa$)}(\mathrm{C}) . Let (S,  $\kappa$) be a \mathbb{Q}SK‐pair, i.e . a pair made of a \mathbb{Q}‐sphere
S and a null‐homologous knot  $\kappa$ \subset  S . Let E be the exterior of  $\kappa$ in  S . Let Ẽ be the

maximal free abelian covering of E . Given two knots  $\zeta$ and  $\xi$ in Ẽ whose projections in

 E are disjoint, denote 1\mathrm{k}_{e}( $\zeta$,  $\xi$) \in \mathbb{Q}(t) their equivariant linking number.

Let \mathrm{C} = (Cl, . . .

, \mathrm{C}_{n} ) be a null LP‐surgery on (S,  $\kappa$) . Let C =C_{1}\sqcup\ldots\sqcup C_{n} be the

disjoint union of the associated total manifolds. Fix a lift \tilde{C}_{i} of each C_{i} in Ẽ. We will

define a hermitian form:

\ell_{(S, $\kappa$)}(\mathrm{C}) : H_{1}(C;\mathbb{Q})\times H_{1}(C;\mathbb{Q})\rightarrow \mathbb{Q}(t) ,

i.e. \mathrm{a} \mathbb{Q}‐bilinear form such that reversing the order of the arguments changes t to t^{-1} . Let

 a\in  H_{1}(C_{i};\mathbb{Q}) and  b\in  H_{1}(C_{j};\mathbb{Q}) be homology classes that can be represented by simple
closed curves  $\alpha$ \subset \partial C_{i} and  $\beta$ \subset \partial C_{j} , disjoint if i =j . Note that such homology classes

generate H_{1}(C;\mathbb{Q}) over \mathbb{Q} . Let \tilde{ $\alpha$} and \tilde{ $\beta$} be the copies of  $\alpha$ and  $\beta$ in \tilde{C}_{i} and \tilde{C}_{j} . Set:

\ell_{(S, $\kappa$)}(\mathrm{C})(a, b)=1\mathrm{k}_{e}(\tilde{ $\alpha$},  $\beta$
We get a well‐defined hermitian form \ell_{(S, $\kappa$)}(\mathrm{C}) associated with a choice of lifts of the

C_{i}' \mathrm{s} . We will keep this choice implicit; the statement of Theorem 2.1 is valid for any such

choice.
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Diagrammatic representations. Let V be a rational vector space. A V ‐colored Jacobi

diagram is a unitrivalent graph whose trivalent vertices are oriented and whose univalent

vertices are labelled by V ,
where an orientation of a trivalent vertex is a cyclic order of

the three edges that meet at this vertex— fixed as in the pictures. Set:

\displaystyle \mathcal{A}_{\mathbb{Q}}(V)=\frac{\mathbb{Q}\langle V-\mathrm{c}\mathrm{o}1\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{J}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{b}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{s}\rangle}{\mathbb{Q}\langle \mathrm{A}\mathrm{S},\mathrm{I}\mathrm{H}\mathrm{X},\mathrm{L}\mathrm{V}\}},
where the relations are depicted in Figure 1. A symmetric tensor in S^{n}$\Lambda$^{3}V can be

AS IHX LV

Figure 1: Relations AS, IHX and LV on Jacobi diagrams.

represented by a Jacobi diagram via the following embedding.

Now define a \mathbb{Q}(t) ‐beaded Jacobi diagram as a trivalent graph whose vertices are oriented

and whose edges are oriented and labelled by \mathbb{Q}(t) . Set:

\displaystyle \overline{\mathcal{A}}_{\mathbb{Q}(t)}(\emptyset)=\frac{\mathbb{Q}\langle \mathbb{Q}(t)-\mathrm{b}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{J}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{b}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{s}\rangle}{\mathbb{Q}\langle \mathrm{A}\mathrm{S},\mathrm{I}\mathrm{H}\mathrm{X},\mathrm{L}\mathrm{E},\mathrm{H}\mathrm{o}1,\mathrm{O}\mathrm{R}\rangle},
where the relations are depicted in Figures 1 and 2, with the IHX relation defined with the

LE OR
Hol

Figure 2: Relations LE, Hol and OR on Jacobi diagrams.

central edge labelled by 1. Define the i‐degree, or internal degree, of any Jacobi diagram
as its number of trivalent vertices. Given a hermitian form \ell :  V\times  V\rightarrow \mathbb{Q}(t) ,

one can

glue with \ell some legs of a  V‐colored Jacobi diagram as depicted in Figure 3. If n is even,

one can pairwis\underline{\mathrm{e}} glue all legs of an \mathrm{i}‐degree n V‐colored Jacobi diagram in order to get
an element of \mathcal{A}_{\mathbb{Q}(t)}(\emptyset) . This latter space is the target space of the Kricker invariant \tilde{Z}
of QSK‐pairs.

We can now state the splitting formulas for the invariant \tilde{Z} with respect to null LP‐

surgeries.
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Figure 3: Gluing some legs of a Jacobi diagram with \ell.

Theorem 2.1 Let (S,  $\kappa$) be a QSK‐pair. Let \mathrm{C}= (Cl, . . .

, \mathrm{C}_{n} ) be a null LP‐surgery on

(S,  $\kappa$) . Then:

\displaystyle \sum_{I\subset\{1,..n\}}.,(-1)^{|I|}\tilde{Z}((S,  $\kappa$)(\mathrm{C}_{I}))\equiv_{n} (^{sumofallwaysofgluingalllegs}of $\mu$(\mathrm{C})withl_{(S, $\kappa$)}(\mathrm{C})/2) ,

where \equiv_{n} means �equal up to i‐degree at least n+1 terms�7.

3 Strategy

In this Section, we give an overview of the strategy developed in [Mou17] to prove Theo‐

rem 2.1.

The idea is to construct a functorial LMO invariant defined on a category of Lagrangian
cobordisms with paths. The morphisms of this category are cobordisms between compact
surfaces with one boundary component, satisfying a Lagrangian‐preserving condition,
with finitely many disjoint paths with fixed extremities which we think of as knots with

a fixed part on the boundary. This category is equivalent to a category of bottom‐top
tangles in \mathbb{Q}‐cubes, whose top part has a trivial linking matrix, with paths with fixed

extremities. These bottom‐top tangles can be viewed as morphisms in a category of

(general) tangles with paths in \mathbb{Q}‐cubes, with an important difference in the composition
law. Now a tangle with paths in a \mathbb{Q}‐cube can be expressed as the result of a surgery
on a link in a tangle with trivial paths— segment lines—in [−1, 1]^{3} . To sum up, with a

Lagrangian cobordism with paths, we associate a tangle with disks— whose boundaries

define the paths—in [−1, 1]^{3} with a surgery link. This is represented in the first line of

the scheme in Figure 4. We initiate the construction of the invariant at the �tangle with

disks�� level.

On the above mentioned categories, we define functorial invariants valued in categories
of Jacobi diagrams with beads, i.e . unitrivalent graphs whose univalent vertices are

labelled by some finite set or embedded in some l‐manifold— the squeleton−, and whose

edges are labelled (beaded) by powers of t
, polynomials in \mathbb{Q}[t^{\pm 1}] or rational functions

in \mathbb{Q}(t) . At the first step, we define a functor Z^{\cdot} on the category of tangles with disks

by applying the Kontsevich integral and adding a bead t^{\pm 1} on the squeleton when the

corresponding component meets a disk of the tangle. At a second step, we apply the

invariant Z^{\cdot} to surgery presentations of tangles with paths in \mathbb{Q}‐cubes. We use the

formal Gaussian integration methods introduced by Bar‐Natan, Garoufalidis, Rozansky
and Thurston in [ÃI02, ÃII02] and adapted to the beaded setting in [KriOO, GK04]. We

get a functor Z on the category of tangles with paths in \mathbb{Q}‐cubes. At the last step, given
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Figure 4: Scheme of construction for the invariant \tilde{Z}.

a Lagrangian cobordism with paths, we apply Z to the associated bottom‐top tangles
with paths and normalize it following [CHM08] to obtain a functor \tilde{Z} on the category of

Lagrangian cobordisms with paths. Functoriality allows to prove splitting formulas for

this invariant with respect to null Lagrangian‐preserving surgeries.
Given a Lagrangian cobordism with one path between genus 0 surfaces, i.e. \mathrm{a} \mathbb{Q}‐cube

with one path, one can glue a 3‐ball to the boundary to get a \mathbb{Q}‐sphere with a knot.

In this way, the functor \tilde{Z} provides an invariant of \mathbb{Q}\mathrm{S}\mathrm{K}‐pairs which coincides with the

Kricker invariant for knots in \mathbb{Z}‐spheres. Splitting formulas for this invariant are deduced

from the splitting formulas for the functor \tilde{Z}.

3.1 Preliminaries: Jacobi diagrams

For a compact oriented 1‐manifold X and a finite set C ,
a Jacobi diagram on (X, C) is a

unitrivalent graph whose trivalent vertices are oriented and whose univalent vertices are

embedded in X or labelled by C
,

where an orientation of a trivalent vertex is a cyclic
order of the three edges that meet at this vertex—fixed as in the pictures. The

manifold X is the squeleton of the diagram. Next, let R be the ring \mathbb{Q}[t^{\pm 1}] or \mathbb{Q}(t) . An

R‐beaded Jacobi diagram on (X, C) is a Jacobi diagram on (X, C) whose graph edges are

oriented and labelled by R . Last, an R ‐winding Jacobi diagram on (X, C) is an R‐beaded

Jacobi diagram on (X, C) whose squeleton is viewed as a union of edges— defined by the

embedded vertices‐ that are labelled by powers of t
,
with the condition that the product

of the labels on each component of X is 1. As defined in the introduction, the \mathrm{i}‐degree of

a trivalent diagram is its number of trivalent vertices. Set:

\displaystyle \mathcal{A}(X, *c)=\frac{\mathbb{Q}\langle \mathrm{J}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{b}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{s}\mathrm{o}\mathrm{n}(X,C)\rangle}{\mathbb{Q}\langle \mathrm{A}\mathrm{S},\mathrm{I}\mathrm{H}\mathrm{X},\mathrm{S}\mathrm{T}\mathrm{U}\}},
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\displaystyle \overline{\mathcal{A}}_{R}(X, *c)=\frac{\mathbb{Q}\{R-\mathrm{b}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{J}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{b}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{s}\mathrm{o}\mathrm{n}(X,C)\rangle}{\mathbb{Q}\langle \mathrm{A}\mathrm{S},\mathrm{I}\mathrm{H}\mathrm{X},\mathrm{S}\mathrm{T}\mathrm{U},\mathrm{L}\mathrm{E},\mathrm{O}\mathrm{R},\mathrm{H}\mathrm{o}1\rangle},
\displaystyle \overline{\mathcal{A}}_{R}^{\mathrm{w}}(X, *c)=\frac{\mathbb{Q}\{R-\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{J}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{b}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{s}\mathrm{o}\mathrm{n}(X,C)\rangle}{\mathbb{Q}\{\mathrm{A}\mathrm{S},\mathrm{I}\mathrm{H}\mathrm{X},\mathrm{S}\mathrm{T}\mathrm{U},\mathrm{L}\mathrm{E},\mathrm{O}\mathrm{R},\mathrm{H}\mathrm{o}1,\mathrm{H}\mathrm{o}1_{\mathrm{W}}\rangle},

with the relations in Figures 1, 2 and 5, where the IHX relation for beaded and winding
diagrams is defined with the central edge labelled by 1. In the pictures, the squeleton

STU \mathrm{H}\mathrm{o}1_{\mathrm{W}}

Figure 5: Relations STU and \mathrm{H}\mathrm{o}1_{\mathrm{W}} on Jacobi diagrams.

is represented with full lines and the graph with dashed lines. We indeed consider the

\mathrm{i}‐degree completion of these vector spaces, keeping the same notation.

For a finite set S ,
denote \mathrm{b}\mathrm{y}\uparrow s (resp. \mathrm{O}_{S} ) the manifold made of |S| intervals (resp.

circles) indexed by the elements of S . We have a formal PBW isomorphism (see [BN95,
Theorem 8

$\chi$_{S}:\overline{\mathcal{A}}_{R}^{\mathrm{w}}(X, *c\cup s) \rightarrow^{\underline{}\simeq}\overline{\mathcal{A}}_{R}^{\mathrm{w}}(X\cup\uparrow s, *c) .

For a Jacobi diagram D
,
the image $\chi$_{S}(D) is the average of all possible ways to attach the

s‐colored vertices of D on the corresponding s‐indexed interval \mathrm{i}\mathrm{n}\uparrow s for each s\in S . When

|\underline{S}| =1
, closing the S‐labelled component gives an isomorphism from \overline{\mathcal{A}}_{R}^{\mathrm{w}}(X\cup\uparrow S, *c) to

\mathcal{A}_{R}^{\mathrm{w}}(X\cup \mathrm{O}s, *c) [BN95, Lemma 3.\underline{1}]. However, this isomorphism does not hold for |S| >1.

To recover an isomorphism onto \mathcal{A}_{R}^{\mathrm{w}}(X\cup \mathrm{O}_{S}, *c) ,
we need additional relations.

Given a winding Jacobi diagram D on (X, C\cup S) ,
and a univalent vertex * of D

labelled by s \in  S ,
define the associated link relation as the vanishing of the sum of all

diagrams obtained from D by gluing the vertex * on the edges adjacent to a univalent
. s

s‐labelled vertex, as follows: -- $\iota$*|| ,
see Figure 6. Given a winding Jacobi diagram D

Figure 6: A link relation.

on (X, C\cup S) ,
a label s \in  S and an integer k

,
the associated winding relation identifies

D with the diagram obtained from D by pushing t^{k} at each s ‐labelled vertex, i.e . by
multiplying the label of each edge adjacent to a univalent s‐labelled vertex by t^{k} if the

orientation of the edge goes backward the vertex and by t^{-k} otherwise, see Figure 7.
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Figure 7: A winding relation.

Denote \overline{\mathcal{A}}_{R}^{\mathrm{w}} (X, *c , Oos ) the quotient of \overline{\mathcal{A}}_{R}^{\mathrm{w}}(X, *c\cup s) by all link and winding relations

on S‐labelled vertices. When some of the sets X, C, S are empty, we simply drop the

corresponding notation, mentionning \emptyset only when they are all empty.

Proposition 3.1 The isomorphism $\chi$_{S} : \overline{\mathcal{A}}_{R}^{w}(X, *c\cup s) \rightarrow^{\underline{}\simeq}\overline{\mathcal{A}}_{R}^{w}(X\cup\uparrow s, *c) descends to

an isomorphism:
$\chi$_{S}:\overline{\mathcal{A}}_{R}^{w}(X, *c, \mathrm{O}\mathrm{o}_{S}) \rightarrow^{\underline{}\simeq}\overline{\mathcal{A}}_{R}^{w}(X\cup \mathrm{O}_{S}, *c) .

We now define a formal Gaussian integration along S on \overline{\mathcal{A}}_{R}^{\mathrm{w}}(X, *c\cup s) .

Definition 3.2 \mathrm{A} (beaded, winding) Jacobi diagram on (X, C\cup S) is substantial if it has

no strut, i.e . no isolated dashed edge. It is S ‐substantial if it has no S‐strut, i.e . no strut

with both vertices labelled in S.

Given two (beaded, winding) Jacobi diagrams D and E on (X, C\cup S) ,
one of whose is

S‐substantial, define \langle D, E\rangle_{S} as the sum of all diagrams obtained by gluing all s‐colored

vertices of D with all s‐colored vertices of E for all s \in  S-\mathrm{i}\mathrm{f} the numbers of s‐colored

vertices in D and E do not match for some s \in  S ,
then \langle D, E\}_{S} = 0 . In the beaded

and winding cases, we must precise the orientation and label of the created edges. Such

an edge is the gluing of two or three edges in the initial diagrams. Fix arbitrarily the

orientation of the new edge. Let P(t) (resp. Q(t) ) be the product of the labels of the

initial edges whose orientation coincides (resp. does not coincide). Define the label of the

new edge as P(t)Q(t^{-1}) ,
see Figure 8.

Figure 8: Bracketting diagrams.

Notation 3.3 If W=(W_{ij}(t))_{i,j\in S} is an (S, S) ‐matrix with coefficients in \mathbb{Q}(t) , we also

denote W=\displaystyle \sum_{i,j\in S}\perp W_{ij}(t)||ji
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Definition 3.4 An element G \in \overline{\mathcal{A}}_{\mathbb{Q}[t^{\pm 1}]}^{\mathrm{w}}(X, *c\cup s) is Gaussian if G=\displaystyle \exp_{\sqcup}(\frac{1}{2}W(t))\sqcup H
where W(t) is an (S, S)‐matrix with coefficients in \mathbb{Q}[t^{\pm 1}] and H is S‐substantial. If

\det(W(t))\neq 0, G is non degenerate and we set:

\displaystyle \int_{S}G=\langle\exp_{\sqcup}(-\frac{1}{2}W^{-1}(t)) , H\rangle_{S} \in\overline{\mathcal{A}}_{\mathbb{Q}(t)}^{\mathrm{w}}(X, *c) .

Lemma 3.5 If G \in \overline{\mathcal{A}}_{\mathbb{Q}[t^{\pm 1}]}^{w} (X, *c , Oos ) is the image of a non degenerate Gaussian in

\overline{\mathcal{A}}_{\mathbb{Q}[t^{\pm 1}]}^{w}(X, *c\cup s) ,
then \displaystyle \int_{S}G\in\overline{\mathcal{A}}_{\mathbb{Q}(t)}^{w}(X, *c) is well‐defined.

We now define categories of Jacobi diagrams. For \overline{\mathcal{A}}=\mathcal{A}, \overline{\mathcal{A}}_{R} , or \overline{\mathcal{A}}_{R}^{\mathrm{w}} , define a category
\overline{\mathcal{A}} whose objects are associative words in the letters (+, -) and whose set of morphisms are

\overline{\mathcal{A}}(v, u)=\oplus_{X}\overline{\mathcal{A}}(X) ,
where X runs over all compact oriented 1‐manifolds with boundary

identified with the set of letters of u and v
,

with the following sign convention: for u,

\mathrm{a}+ when the orientation of X goes towards the boundary point and a — when it goes

backward, and the converse for v . Composition is given by vertical juxtaposition, where

the label of the created edges in the case of beaded or winding diagrams is defined with

the same rule as in the definition of \{D,  E\rangle . The tensor product given by disjoint union

defines a strict monoidal structure on \overline{\mathcal{A}}.
We finally define the target category of our functor.

Notation 3.6 Given a positive integer g and a symbol \Vert , set \lfloor g1\# = \{1\#, . . . , g\#\} . Set

\lfloor 0\rceil ta =\emptyset.

Definition 3.7 Fix non‐negative integers f and g . An R‐beaded Jacobi diagram on

(*\lfloor g1^{+}\cup \mathrm{L}f1-) is top‐substantial if it is \lfloor g\rceil^{+} ‐substantial.

Given two such diagrams D and E
,

define their composition D\circ E as the sum of all ways of

gluing all i^{+}‐labelled vertices of D with all i^{-} ‐labelled vertices of E
, fixing the orientations

and labels of the created edges as in the definition of \langle D, E\rangle_{s_{-}}. We get a category ts\overline{\mathcal{A}} whose

objects are non‐negative integers, with set of morphisms \mathcal{A}(*1^{+}\cup \mathrm{L}f1-) from g to f.

The identity of g is \exp_{\sqcup} (\displaystyle \sum_{i=1}^{g} |||i-i^{+} ) . The tensor product defined by disjoint union of

diagrams provides ts\overline{\mathcal{A}} a strict monoidal structure.

3.2 At the level of tangles with disks

A q ‐tangle with disks is an equivalence class of pairs ( $\gamma$, k) ,
where  $\gamma$ is a  q‐tangle in [−1, 1]^{3},

k is a non‐negative integer understood as the datum of k disks d_{i}=[0, 1]\displaystyle \times[-1, 1]\times\{\frac{i}{k+1}\},
and each component of  $\gamma$ has a trivial algebraic intersection number with each disk  d_{i}.
Equivalence of such pa‐irs is defined as isotopy relative to (\displaystyle \partial[-1,1]^{3})\cup(\bigcup_{i=1}^{k}\partial d_{i}) . Define

two categories T_{q} and T_{q} with objects the non‐associative words in the letters (+, -) and

morphisms the q‐tangles for T_{q} and the q‐tangles with disks for \overline{T}_{q} . Composition is given
by vertical juxtaposition. Given a q‐tangle  $\gamma$ and a  q‐tangle with disks (v, k) ,

define the

tensor product  $\gamma$\otimes(v, k) in \overline{T}_{q}((w_{t}( $\gamma$))(w_{t}(v)), (w_{b}( $\gamma$))(w_{b}(v))) by horizontal juxtaposition
in the x direction.
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Figure 9: Diagram of a tangle with disks.

The definition of the functor Z^{\cdot} : \overline{T}_{q}\rightarrow\overline{\mathcal{A}}_{\mathbb{Q}[t^{\pm 1}]}^{\mathrm{w}} is based on the functor Z : T_{q}\rightarrow \mathcal{A} of

[CHM08], which is a renormalization of the Le‐Murakami functor [LM95, LM96].
Let ( $\gamma$, k) be a q‐tangle with disks. Assume  $\gamma$ is transverse to [−1, 1]^{2} \times \displaystyle \{\frac{i}{k+1}\} for all

i\in\{1, . . . , k\} ,
and write  $\gamma$ as a composition of  q‐tangles $\gamma$_{i} by cutting along these levels,

see Figure 10. Write the bottom word of $\gamma$_{i} as w_{b}($\gamma$_{i})=(v_{i})(w_{i}) ,
where w_{i} corresponds to

Figure 10: Cutting a q‐tangle with disks ( $\gamma$, 3) .

the part of the tangle which meets the disk d_{i} . Set:

Z^{\cdot}( $\gamma$, k)=Z($\gamma$_{0})\circ(I_{v_{1}}\otimes G_{w_{1}})\circ Z($\gamma$_{1})\circ\ldots\circ(I_{v_{k}}\otimes G_{w_{k}})\circ Z($\gamma$_{k}) \in\overline{\mathcal{A}}_{\mathbb{Q}[t^{\pm 1}]}^{\mathrm{w}}( $\gamma$) ,

where I_{v} is the identity on the word v and G_{v} is obtained from I_{v} by adding a label t (resp.
t^{-1}) on squeleton components associated with a — sign (resp. \mathrm{a}+ sign), see Figure 11.

At the level of objects, Z^{\cdot} forgets the parentheses.

Figure 11: The diagrams I_{v} and G_{v}.

Proposition 3.8 The functor Z^{\cdot} : \overline{T}_{q}\rightarrow\overline{\mathcal{A}}_{\mathbb{Q}[t^{\pm 1}]}^{w} is well‐defined and preserves the tensor

product on T_{q}\otimes\overline{T}_{q}.
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3.3 At the level of tangles with paths in \mathbb{Q}‐cubes

Let B be a cobordism between two disks with a fixed parametrization b:\partial[-1, 1]^{3}\rightarrow\partial B
of its boundary. A tangle  $\gamma$ in  B is an isotopy (rel. \partial B ) class of framed oriented tangles
whose boundary points lie on the top and bottom surfaces and are uniformly distributed

along the line segments [−1, 1]\times\{0\}\times\{1\} and [−1, 1]\times\{0\}\times\{-1\} in \partial B=b(\partial[-1,1]^{3}) .

Associate with each boundary point of  $\gamma$ the sign + if  $\gamma$ is oriented downwards at that

point and the sign - otherwise. This provides two words in the letters + and −, one

for the top surface and the other for the bottom surface. Lifting these two words into

non‐associative words w_{t}( $\gamma$) and w_{b}( $\gamma$) in the letters (+ ,
one gets a q ‐tangle.

A q ‐tangle with paths (B, K,  $\gamma$) is a q‐tangle  $\gamma$ in a cobordism (B, b) with a disjoint
union K=\sqcup_{i=1}^{k}K_{i} \subset (B\backslash  $\gamma$) of oriented paths K_{i} from b(0, -1, \displaystyle \frac{i}{k+1}) to b(0,1, \displaystyle \frac{i}{k+1}) with

k\geq 0 ,
such that \hat{K}=\sqcup_{i=1}^{k}\hat{K}_{i} is an oriented boundary link, where \hat{K}_{i} is the knot defined as

the union of K_{i} with the line segments [(0, -1, \displaystyle \frac{i}{k+1}), (1, -1, \frac{i}{k+1})], [(1, -1, \displaystyle \frac{i}{k+1}), (1, 1, \frac{i}{k+1})]
and [(1,1, \displaystyle \frac{i}{k+1}), (0,1, \frac{i}{k+1})].

Define two categories T_{q}Cub and \overline{T}_{q}Cub with objects the non‐associative words in the

letters (+, -) and morphisms the q‐tangles in \mathbb{Q}‐cubes for T_{q}Cub and the q‐tangles with

paths in \mathbb{Q}‐cubes for \overline{T}_{q}Cub , up to orientation‐preserving homeomorphism respecting the

boundary parametrization. Composition is given by vertical juxtaposition. Given a mor‐

phism (C, v) in T_{q}Cub and a morphism (B, K,  $\gamma$) in \overline{T}_{q}Cub ,
define the tensor product

(C, v)\otimes(B, K,  $\gamma$) by horizontal ju‐xtaposition in the x direction.

In order to get a functor Z : T_{q}Cub\rightarrow\overline{\mathcal{A}}_{\mathbb{Q}(t)}^{\mathrm{w}} ,
we wish to evaluate Z^{\cdot} on the surgery

presentation of a q‐tangle with paths in a \mathbb{Q}‐cube. Let (B, K,  $\gamma$) \in \overline{T}_{q}Cub(w, v) . Let

([-1, 1]^{3},  $\eta$) be a q‐tangle with paths where : is a union of line segments. Let L \subset

[-1, 1]^{3}\backslash \cup $\eta$) be a framed link null‐homotopic in [−1, 1]^{3}\backslash such that (B, K,  $\gamma$) is

obtained from ([-1, 1]^{3},  $\eta$) by surgery on L . We have a q‐tangle with disks ( $\eta$\cup L, k)
naturally associated with ([-1, 1]^{3},  $\eta$) ,

where k is the number of components of and

Z^{\cdot}( $\eta$\cup L, k)\in\overline{\mathcal{A}}_{\mathbb{Q}[t^{\pm 1}]}^{\mathrm{w}}( $\eta$\cup L) . Set:

Z^{\mathrm{o}}  $\eta$) , L)=$\chi$_{$\pi$_{0}(L)}^{-1}($\nu$^{\otimes$\pi$_{0}(L)}\#_{ $\pi$ \mathrm{o}(L)}Z^{\cdot}( $\eta$\cup L, k)) \in\overline{\mathcal{A}}_{\mathbb{Q}[t^{\pm 1}]}^{\mathrm{w}}( $\eta$, \mathrm{O}\mathrm{o}_{$\pi$_{0}(L)})
where the connected sum means that a copy of  $\nu$ is summed to each component of  L.

Proposition 3.9 Let (B, K,  $\gamma$) be a q ‐tangle with paths in a \mathbb{Q} ‐cube. Fix a surgery pre‐

sentation (([-1, 1]^{3},  $\eta$), L) of (B, K,  $\gamma$) . Then:

Z(B, K,  $\gamma$)=U_{+}^{- $\sigma$+(L)}\displaystyle \sqcup U_{-}^{- $\sigma$-(L)}\sqcup\int_{$\pi$_{0}(L)}Z^{\mathrm{O}}  $\eta$) , L) \in\overline{\mathcal{A}}_{\mathbb{Q}(t)}^{w}( $\gamma$) ,

where U\pm=Z^{\mathrm{O}} ((\emptyset, \emptyset), 0^{\pm 1}) , defines a functor Z : \overline{T}_{q}Cub\rightarrow\overline{\mathcal{A}}_{\mathbb{Q}(t)}^{w} which preserves the

tensor product on T_{q}Cub\otimes\overline{T}_{q}Cub.

3.4 At the level of Lagrangian cobordisms with paths

Given g\in \mathbb{N} , we fix a model surface F_{g} , compact, connected, oriented, of genus g ,
with

one boundary component represented in Figure 12. It is equipped with a fixed base point
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Figure 12: The model surface F_{g}.

* and a fixed basis ($\alpha$_{1}, \ldots, $\alpha$_{g}, $\beta$_{1}, \ldots, $\beta$_{g}) of $\pi$_{1}(F_{g}, *) . Denote by C_{g-}^{g^{+}} the cube [−1, 1]^{3}
with g^{+} handles on the top boundary and g^{-} tunnels in the bottom boundary. We have

canonical embeddings F_{g^{+}} \mapsto\partial C_{g-}^{g^{+}} and F_{g-} \mapsto\partial C_{g-}^{g^{+}} . A cobordism with paths from F_{g^{+}}
to F_{g}- is an equivalence class of triples (M, K, m) where:

\bullet  M is a compact, connected, oriented 3‐manifold,

\bullet  m:\partial C_{g-}^{g^{+}} \rightarrow^{\underline{}\simeq}\partial M is an orientation‐preserving homeomorphism,

\bullet  K=\sqcup_{i=1}^{k}K_{i}\subset M is a union of oriented paths K_{i} from m(0, -1, \displaystyle \frac{i}{k+1}) to m(0,1, \displaystyle \frac{i}{k+1}) ,

with k\geq 0,

\bullet \hat{K}=\sqcup_{i=1}^{k}\hat{K}_{i} is an oriented boundary link, where the \hat{K}_{i} are defined as in the previous
subsection.

Two such triples are equivalent if they are related by an orientation‐preserving homeo‐

morphism which respects the boundary parametrizations and identifies the paths. We get
embeddings m+:F_{g^{+}} \mapsto\partial M and m_{-} : F_{g}- \mapsto\partial M.

Set A_{g} = \mathrm{k}\mathrm{e}\mathrm{r} (\mathrm{i}\mathrm{n}\mathrm{c}1_{*} : H_{1}(F_{g};\mathbb{Q}) \rightarrow H_{1}(C_{0}^{g};\mathbb{Q})) and B_{g} = \mathrm{k}\mathrm{e}\mathrm{r}(\mathrm{i}\mathrm{n}\mathrm{c}1_{*} : H_{1}(F_{g};\mathbb{Q}) \rightarrow

 H_{1}(C_{g}^{0};\mathbb{Q} These are Lagrangian subspaces of H_{1}(F_{g};\mathbb{Q}) with respect to the intersection

form, and A_{g} (resp. B_{g} ) is generated by the homology classes of the curves $\alpha$_{i} (resp. $\beta$_{i} ).
A cobordism with paths (M, K, m) from F_{g^{+}} to F_{g}- is Lagrangian(‐preserving) if the

following conditions are satisfied:

\bullet  H_{1}(M;\mathbb{Q})=(m_{-})_{*}(A_{g-})\oplus(m_{+})_{*}(B_{g^{+}}) ,

\bullet (m_{+})_{*}(A_{g^{+}}) \subset (m_{-})_{*}(A_{g-}) as subspaces of H_{1}(M;\mathbb{Q}) .

Define a category \overline{\mathcal{L}Cob} of Lagrangian cobordisms with paths whose objects are non‐

negative integers and whose set of morphisms \overline{\mathcal{L}Cob}(g^{+}, g^{-}) is the set of Lagrangian cobor‐

disms with paths from F_{g^{+}} to F_{g-} . The composition of a cobordism (M, K, m) from F_{g}
to F_{f} with a cobordism (N, J, n) from F_{h} to F_{g} is given by gluing N on the top of M . Let

lcob be the subcategory of \mathcal{L}Cob of Lagrangian cobordisms with no path. For a cobordism

(M, m) and a cobordism with paths (N, J, n) ,
define the tensor product (M, m)\otimes(N, J, n)

by horizontal juxtaposition in the x direction.

Define categories \mathcal{L}Cob_{q} and \mathcal{L}Cob_{q} of q‐cobordisms with objects the non‐commutative

words in the single letter \bullet
,

and with set of morphisms from a word on  g^{+} letters to a

word on g^{-} letters the set of morphisms from g+\mathrm{t}\mathrm{o}g-\mathrm{i}\mathrm{n}\mathcal{L}Cob and \mathcal{L}Cob respectively.
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In order to define the functor \tilde{Z} : \overline{\mathcal{L}Cob}_{q} \rightarrow ts\overline{\mathcal{A}}, we represent Lagrangian cobordisms

with paths by Lagrangian bottom‐top tangles with paths.
For a positive integer g \geq  0 ,

let (p_{1}, q_{1}) ,
. . .

, (p_{g}, q_{g}) be g pairs of points uniformly
distributed on [−1, 1] \times \{0\} \subset [-1, 1]^{2} \cong  F_{0} as represented Figure 13. A bottom‐top

Figure 13: The pairs of points (p_{i}, q_{i}) on [−1, 1 ]^{}.

tangle with paths of type (g^{+}, g^{-}) is an equivalence class of triples (B, K,  $\gamma$) where

\bullet (B, K)=(B, K, b) is a cobordism with paths form F_{0} to F_{0},

\bullet  $\gamma$=($\gamma$^{+}, $\gamma$^{-}) is a framed oriented tangle in B with g^{+} components $\gamma$_{i}^{+} from  b(\{p_{i}\}\times
\{1\}) to b(\{q_{i}\}\times\{1\}) and g^{-} components $\gamma$_{i}^{-} from b(\{q_{i}\}\times\{-1\}) to b(\{p_{i}\}\times\{-1\}) ,

\bullet \hat{K} is a boundary link in B\backslash  $\gamma$.
Two such triples (B, K,  $\gamma$) and (B', K', $\gamma$') are equivalent if (B, K) and (B', K') are related

by an equivalence which identifies  $\gamma$ and  $\gamma$' . A bottom‐top tangle with paths (B, K,  $\gamma$) is

Lagrangian if B is a \mathbb{Q}‐cube and the linking matrix \mathrm{L}\mathrm{k}($\gamma$^{+}) is trivial.

In order to define the composition, we need the bottom‐top tangle ([-1,1]^{3}, \emptyset, T_{g})
represented in Figure 14. The composition of a bottom‐top tangle (B, K,  $\gamma$) of type (g, f)

Figure 14: The bottom‐top tangle T_{g} in [−1, 1 ]^{}.

with a bottom‐top tangle (C, J, v) of type (h, g) is given by first making the composition

(B, K)\circ([-1,1]^{3}, \emptyset)\circ(C, J) in the category \mathcal{L}Cob and then perfoming the surgery on the

2g components link $\gamma$^{+}\cup T_{g}\cup v^{-} We get a category tb\overline{\mathcal{L}T} whose objects are non‐negative

integers and whose set of morphisms tb\overline{\mathcal{L}T}(g^{+}, g^{-}) is the set of Lagrangian bottom‐top
tangles with paths of type (g^{+}, g Denote tb\mathcal{L}T the subcategory of Lagrangian bottom‐

top tangles with no path. For a Lagrangian bottom‐top tangle (B,  $\gamma$) and a Lagrangian
bottom‐top tangle with paths (C, J, v) ,

define the tensor product (B,  $\gamma$\underline{)\otimes}(C, J, v) by
horizontal juxtaposition in the x direction. Define categories tb\mathcal{L}T_{q} and tb\mathcal{L}T_{q} of bottom‐

top q‐tangles with objects the non‐commutative words in the single letter \bullet.
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In the following result, the map D is defined by digging tunnels around the components
of the tangle.

Proposition 3.10 There is an isomorphism D:_{b}^{t}\overline{\underline{\mathcal{L}T}}\rightarrow\overline{\mathcal{L}Cob} which identifies tb\mathcal{L}T with

\mathcal{L}Cob and preserves the tensor product on tb\mathcal{L}T\otimes_{b}^{t}\mathcal{L}T.
Now we can define a functor on Lagrangian q‐cobordisms with paths by applying the

invariant Z on bottom‐top q‐tangles with paths in \mathbb{Q}‐cubes. The invariant Z is functorial

on q‐tangles but not on bottom‐top q‐tangles, due to the different composition laws. To

deal with this, we introduce some specific elements \mathrm{T}_{g}\in ts\overline{\mathcal{A}}(*\lfloor g1^{+}\cup\lfloor g\rceil^{-}) following [CHM08,
Sec. 4]. Set:

 $\lambda$(x, y;r)=$\chi$_{\{r\}}^{-1}(\exp ( r\}- x)\circ\exp( r\}- y))\in\overline{\mathcal{A}}_{\mathbb{Q}(t)}(*\{x,y,r\}) ,

\displaystyle \mathrm{T}(x^{+}, x^{-})=U_{+}^{-1}\sqcup U_{-}^{-1}\sqcup\int_{\{r^{+},r-\}}\langle $\lambda$(x^{+}, 1^{+};r^{+})\sqcup $\lambda$(x^{-}, 1^{-};r $\chi$^{-1}(T_{1})\rangle_{\{1+,1-\}},
\mathrm{T}_{g}=\mathrm{T}(1^{+}, 1^{-})\sqcup\ldots\sqcup \mathrm{T}(g^{+}, g^{-})\in\overline{\mathcal{A}}_{\mathbb{Q}(t)}(*\lfloor g1^{+}\cup\lfloor g\rceil^{-)},

where the bottom‐top tangle T_{1} is drawn in Figure 14. Set:

\tilde{Z}(M, K)=$\chi$^{-1}(Z(B, K,  $\gamma$))\circ \mathrm{T}_{g}.
At the level of objects, \tilde{Z} sends a word on its number of letters.

Proposition 3.11 The functor \tilde{Z} : \overline{\mathcal{L}Cob}_{q}\rightarrow ts\overline{\mathcal{A}} is weel‐defined and preserves the tensor

product on \mathcal{L}Cob_{q}\otimes \mathcal{L}Cob_{q}.

3.5 Splitting formulas

We first mention useful lemmas from [Mas15, Lemmas 4. 3 & 4.4]. Recall the tensor  $\mu$(\mathrm{C})
was defined in the introduction.

Lemma 3.12 For a \mathbb{Q} ‐handlebody C of genus g ,
there exists a boundary parametrization

c : \partial C_{0}^{g}\rightarrow C such that (C, c)\in \mathcal{L}Cob(g, 0) .

Lemma 3.13 Let \mathrm{C} = (\displaystyle \frac{C'}{c}) be an LP‐pair of genus g . Take boundary parametrizations
c : \partial C_{0}^{g} \rightarrow C and c' : \partial C_{0}^{g} \rightarrow C' compatible with the fixed identification \partial C\cong\partial C' such

that (C, c)\in \mathcal{L}Cob(g, 0) and (C', c')\in \mathcal{L}Cob(g, 0) . Then:

 $\mu$(\mathrm{C})=\tilde{Z}_{1}(C, c)-\tilde{Z}_{1}(C', c

where \tilde{Z}_{1} is the i‐degree 1 part of \tilde{Z} and  $\mu$(\mathrm{C}) is considered as an element of \overline{\mathcal{A}}_{\mathbb{Q}(t)}(*\lfloor g\rceil^{+})
via the inclusion $\Lambda$^{3}H_{1}(C;\mathbb{Q})\mapsto\overline{\mathcal{A}}_{\mathbb{Q}(t)}(*\lfloor g\rceil^{+}) defined by:
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Let (M, K) \in\overline{\mathcal{L}Cob}_{q}(w, v) . Let \mathrm{C}=(\mathrm{C}_{1}, \ldots, \mathrm{C}_{n}) be a null LP‐surgery on (M, K) . Let

e_{i} be the genus of C_{i} . For 1\leq i\leq n ,
take boundary parametrizations c_{i} : \partial C_{0}^{e_{i}}\rightarrow C_{i} and

cí : \partial C_{0}^{e_{i}} \rightarrow C\'{i} compatible with the fixed identification \partial C_{i} \cong\partial C\'{i} such that (C_{i}, c_{i}) \in

\mathcal{L}Cob(e_{i}, 0) and (Cí, cí) \in \mathcal{L}Cob(e_{i}, 0) . Set e = \displaystyle \sum_{i=1}^{n}e_{i} . Take a collar neighborhood
m_{-}(F_{f}) \times [-1,  $\epsilon$-1] of the bottom surface m_{-}(F_{f}) . Take pairwise disjoint solid tubes

T_{i}, i = 1
,

. . .

,
n

,
such that T_{i} connects (c_{i})_{-}(F_{0}) to a disk in m_{-}(F_{f}) \times \{ $\epsilon$-1\} in the

complement of the C_{j} ,
the collar neighborhood and K . This provides a decomposition of

the cobordism (M, K) as:

(M, K)=((C_{1}, \emptyset)\otimes\ldots\otimes(C_{n}, \emptyset)\otimes Id_{f})\circ(N, J) ,

where f is the number of letters of v . It is proved in [Mas15, Section 4.4] that N is a

Lagrangian cobordism. The nullity condition on the surgery ensures that \hat{J} is a boundary
link. Thus (N, J) is a Lagrangian cobordism with paths.

From such a decomposition of a cobordism associated with a null LP‐surgery, one can

obtain splitting formulas for the functor \tilde{Z} . We only state here a specific version of these

formulas for a cobordism with one path.
Given a null LP‐surgery \mathrm{C}=(\mathrm{C}_{1}, \ldots, \mathrm{C}_{n}) on a Lagrangian cobordism (M, K) ,

define

a hermitian form l_{(M,K)}(\mathrm{C}) : H_{1}(C;\mathbb{Q}) \times H_{1}(C;\mathbb{Q}) \rightarrow \mathbb{Q}(t) in the same way as \ell_{(S, $\kappa$)}(\mathrm{C})
was defined in the introduction. Also define a map $\rho$_{\mathrm{c}} : \mathcal{A}_{\mathbb{Q}}(H_{1}(C;\mathbb{Q}))\rightarrow\overline{\mathcal{A}}(*1^{+}\cup \mathrm{L}f1-)
which changes the labels of the univalent vertices by first sending them in H_{1}(M;\mathbb{Q}) via

H_{1}(C;\mathbb{Q})\cong\otimes_{i=1}^{n}H_{1}(C_{i};\mathbb{Q})\rightarrow H_{1}(M;\mathbb{Q}) ,
and then writing them in terms of the [m_{+}($\beta$_{i})]

and [m_{-}($\alpha$_{i})].

Proposition 3.14 Let (M, K) \in\overline{\mathcal{L}Cob}_{q}(w, v) be a Lagrangian q ‐cobordism with one path.
Let \mathrm{C} = (Cl, . . .

, \mathrm{C}_{n} ) be a null LP‐surgery on (M, K) . Let (B, K,  $\gamma$) be the bottom‐top
tangle with paths associated with (M, K) . Then:

\displaystyle \sum_{I\subset\{1,..n\}}.,(-1)^{|I|}\tilde{Z}((M, K)(\mathrm{C}_{I}))\equiv_{n}\exp_{\sqcup}(\frac{1}{2}\mathrm{L}\mathrm{k}_{e}( $\gamma$)) \sqcup$\rho$_{\mathrm{c}} (some_{\ell_{(MK)}(\mathrm{C})/2}legsof $\mu$(\mathrm{C})with) ,

where \mathrm{C}_{I}= ((\mathrm{C}_{i})_{i\in I}) , \equiv_{n} means �equal up to i‐degree at least n+1 terms� and \mathrm{L}\mathrm{k}_{e}( $\gamma$)
is the matrix of equivariant linking numbers of lifts of the components of \hat{ $\gamma$} in the infinite
cyclic covering of B\backslash K.

To apply this result to the Kricker lift of the Kontsevich integral, we need to recover

this invariant from our functor. Let (S,  $\kappa$) be a \mathbb{Q}\mathrm{S}\mathrm{K}‐pair. Let M be the \mathbb{Q}‐cube obtained

from S by removing the interior of a ball B^{3} disjoint from  $\kappa$ . Isotoping  $\kappa$ in  M and fixing
a boundary parametrization m of M

,
we can view  $\kappa$ as the knot \hat{K} associated with a

Lagrangian cobordism with one path (M, K) . Since the top and bottom words are empty,
we get a Lagrangian q‐cobordism with one path.

Proposition 3.15 Let (S,  $\kappa$) be a \mathbb{Q}SK‐pair. Define as above an associated Lagrangian
q ‐cobordism with one path (M, K) . Then \tilde{Z}(S,  $\kappa$) = \tilde{Z}(M, K) defines an invariant of
\mathbb{Q}SK‐pairs, which coincides with the Kricker invariant Z^{\mathrm{r}\mathrm{a}\mathrm{t}} for knots in \mathbb{Z} ‐spheres.

Theorem 2.1 can be deduced from Propositions 3.14 and 3.15.
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