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1 Introduction

The gauge theory has been an important tool for the study of 4‐dimensional manifolds

since the early 1980\mathrm{s} , when Donaldson solved long‐standing problems in topology. The

purpose of our study are developing gauge theory on non‐compact 4‐manifolds and its

application to low dimensional topology. The statement of our main theorem is the

compactness of ASD‐moduli spaces for non‐compact 4‐manifolds with periodic end and

cylindrical end. Furthermore, we construct an obstruction of embeddings of 3‐manifolds

into 4‐manifolds with some homological condition as an application of the main theorem.

There are two backgrounds for our study.
First background is the transition of development of gauge theory on non‐compact 4‐

manifolds. Gauge theory on 4‐manifolds with cylindrical end did very well. We give
the typical study of gauge theory on 4‐manifolds with periodic end. In [T87], Taubes

studied the ASD‐moduli space for 4‐manifolds with periodic end under some assumption.
More explicitly, Taubes showed that the ASD‐moduli spaces for 4‐manifold M=K\displaystyle \bigcup_{Y}

 W_{0}\displaystyle \bigcup_{Y}W_{1}\cdots (where  K and W_{0} are compact 4‐manifolds, W_{i} is a copy of W_{0} ) has a

natural compactification under the assumption that there is no non trivial representation

$\pi$_{1}(W_{i})\rightarrow SU(2) . Moreover there is another study for gauge theory on 4‐manifolds with

periodic end. In [L16], Lin also give a natural compactification of Seiberg‐Witten moduli

spaces for 4‐manifolds Y\times \mathbb{R}_{\leq 0}\cup W_{0}\cup W_{1} under the assumption that W_{0} has a positive
scalar curvature. They assume the strong condition on the segment W_{i} of periodic end.

One of the purpose is treating more general segment W_{i}.

Second, there is the background which relates the invariants of a homology S^{3} \times  S^{1}.

For 4‐manifolds with b^{+} =0
,

the Donaldson invariant and Seiberg‐Witten invariant can

not be defined. Because the moduli spaces of solutions have the quotient singularity for

such 4‐manifold. But for a homology S^{3}\times S^{1} ,
the gauge theoric invariants are defined by

counting the solutions except for these singularity. In [FO93], the Furuta‐Ohta invariant
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$\lambda$_{FO} is defined by using ASD moduli spaces for a homology S^{3}\times S^{1} . In [MRSII], Mrowka‐

Ruberman‐Saveliev invariant $\lambda$_{MRS} is also defined by using the SeibergWitten moduli

spaces. When a homology S^{3} \times  S^{1} is equal to  Y\times  S^{3} for some homology S^{3} Y
,

these

invariants are essentially equal to the Casson invariant of Y . On the other hand, Casson

invariant has a categorification by using the moduli spaces on the \mathbb{Z} covering space of

Y\times S^{1} . It is called Floer theory which is developing gauge theory on 4‐manifolds with

cylindrical end. ([F188], [KM08]) There is a natural question: Is there a refinement of

$\lambda$_{FO} ($\lambda$_{MRS}) by developing gauge theory on \mathbb{Z} covering of X . This question suggests an

extension of Floer theory.

2 Notations and Assumptions

We define several notations for any manifold Z . We denote by P_{Z} the product SU(2)
bundle.

\mathcal{A}(Z) := {SU(2) ‐connections on P_{Z} },

\mathcal{A}^{\mathrm{f}\mathrm{l}\mathrm{a}\mathrm{t}}(Z) := {SU(2)‐flat connections on P_{Z} } \subset \mathcal{A}(Y) ,

\overline{\mathcal{B}}(Z) :=\mathcal{A}(Z)/\mathrm{M}\mathrm{a}\mathrm{p}_{0}(Z, SU(2)) ,

\overline{R}(Z) :=\mathcal{A}^{\mathrm{f}\mathrm{l}\mathrm{a}\mathrm{t}}/\mathrm{M}\mathrm{a}\mathrm{p}_{0}(Z, SU(2))\subset\overline{\mathcal{B}}(Z) ,

and

R(Z) :=\mathcal{A}^{\mathrm{f}\mathrm{l}\mathrm{a}\mathrm{t}}(Z)/\mathrm{M}\mathrm{a}\mathrm{p}_{0}(Z, SU(2)) ,

where \mathrm{M}\mathrm{a}\mathrm{p}_{0}(Z, SU(2)) is a set of smooth functions with mapping degree 0 . When Z is

equal to an oriented homology 3‐sphere Y
,
the Chern‐Simons functional cs_{Y} : \mathcal{A}(Y)\rightarrow \mathbb{R}

is defined by

cs_{Y}(a) :=\displaystyle \frac{1}{8$\pi$^{2}}\int_{Y}Tr(a\wedge da+\frac{2}{3}a\wedge a\wedge a) .

It is known that cs decends to a map \overline{\mathcal{B}}(Y)\rightarrow \mathbb{R} , which we denote by the same notation

cs_{Y}.

Notation 2.1. We denote the number of elements in R(Y) by l_{Y} . If R(Y) is not a finite

set, we set l_{Y}=\infty.

We will use the following assumption on Y in our main theorem(Theorem 5.1) and the

compactness theorem(Theorem 4. 1).

Assumption 2.2. All SU(2) flat connections on Y are non‐degenerate, i.e . the first

cohomology group of the next twisted de Rham complexes vanish.
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0\rightarrow$\Omega$^{0}(Y)\otimes z\mathfrak{u}(2)\rightarrow$\Omega$^{1}(Y)d_{a}\otimes \mathcal{B}\mathrm{t}(2)\rightarrow$\Omega$^{2}(Y)d_{a}\otimes \mathcal{B}\mathrm{u}(2)\rightarrow$\Omega$^{3}d_{a}\otimes\ovalbox{\tt\small REJECT} \mathrm{u}(2)\rightarrow 0

for [a] \in R(Y) .

Example 2.3. All flat connections on the Brisckorn homology three sphere  $\Sigma$(p, q, r) are

non‐degenerate. (ĨFS901)

Under Assumption 2.2, l_{Y} is finite ([T90]).

3 Chern‐Simons functional for homology S^{3}\times S^{1}.

For a homology S^{1} \times S^{3} which we denote by X
,

we generalize the Chern‐Simons func‐

tional to a functional cs_{X} on the flat connections on X . In our construction, cs_{X} cannot

be extended to a functional for arbitrary SU(2) connections on X.

Let X be a homology S^{3}\times S^{1} ,
i.e.

,
X is a closed 4‐manifold equipped with an isomor‐

phism  $\phi$ :  H_{*}(X) \rightarrow H_{*}(S^{3} \times S^{1}) in this paper. Then X has an orientation induced by
the standard orientation of S^{3}\times S^{1} and  $\phi$.

Proposition 3.1. Let X be a homology S^{1} \times  S^{3} . There is a well‐defined map cs_{X} :

\overline{R}(X) \times\overline{R}(X)\rightarrow \mathbb{R} satisfying the following condition.

When X is equal to Y \times  S^{1} with an oriented homology 3‐sphere Y
,

the map cs_{X} :

\overline{R}(X) \times\overline{R}(X)\rightarrow \mathbb{R} essentially coincides with the restriction of Chern‐Simons functional
cs_{Y} on Y by the following sense. For [a] \in\overline{R}(Y\times S^{1}) ,

the restriction [i^{*}a] \in\overline{R}(Y) satisfies

cs_{Y}([i^{*}a])=cs_{Y\times S^{1}}([a], [ $\theta$])

where i is a inclusion  Y=Y\times  1\rightarrow Y\times S^{1} and  $\theta$ is the product  SU(2) connection.

4 Compactness of ASD‐moduli space for 4‐manifolds with pe‐

riodic ends.

The compactness of ASD‐moduli spaces for non‐compact 4‐manifolds is treated in [F188],
[Fu90],[Do02] for cylindrical end case and in [T87] for periodic end case. In [Fu90] and

[T87], they consider the ASD‐moduli spaces with the connections asymptotically conver‐

gent to the trivial connection on the end. We also follow their strategy by using Q_{X}^{2l_{Y}+3}
defined by using value of cs_{X} . More explicitly, in this section we explain a compactness

result for the instanton moduli spaces for a non‐compact manifold W^{+} with periodic end.
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Let Y be a oriented homology S^{3} . Let W_{0} be an oriented homology cobordism from

Y to -Y . We get an oriented compact 4‐manifold X by pasting Y and -Y of W_{0} . We

denote by W^{+} and W the following non‐compact 4‐manifolds.

\left\{\begin{array}{l}
W^{+}:=W_{0}\bigcup_{Y}W_{1}\bigcup_{Y}\ldots,\\
W:=Y\times (-\infty, 0]\cup W^{+},
\end{array}\right.
where W_{i} is a copy of W_{0} . For a fixed Riemannian metric g_{Y} on Y

,
we choose a Riemannian

metric g_{W} on W with the conditions which are g_{W}|_{Y\times(-\infty,-1]} =g_{Y}\times g_{\mathbb{R}}^{\mathrm{s}\tan} and g_{W}|_{W+} is a

periodic metric. There is a natural orientation on W^{+} and W induced by the orientations

of W_{0} . The infinite cyclic covering space of X can be written by

\displaystyle \overline{X}\cong\ldots W_{-1}\bigcup_{Y}W_{0}\bigcup_{Y}W_{1}\bigcup_{Y}\ldots,

where W_{i} is also copy of W_{0} . Let T be the deck transformation of \overline{X} which maps each W_{i}

to W_{i+1} . By restriction, T has an action on W^{+} . We use the following smooth function

on W^{+}

 $\tau$:W^{+}\rightarrow \mathbb{R},

satisfying  $\tau$(T|_{W+}(x))= $\tau$(x)+1 for x\in W^{+}.

By pasting W_{0} with itself along ifts boundary Y and -Y
,

we get a homology S^{3} \times S^{1}

which we denote by X . We consider the product SU(2) ‐bundle P_{W+} on W^{+} . For q\geq 3
and  $\delta$>0 ,

we define the ASD‐moduli space M_{ $\delta$}^{W^{+}} by

M_{ $\delta$}^{W^{+}} :=\{ $\theta$+c\in$\Omega$^{1}(W^{+})\otimes \mathcal{B}\mathfrak{U}(2)_{L_{q, $\delta$}^{2}}|F^{+}( $\theta$+c)=0\}/\mathcal{G},
where \mathcal{G} is the gauge group

\mathcal{G} := {  g\in Aut (P_{W+})\subset End (\mathbb{C}^{2})_{L_{q+1,1\mathrm{o}\mathrm{c}}^{2}}|dg\in L_{q, $\delta$}^{2} },
and the action of \mathcal{G} is given by the pull‐back of connections. For f \in $\Omega$^{i}(W^{+})\otimes \mathfrak{s}\mathrm{u}(2)
with compact support, we define L_{q, $\delta$}^{2} norm by the following formula

||f||_{L_{q, $\delta$}^{2}}^{2} :=\displaystyle \sum_{0\leq j\leq q}\int_{W^{+}}e^{ $\delta \tau$}|\nabla_{ $\theta$}^{j}f|^{2} dvol,

where \nabla_{ $\theta$} is the covariant derivertive with respect to the product connection. We use the

periodic metric |-| which is induced from the Riemannian metric g_{W} . Its completion is

denoted by $\Omega$^{i}(W^{+})\otimes \mathcal{B}\mathrm{u}(2)_{L_{q, $\delta$}^{2}}.
We define the following invariants.

\bullet  Q_{X}^{i} \in \mathbb{R}_{\geq 0}\cup\{\infty\} for i\in \mathrm{N} and X by using the value of cs_{X} in Section 3. When X

is a homotopy S^{3}\times S^{1},  Q_{X}^{i}=\infty for all  i\in \mathbb{N}.
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Theorem 4.1. Under Assumption 2.2, the following statement holds. There exist $\delta$'>0

satisfying the following property. Suppose that  $\delta$ is a non‐negative number less than  $\delta$',
and \{A_{n}\} is a sequence in M_{ $\delta$}^{W^{+}} satisfying \displaystyle \sup_{n\in \mathbb{N}}||F(A_{n})||_{L^{2}(W^{+})}^{2} <\displaystyle \min\{8$\pi$^{2}, Q_{X}^{2l_{Y}+3}\}

Then for some subsequence \{A_{n_{j}}\} ,
a positive integer N_{0} and some gauge transformations

\{g_{j}\} on  W_{N_{0}}\displaystyle \bigcup_{Y}W_{N_{0}+1}\cdots ,
the sequences \{g_{j}^{*}A_{n_{j}}\} converges to some A_{\infty} in L_{q, $\delta$}^{2}(W_{N_{0}}\displaystyle \bigcup_{Y}

 W_{N_{0}+1}\cdots

5 Application

We construct an obstruction of embeddings  f of Y into X satisfying f_{*}[Y]=1\in H_{3}(X)
as an element in the filtered instanton Floer cohomology. We use information of the

compactness of ASD‐moduli spaces for periodic end‐4‐maniofo1d in a crucial step of our

construction.

We introduce the following invariants. Here we do not use Assumption 2.2.

\bullet The filtered instanton Floer cohomology  HF_{r}^{i}(Y) for Y and r\in \mathbb{R}\backslash cs_{Y}(\overline{R}(Y))\cup\{\infty\}
satisfying HF_{\infty}^{i}(Y)=HF^{i}(Y) .

\bullet The class [$\theta$^{r}] \in H_{r}^{1}(Y) for Y and r\in \mathbb{R}\backslash cs_{Y}(\overline{R}(Y))\cup\{\infty\} satisfying [$\theta$^{\infty}] = [ $\theta$] \in

 HF^{1}(Y) .

Our main theorem is:

Theorem 5.1. Under Assumption 2.2, if there exists an embedding f of Y into X with

f_{*}[Y]=1\in H_{3}(X) then [$\theta$^{r}] vanishes for any  r\in [0, Q_{X}^{2l_{Y}+3}]\cap(\mathbb{R}\backslash cs_{Y}(\overline{R}(Y))\cup\{\infty\})
In particular, if there exists an element  r\in [0, Q_{X}^{2l_{Y}+3}]\cap(\mathbb{R}\backslash cs_{Y}(\overline{R}(Y))\cup\{\infty\}) satisfying

 0\neq [$\theta$^{r}] ,
Theorem 5.1 implies that there is no embedding from Y to X with f_{*}[Y] =1\in

 H_{3}(X) .

Example 5.2. Let X be a homotopy S^{3}\times S^{1} . There is no embedding f of  $\Sigma$ ( p, q , kpq‐l)
into X satisfying f_{*}[ $\Sigma$(p, q , kpq—l = 1 \in H3(X) for coprime pair of positive integers

(p, q) and any positive integer k.

Because X is a homotopy S^{3}\times S^{1},  Q_{X}^{i}=\infty for  i\in \mathbb{N} . When r=\infty, [$\theta$^{r}] = [ $\theta$] holds,

Froyshov showed  0\neq $\theta$\in HF^{1}(- $\Sigma$ ( p, q , pqk—l) for (p, q, k) in Example 5.2 by using the

property of \mathrm{h}‐invariant in [Fr02]. So we can apply Theorem 5.1 for such pair (X, Y) .
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